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1 Introduction

Sapient agents have been characterized as systems that learns their cognitive state and
capabilities through experience (Otterlo, Wiering, Dastani and Meyer 2003). Other
features of such agents include considering social environments, interaction with other
agents or humans, and the ability to deal with emotions. One of the best known mod-
els of cognitive agency is the belief-desire-intention (BDI) approach. The relevance
of this model can be explained in terms of its philosophical grounds on intentional-
ity (Dennett 1987) and practical reasoning (Bratman 1987), as well as its elegant ab-
stract logical semantics (Rao 1996; Rao and Georgeff 1998; Singh, Rao and Georgeff
1999; Wooldridge 2000). However, if sapience is the issue , two well known limita-
tions of this model must be considered (Georgeff, Pell, Pollak, Tambe and Wooldridge
1999): Its lack of learning and social competences. This paper discusses some exten-
sions to the BDI model (Guerra-Hernández, El-Fallah-Seghrouchni and Soldano 2001,
2004a,b, 2005), enabling intentional and social learning. By intentional learning, we
mean that these agents can learn, and then update, their practical reasons (plan’s con-
texts) to adopt an intention, particularly to correct experienced failures. By social learn-
ing, we mean that these agents can interact through collaborative goal adoption (Castel-
franchi 1998) to learn intentionally and keep consistency in their Multi-Agent System
(MAS). The resulting BDI learning agents seem closer to the intended characterization
of sapient agents.

The organization of the this contribution is as follows: Since the BDI model is
well known, section 2 offers a very brief introduction to BDI agency, pointing out
some relevant concepts and references. Section 3 discusses BDI learning agents design
issues. Section 4 focuses on a scale of learning agents, induced by their degree of
awareness. Section 5 present some examples of BDI learning agents at the first two
levels of the proposed scale: individual and collaborative learning. Finally section 6
concludes and presents future work, including a new protocol based on incremental
learning.
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Fig. 1. A BDI architecture following dMARS specification.

2 BDI agency and learning

Agents are usually characterized as systems that exhibit flexible autonomous behav-
ior (Wooldridge 2000). BDI models of agency approximate this kind of behavior
through two related theories about the philosophical concept of intentionality: Inten-
tional Systems (Dennett 1987) defined as entities which appear to be subject of beliefs,
desires and other propositional attitudes; and the Practical Reasoning theory (Bratman
1987) proposed as a common sense psychological framework to understand ourselves
and others, based on beliefs, desires and intentions conceived as partial, hierarchi-
cal plans. These related notions of intentionality provide us with the tools to describe
agents at the right level of abstraction, i.e., adopting the intentional stance; and to de-
sign agents in a compatible way with such intentional description, i.e., as practical
reasoning systems.

Different aspects of intentionality and practical reasoning have been formally stud-
ied, resulting in the so called BDI logics (Rao et al. 1998). For a road map of the evo-
lution of these formalisms, see (Singh et al. 1999; Wooldridge 2000). Implementations
made use of refinement techniques, e.g., using specifications in Z language (Lightfoot
1991). A different approach is provided by AgentSpeak(L) (Rao 1996), a formal BDI
model closer to the agent oriented programming paradigm. Jason (Bordini and Hübner
2006) is an extended interpreter for AgentSpeak(L) implemented in Java. Originally
our agents run on a BDI architecture (Fig. 1) following dMARS specification in Z
(Inverno, Kinny, Luck and Wooldridge 1997). This architecture was implemented ex
nihilo (Guerra-Hernández et al. 2001, 2004b) in Lisp. Recently, we have ported the
approach to AgentSpeak(L), implementing it in Jason (Bordini et al. 2006).

When learning is considered (Fig. 2), independently of the implementation, we as-
sume that the BDI interpreter corresponds to the performance element in the abstract
learning architecture (Russell and Norvig 1995). The performance element is responsi-
ble for deciding what to do. The learning element is intended to provide modifications
to the performance element to improve the behavior of the agent. The critic provides
feedback about the performance of the agent, while the problem generator suggests
cases or situations which constitute informative experiences for the learning element.

What do we mean by learning intentionally? Assume that the robots shown in the
fig. 3 are BDI agents. Suppose that r2 is thinking about what object should it take.
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Fig. 2. Abstract learning architecture.

Fig. 3. Simple scenario of BDI agents and a plan.

Since it is deciding what to do, r2 is performing practical reasoning. Suppose r1 is
figuring out what object will r2 take. Since it is modifying its beliefs, r1 is performing
epistemic reasoning. Practical and epistemic reasoning are present explicitly in the BDI
agents. They are activated by the achieve (!) and test (?) goals respectively. Learning
intentionally is related with practical reasoning.

Practical reasoning lead to the adoption of intentions. For example, if the event
!p-sanded(board) is perceived by an agent, it will look for relevant plans, i.e.,
the plans which trigger unifies the event. This is the case of the plan in the fig. 3:

@p007
!p-sanded(Obj) : p-handfree(Ag, Hand) & p-at(sander, free)

<- .pickup(sander);
?p-at(Obj, vise);
!p-sanded-vise(Obj)}.

In what follows, AgentSpeak(L) syntax is adopted. Plans have the form @Id
trigger : context <- body. Then, in order to form an intention, the agent
will look for an applicable plan, i.e., a relevant plan which context is a logical conse-
quence of its current belief.

Although the agent seems to be performing a kind of epistemic reasoning to adopt
their intentions, in fact it is only verifying if his practical reasons to adopt the plan
as an intention are supported by its beliefs. From the role of beliefs in the theory of
practical reasoning (Bratman 1987), e.g., the standard and filter of admissibility, it is
clear that even when the beliefs justify the behavior of the agent, they do it as a part
of a background frame that, together with prior intentions, constrain the adoption of
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new intentions. In doing so, beliefs are playing a different role that the one they play in
epistemic reasoning. Particularly, practical reasons to act sometimes differ from epis-
temic reasons. This is the case for reasonableness of arbitrary choices in Buridan cases
(situations equally desirable), e.g., it is practical reasonable for agent r2 to choose any
plan in the set of relevant applicable plans to form an intention, even if there is no epis-
temic reason, no reason purely based on the beliefs of the agent, behind this choice.
Sometimes this is called wishful thinking, and it is not epistemic reasonable for agent
r1 to belief that agent r2 will take the sander, in this way.

What is relevant here, is that the contexts express practical reasons to act in some
way and not in another, face to desires. The context, together with the background
frame of beliefs and prior intentions, support the rational behavior of intentional
agents. Contexts are the target concept, if BDI agents are going to learn about their
practical reasons to satisfy desires.

3 Design issues

Once the context of the plans has been identified as the target concept, all the other
issues of the abstract learning architecture can be approached.

3.1 Representation

Representations in the BDI model are based on first-order formulae. If at is an atomic
formula, then the well-formed formulae (wff) of AgentSpeak(L) is given by the fol-
lowing grammar ϕ ::= at|¬at|ϕ ∧ ϕ′. Beliefs are grounded atomic formulae, like
Prolog facts. The extended interpreter Jason, considers also disjunctions of the form
ϕ ∨ ϕ′. The context of the plans is expressed as a wff which may include variables,
e.g., p-freehand(Ag, Hand) & p-at(sander, free). In dMARS, wff of
the form at|¬at are known as belief formuae, while those including disjunctions and
conjunctions are known as situation formulae. This representation has two immediate
consequences for the candidate learning methods: Given the first-order nature of the
representation, propositional learning methods are discarded; and the fact that the con-
text of plans is represented as situation formulae, demands disjunctive hypothesis, e.g.,
decision trees.

3.2 Feedback

Getting feedback from the BDI interpreter is almost direct, since it usually detects and
processes success and failure of the execution of intentions. This is done by executing a
set of internal actions, e.g., adding or deleting beliefs, and posting events, accordingly
to the result obtained in executions. Jason and any BDI interpreter can be extended with
a special internal action, that generates a log file of training examples for the learning
task. Items to built these examples include: the beliefs characterizing the situation
when the plan was selected to form an intention, the label of success or failure after
the execution of the intention, and the plan and the agent identifications.
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3.3 Background knowledge

Although most of the time, agents do not use the knowledge they have while learning,
this is not a good idea provided that BDI agents have very rich prior information.
There are two possible sources of background knowledge for them. First, the plan
library may be seen as their background knowledge, since plans state expected effects
which, from the perspective of the agent, must hold in the environment, i.e., the event
e will be satisfied with the plan p execution, and this is the case if the context of p is
a logical consequence of the beliefs of the agent. Second, we keep track of predicates
and functions, as well as their signatures, used to define the agents. This is used to
specify the language for the target concept.

3.4 Top-down Induction of Logical Decision Trees

Because of the disjunctive nature of the context of plans, decision trees are adopted as
the target representation. Top-down induction of decision trees is a widely used and
efficient machine learning technique. As defined in the ID3 algorithm (Quinlan 1986)
it approximates discrete target-value functions. Targets are represented as trees, corre-
sponding to a disjunction of conjunctions of constrains on the attribute values of the
instances. Each path from the decision tree root to a leaf, corresponds to a conjunction
of attribute tests, and the tree itself is the disjunction of these conjunctions. However,
as can be guessed, the ID3-like approaches has a propositional nature, where training
examples are represented as a fixed set of attribute-value pairs. It is assumed that all
the information available to learn is in the examples, i.e., the background knowledge
is not considered.

Logical decision trees upgrade the attribute-value representation to a first-order
representation, using the Inductive Logic Programming (ILP) setting known as learn-
ing from interpretations (Blockeel and Raedt 1998). In this setting, each training exam-
ple e is represented by a set of facts. Background knowledge can be given in the form
of a Prolog program B. The interpretation that represents the example is the set of all
ground facts that are entailed by e∧B, i.e., its minimal Herbrand model. Observe that
instead of using a fixed-length vector to represent e, as the case of attribute-value pairs
representation, a set of facts is used. This makes the representation much more flexible.
Learning from interpretations can be defined as follows. Given: i) A target variable Y ;
ii) A set of labeled examples E, each consisting of a a set of definite clauses e labeled
with a value y in the domain of Y ; iii) A language L; iv) A background theory B. Find
a hypothesisH ∈ L such that for all examples labeled with y: i)H∧e∧B |= label(y);
and ii) ∀y′ 6= y : H ∧ e ∧B 6|= label(y′).

The learning from interpretations setting, as the propositional case, exploits the lo-
cal assumption, i.e., all the information that is relevant for a single example is localized
in two ways: Information contained in the examples is separated from the information
in background knowledge; and Information in one example is separated from informa-
tion in other examples (Muggleton and Raedt 1994). The local assumption is relevant
if we want the agents configuring their learning settings themselves.

Tilde (Blockeel, Dehaspe, Demoen, Gerda, Ramon and Vandecasteele 2000) is a
learning from interpretations system to induce logical decision trees, i.e., decision trees
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where every internal node is a first-order conjunction of literals. It uses the same heuris-
tics that ID3 algorithms (gain-ratio and post-pruning heuristics), but computations of
the tests are based on the classical refinement operator under Θ-subsumption, which
requires the specification of a language L stating which kind of tests are allowed in the
decision tree.

4 Social awareness

The awareness of other agents in the system seems to be indicative of a MAS hierar-
chy of increasing complexity. In a certain way, this hierarchy corresponds to the scale
of intentionality discovered by D. Dennett (Dennett 1987). Levels in the awareness
hierarchy are as follows:

1. At the first level, agents act and learn from direct interaction with the environment.
They are not explicitly aware of other agents in the MAS. However, the changes
produced by other agents in the environment may be perceived by the learning
agent. For example, in the scenario of figure 3, r1 can be specialized in painting
objects, while r2 sands them. It is possible to program the painter robot, without
awareness of the sander, i.e., all r1 has to know is that once an object is sanded,
it can be painted. The true isolated learning case with one agent, may be seen as a
special case of this level.

2. At the second level, agents act and learn from direct interaction with other agents
using message exchange. For the example above, the sander robot can inform the
painter robot, that an object is already sanded. Also, the painter agent can ask
the sander robot for this information. Exchange of training examples in learning
processes is also considered.

3. At the third level, agents act and learn from the observation of the actions per-
formed by other agents in the system. It involves a different kind of awareness
from that of level 2. Agents are not only aware of the presence of other agents,
but are also aware of their competences, hence the painter robot is able to perceive
that the sander robot is going to sand the table. Observe that this seems to involve
epistemic reasoning, e.g., adopting the belief that that r2 will sand the object.

The purpose of our BDI agents while learning, is to update context of a plan after
its execution failed. If an agent can update this context after its own experience, no
communication is needed and learning is performed at level 1 of the hierarchy. Other-
wise, the agent will try to learn from the experience of other agents, starting a kind of
collaborative goal adoption (Castelfranchi 1998) process, where the agents in the MAS
sharing the same plan, cooperate with the goal of the learner agent, because they are
also interested in the results of its learning process, e.g., inducing the updated context
of the shared plan. The group of agents interested in a learning goal, may be seen as an
emerging social structure, where the roles of learner and supervisors are dynamically
assigned. An incremental version of this protocol (Bourgne, El-Fallah-Seghrouchni
and Soldano 2007) is discussed in future work.
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5 BDI learning agents

In order to test the AgentSpeak(L) implementation of our intentional learning ap-
proach, we decided to use the well known MAS examples, e.g., those in Jason’s dis-
tribution. The idea is to modify some contexts in the plan library of the agents and ob-
serve if the they are able to learn a new context, and how does this new context compare
with the original one. The example used in this section is the well known blocks world.
Table 1 (analogous to figure 3) shows a situation in this environment represented by
a set of beliefs, and a plan for stocking a block. The context of the plan stack con-
strains the plan the be applicable only if the destination is clear (clear(Y)) and the
agent is holding the block to be stacked (holding(X)). What would happen if our
definition for this plan did not consider the atom holding(X)? The plan would fail
(the agent can not forget (-) what it did not believe) and the agent should reconsider its
practical reasons to adopt this plan as an intention.

Beliefs Plan

on(b,a). @stack
clear(b). +!stack(X,Y) : clear(Y) & holding(X) <-
clear(c). -clear(Y); -holding(X);
onTable(a). +armEmpty; +on(X,Y);
onTable(c). .print("Stacking ",X," on ", Y).
armEmpty.

Table 1. Some beliefs and a plan in the Blocks World.

5.1 Centralized learning (level 1)

Suppose the plan stack has failed because of the reasons explained above. We want
the agent trying to learn why did the plan fail, if there were practical reasons to adopt
it as an intention. In order to execute the learning process, the agent post the event
!pLearn(stack) when detecting the failure of the plan. There is a relevant plan
for this kind of events:

@learningPlan
+!pLearn(Plan) : flag(newExample)

<- ia.makeSet(Plan);
ia.execTilde(Plan);
ia.updatePContex(Plan,C,V);
ia.evalLearnedContext(Plan,C,V).

When the success or failure of an intention is detected, the agent keeps track of
these executions as training examples. If at least one new example has been collected
by the agent, it beliefs flag(newExample), and the learningPlan becomes
executable. While in dMARS failed plans are not intended again, this is not the case for
Jason, where the agent can intend the plan again and collect more training examples.
The internal action ia.makeSet configures the learning task of the agent, generating
the files required by Tilde to learn:a knowledge base (.kb), the background knowledge
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(.bg), and the settings (.s) including the language bias L. The identifier Plan names
these files, that are generated automatically by the agent as follows.

Each learning example is coded as a model of the learning from interpretations
paradigm. A model starts with a label that indicates the success or failure of
the plan execution. Then a predicate plan/2 is added to establish that the model is
an instance of the execution of a particular plan by a particular agent. The model also
contains the beliefs that the agent had when the plan was selected to form an intention.
The label is added in the execution phase of the BDI interpreter. Table 2 shows some
models generated for the plan stack by the agent c1.

begin(model(1)). begin(model(2)). begin(model(3)). begin(model(4)).
failure. success. success. success.
plan(c1,stack). plan(c1,stack). plan(c1,stack). plan(c1,stack).
clear(b). holding(c). holding(b). holding(c).
clear(c). clear(b). clear(a). clear(a).
onTable(a). onTable(a). onTable(a). clear(b).
onTable(c). on(b,a). onTable(c). onTable(a).
on(b,a). end(model(2)). clear(c). onTable(b).
armEmpty. end(model(3)). end(model(4)).
end(model(1)).

begin(model(5)). begin(model(6)). begin(model(7)).
success. success. failure.
plan(c1,stack). plan(c1,stack). plan(c1,stack).
holding(b). holding(b). clear(b).
clear(c). clear(c). on(c,a).
clear(a). on(c,a). on(b,c).
onTable(a). onTable(a). armEmpty.
onTable(c). end(model(6)). onTable(a).
end(model(5)). end(model(7)).

Table 2. Training examples for the plan stack, collected by agent c1..

Then the configuration file is generated. Following the example, it is named
stack.s. The first part of this file is common to all configurations. It specifies the
information printed while learning (talking); the minimal number of cases in a leaf; the
format of the output (C4.5-like and as a logic program); and the classes for the target
concept, i.e., either success or failure:

talking(0).
load(models).
minimal_cases(1).
output_options([c45,lp]).
classes([success, failure]).

The second part of the configuration file specifies the predicates to be considered
while inducing the tree. The rmode command is used to define the language bias L
as follows: The ‘#’ sign may be seen as a variable place holder, that takes its constant
values from the examples in the knowledge base. The ‘+’ prefix means the variable
must be instantiated after the examples in the knowledge base. The way our agent
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generates this file relies on the agent definition. Table 3 shows the language bias for
this example, generated automatically by the agent c1 based on its own definition.

rmode(plan(Agent,Plan)). rmode(clear(#)).
rmode(clear(X)). rmode(clear(#)).
rmode(onTable(X)). rmode(onTable(#)).
rmode(on(X,Y)). rmode(on(#,+Y)).
rmode(armEmpty). rmode(on(+X,#)).
rmode(holding(X)). rmode(on(#,#)).

rmode(holding(#)).

Table 3. Language bias in the configuration file.

Then agent executes a modifies non-interactive version of ACE (Blockeel et al.
2000), and automatically extracts the learned hypothesis from the stack.out file,
to accordingly modify the definition of the plan. It is also possible to ask the user to
modify the plans, showing him the obtained results:

holding(X) ?
+--yes: [true] 5.0 [[true:5.0,false:0.0]]
+--no: [false] 2.0 [[true:0.0,false:2.0]]

This example used seven models (Table 2) and the time of induction was 0.032
seconds, running on a Linux SuSe Intel Centrino 1.73 GHz. The result suggests a new
plan context: clear(Y) & holding(X) (the original plan context!).

5.2 Decentralized learning (level 2)

Why should a BDI agent learning at level 1, try to communicate to learn? (Guerra-
Hernández et al. 2004a). There are two situations under which an agent should consider
communication while learning: when the agent is not able to start learning, i.e., it does
not have enough examples; or when the agent is not able to find out an hypothesis to
explain the failure of the plan in question. In both cases the learning agent may ask for
more examples to other agents in the MAS.

Sharing examples in this way, resembles other cases of distributed learning. Verti-
cal fragmentation uses to be a delicate issue in such settings, but not here since the ex-
amples are represented as labeled sets of definite clauses. Consider the training exam-
ples in the table 2. From the Learning from Interpretations perspective, these training
examples are just models of a target concept, even if they are not homogeneous, e.g.,
model 1 has information about armEmpty, while model 2 does not. In propositional
representations this implies that the attribute belongs to a different data source (verti-
cal fragmentation). Avoiding this is very important: since our BDI learning agents face
only horizontal fragmentation, the exchange of training examples is enough to achieve
learning at level 2.

A group of agents is said to have the same competence for a given event, if they
share the same plan to deal with it. Competence in our approach is defined in terms of
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plans, because the event they deal with, is already included in the plan definition. Com-
petence induce two ways for asking help: a message including the label of the plan be-
ing learned is broadcasted, then the agents sharing the same plan accept and process the
message; or the agent sends the message only to the agents with the same competence.
We allow both options: The internal action ia.setTolearningMode/3 takes as
arguments: The plans for which learning is enabled (it is possible to specify all);
the agents sharing the same competence (all means broadcasting); and some de-
bug options, e.g., the action ia.setTolearningMode([stack], [c2,c3],
[verbose(true)]) means that the agent will learn about plan stack, communi-
cating with c2 and c3, while giving some output details about the learning process.

@gatherExamples_f
+!gatherExamples([],Plan) : true

<- !pLearn(Plan).

@gatherExamples_i
+!gatherExamples([Ag|T],Plan) : true

<- .send(Ag, askAll, value([Plan,X,L,Y],example(Plan,X,L,Y)),List);
!adoptList(List);
!gatherExamples(T,Plan).

Table 4. Plans for gathering examples distributed in the MAS.

In the Jason implementation, a learning agent at level 1 always try to learn when
a new example is acquired (flag(newExample)). So, the plan pLearn only can
fail if the learning process does not produce an hypothesis. If this is the case, the agent
post the event !gatherExamples. There are two applicable plans for the triggering
event +!gatherExamples (Table 4). First, the plan gatherExamples i will
iterate the whole list of agents asking to each one for examples about Plan, while
adopting answers from other agents in List as part of its own believes. After that,
the agent tries to learn again (gatherExamples f). Jason adopts the Knowledge
Query Meta Language (KQML) (Moreira and Bordini 2003) for communication.

The result obtained at level 2 is the same that the obtained at level 1, the agent
updates the context of plan with the original definition. But observe that following the
dMARS approach to failed plans, the agent c1 can achieve this result only at level 2.
There is no way for it to collect alone the examples required to successfully learn the
context. But even under the Jason approach enabling to intend again a failed plan, the
examples collected by a single agent seems to contribute with few information. Also,
observe that since BDI agents collect the training examples after their own experi-
ence, these examples are harder to obtain than in classic supervised Machine Learn-
ing, where they are previously collected by a supervisor; or in reinforcement learning,
where agents explore in a natural way the space of hypothesis while acting. The use of
ILP methods helps the agent since fewer examples may be needed to learn, provided
that the background theory is relevant. Also, situating the learning agent in a MAS at
level 2, may help it to collect training examples faster, taking benefit of the experience
of other agents. Table 5 shows the log of a descentralized learning process.
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[c1] saying: PLAN stack FAILED
[c1] saying: EXECUTE LEARNING FOR stack
[report] CURRENT EXAMPLES
[report] c1: example(stack,[clear(b),clear(c),onTable(a),

onTable(c),on(b,a),do,counter(1),
armEmpty],failure)

[c1] saying: CAN’T LEARN. CONTEXT IS clear(Y)
[c1] saying: NO NEW EXAMPLES, ASKING FOR HELP
...
[c1] saying: EXECUTE LEARNING FOR stack
[report] CURRENT EXAMPLES
[report] c1: example(stack,[clear(b),clear(c),onTable(a),onTable(c),

on(b,a),do,counter(1),armEmpty],failure)
[report] c1: example(stack,[holding(c),clear(b),clear(c),onTable(a),

on(b,a),do,counter(1)],success)[source(self)]
...
[report] c1: example(stack,[clear(b),clear(c),onTable(a),onTable(c),

on(b,a),do,counter(4),armEmpty],failure)
...
[showLearningRes] THE INDUCED TREE FOR stack IS:
[showLearningRes] holding(-A) ?
[showLearningRes] +--yes: [true] 5.0 [[true:5.0,false:0.0]]
[showLearningRes] +--no: [false] 4.0 [[true:0.0,false:4.0]]
[c1] saying: THE NEW CONTEXT FOR stack IS clear(Y) & ((holding(X)))

Table 5. Decentralized learning in the blocks world.

The result of a learning process is shared by the agents in the MAS. If the user
or the agent modify the plan definition accordingly to the decision tree found, this
change affects automatically all agents having this plan in its library. This justifies the
cooperative goal adoption strategy: sharing examples is easy, while learning is not,
but learning sometimes is not possible without cooperation, so cooperation became
advantageous.

6 Results and future work

Our proposal for intentional learning in the context of BDI agency constitutes a rel-
evant step towards sapience. The agents adopting this approach are able to perform
a limited form of introspection: evaluate the validity of their practical reasons and to
modify such reasons trying to avoid failures. All of this in an autonomous way, as it is
required for sapient agents. The agents adopting the second level of social awareness
exploits the interaction with other agents to learn, as it is expected for a sapient agent.
All of this exploiting social communication based on Speech Acts. The BDI agents,
extended in this way, seems closer to the intended characterization of sapient agents.

Of course learning about the practical reasons to adopt a plan as an intention is
only one of the possible issues a sapient agent should learn about. What is relevant
is that the kind of learning proposed here is performed according to the principles
of Intentionality and Practical Reasoning. Learning about other issues must take into
account the same considerations.

Future work is related with Smile ;-) protocol (Bourgne et al. 2007), an acronym
for Sound Multi-agent Incremental LEarning. Each agent in the MAS is assumed to be
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able to learn from the information it perceives. An agent i is defined as ai = 〈Bi,Ki〉,
where Bi is the belief or knowledge state of agent i; and Ki is the information it
perceives. It is assumed that all agents in the MAS shared some common knowledge,
denoted by BC so that ∀i BC ⊆ Bi. Common knowledge introduces dependences
among the agents: If an agent ai updates its state Bi obtaining B′

i, but also modifying
BC into B′

C , then every agent aj must update its state Bj to obtain B′
j so that B′

C ⊆
B′

j . An agent ai updates it state Bi because of new information Ki is perceived. The
agents are supposed to be able of verifying consistence between states and information,
e.g., logical consequence. An agent ai is a-consistent if and only if Cons(Bi,Ki) is
true, i.e., the information it perceives is a logical consequence of its beliefs. An agent
ai is mas-consistent if and only ifCons(Si,Ki∪K) is true, where ∀j 6= i K =

⋃
Kj .

A MAS is consistent if every agent in the system is mas-consistent.
The protocol depends on a consistency revision mechanism M with the following

properties: it is locally efficient in the sense that an agent i can always update Bi; it
is additive in the sense that Cons(Bi,K1) ∧ Cons(Bi,K2) =⇒ Cons(Bi,K1 ∪
K2); it is coherent in the sense that ∀i, j, k Cons(Bi,Ki) ∧ Cons(Bj ,Kj) =⇒
(Cons(Bi,Ki ∪ k) ⇐⇒ Cons(Bj ,Kj ∪ k)). M is said a-consistent and mas-
consistent, if it preserves such properties of the agent applying M . The consistency
revision mechanism M is said strong mas-consistent if its application by an agent ai

preserves the mas-consistency of ∀j 6= i aj .
Bourgne et al. (Bourgne et al. 2007) proved that mas-consistency can be en-

sured for the propositional case by the reiterative application of a mechanism M by
the learner agent, followed by some interactions with other agents restoring the a-
consistence, until no inconsistent information is produced in such interactions. The
mechanism is triggered by an agent ai receiving some information k inconsistent:
Cons(Bi, k) = False. An interaction between ai and some critic aj is denoted by
I(ai, aj) and performed as follows: ai sends aj the updated common beliefs B′

C pro-
duced by the local application of M , i.e., ai is a-consistent; aj checks B′

j induced
by the updated B′

C . if these modifications preserve its a-consistency, aj adopts them,
sending ai its acceptance; otherwise it sends its refusal with some information k′ s.t.
Cons(B′

j , k
′) = False. The protocol finishes when no k′ is produced by any agent. It

is also suggested that if the response of the agents is minimal and serial (k′ is one in-
consistent example and the ai sendsB′

C sequentially to other agents), then the protocol
minimizes the amount of information transmitted by the agents.

Our current approach uses a consistency revision mechanism M that is not lo-
cally efficient (Tilde). It forces the learning agent to collect all the training examples
available to start learning. We are implementing an incremental version of the revi-
sion mechanism (TildeLDS) which will enable us to fully adopt Smile (BC is the
set of plans shared by the agents). The learning agent will be able to recover consis-
tency locally and communicate the learned context to other agents to compute mas-
consistency.
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