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Summary

1. Monitoring global biodiversity is critical for understanding responses to anthropogenic change, but biodiver-

sity monitoring is often biased away from tropical, megadiverse areas that are experiencing more rapid environ-

mental change. Acoustic surveys are increasingly used to monitor biodiversity change, especially for bats as they

are important indicator species and most use sound to detect, localise and classify objects. However, using bat

acoustic surveys for monitoring poses several challenges, particularly in megadiverse regions. Many species lack

reference recordings, some species have high call similarity or differ in call detectability, and quantitative classifi-

cation tools, such asmachine learning algorithms, have rarely been applied to data from these areas.

2. Here, we collate a reference call library for bat species that occur in a megadiverse country, Mexico. We use 4685

search-phase calls from 1378 individual sequences of 59 bat species to create automatic species identification tools gen-

erated by machine learning algorithms (Random Forest). We evaluate the improvement in species-level classification

rates gained by using hierarchical classifications, reflecting either taxonomic or ecological constraints (guilds) on call

design, and examine how classification rate accuracy changes at different hierarchical levels (family, genus and guild).

3. Species-level classification of calls had a mean accuracy of 66%, and the use of hierarchies improved mean species-

level classification accuracy by up to 6% (species within families 72%, species within genera 71�2% and species within

guilds 69�1%). Classification accuracy to family, genus and guild-level was 91�7%, 77�8% and 82�5%, respectively.

4. The bioacoustic identification tools we have developed are accurate for rapid biodiversity assessments in a

megadiverse region and can also be used effectively to classify species at broader taxonomic or ecological levels.

This flexibility increases their usefulness when there are incomplete species reference recordings and also offers

the opportunity to characterise and track changes in bat community structure. Our results show that bat bioa-

coustic surveys in megadiverse countries have more potential than previously thought to monitor biodiversity

changes and can be used to direct further developments of bioacoustic monitoring programs inMexico.

Key-words: acoustic identification, guild, hierarchical classification, machine learning, Neotropical,

random forest, whispering bats

Introduction

Effective conservation depends on our ability to define,

measure and track ecological communities through time and

space (Magurran et al. 2010). Although biodiversity monitor-

ing programmes are critical to assess the impact of anthro-

pogenic change, many are biased towards high latitude,

temperate countries (Collen et al. 2009). Megadiverse coun-

tries (e.g. Indonesia, Mexico, Zaire) cover only 34% of the

Earth surface, yet they harbour 70% of the world’s biodiver-

sity and are undergoing rapid environmental degradation
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(Mittermeier, Mittermeier & Robles-Gil 1997). In spite of the

great conservation opportunity these hot spot regions offer,

biodiversity monitoring programmes are often lacking, caus-

ing considerable knowledge gaps.

Bioacoustic surveys, especially for bats, are increasingly

used to survey and monitor biodiversity responses to anthro-

pogenic change (Jones et al. 2013; Amorim et al. 2014).

Echolocating bats use sound to detect, localise and classify

objects (Schnitzler, Moss & Denzinger 2003), making them

detectable both remotely and non-invasively. Bats are also

ideal biodiversity indicators since they have a wide range of

ecological traits, different tolerances to environmental vari-

ables and play key roles in ecosystems (Jones et al. 2009; Russo

& Jones 2015). However, using bat acoustics as a monitoring

tool poses several challenges, especially in megadiverse and

tropical regions (Walters et al. 2013). First, in spite of the

growing efforts to create more bat call reference recording

libraries, tropical and megadiverse regions have rarely been

included in such initiatives. This is compounded by recording

method heterogeneity (e.g. full spectrum, frequency division,

heterodyne), which makes compiling comprehensive libraries

difficult (Walters et al. 2013). Such poor and uneven coverage

of intra- and interspecific variation makes identification of bat

calls for these regions challenging.

Secondly, although it is possible to identify many bat species

based on their calls, phylogenetic relatedness, ecological simi-

larities and call plasticity have led to overlapping structures

and high call similarity among and within species in some

groups (Obrist 1995; Jones & Teeling 2006). For example, spe-

cies may have similar calls within families and genera (Jung,

Kalko & von Helversen 2007; Jung, Molinari & Kalko 2014),

and ecological guild membership may also reflect foraging and

echolocation behaviour (e.g. aerial insectivores, gleaners)

(Denzinger & Schnitzler 2013). An additional challenge is that

bat species differ in detectability of their calls. Aerial insecti-

vores typically produce loud calls of high intensity and low fre-

quency, whereas ‘whispering’ bats (including many bats in the

families Phyllostomidae, Natalidae, and Thyropteridae) often

produce low-intensity, high-frequency calls (Griffin 1958).

However, recent findings suggest that some ‘whispering’ bat

calls are more detectable than previously thought. For exam-

ple,Macrophyllum macrophyllum and Artibeus jamaicensis can

emit calls as loud as those of many aerial insectivores (Brink-

løv, Kalko & Surlykke 2009).Otonycteris hemprichii, a passive

gleaner, can also operate as an aerial hawker and can adjust its

call intensity depending on foraging mode even while flying in

the same habitat type (Hackett, Korine&Holderied 2014).

Thirdly, although acoustic species identification tools for

different species are developing rapidly (e.g. European bats

Walters et al. 2012; birds Stowell & Plumbley 2014), they

remain rare for megadiverse regions. The immense amount of

data obtained from acoustic monitoring can be daunting, and

automatic analytical tools are extremely useful in analysing

such data (Walters et al. 2013). Bat call identification tools

have been mainly developed using multivariate statistical

techniques such as discriminant function analysis (e.g.

Vaughan, Jones & Harris 1997; Russo & Jones 2002;

Avila-Flores & Fenton 2005; MacSwiney, Clarke & Racey

2008) or machine learning algorithms (e.g. Skowronski &Har-

ris 2006; Walters et al. 2012), the latter generally providing

higher species-level classification accuracy (Armitage & Ober

2010; Britzke et al. 2011; Keen et al. 2014). Machine learning

algorithms have mostly been applied to classify data at one

level of categorisation (e.g. species) and have rarely incorpo-

rated hierarchical information to aid classification accuracy

(e.g. species within families or orders). Hierarchical classifica-

tion approaches have been shown to improve general species

classification accuracy for European bat calls up to 13% (Par-

sons & Jones 2000; Walters et al. 2012). Assigning taxa to

classes within a hierarchy may reduce model complexity and

minimise misclassifications outside their hierarchy (Vens et al.

2008). However, if an erroneous hierarchy is applied, then clas-

sification errors are added cumulatively across different levels,

leading to a reduction in classification accuracy.

A hierarchical classification approach may be useful to clas-

sify calls to broader classes (e.g. genera, families or guilds)

when reference material is missing for species, or where dis-

crimination at species level is difficult, for example where there

is high call variability within species or a high overlap of call

parameters between species. Although identification to species

is most desirable, monitoring the status of the same recognis-

able signal over time without specific identification may be suf-

ficient in some situations (Redgwell et al. 2009; Armitage &

Ober 2010). Finding alternatives to species-level studies is

needed in megadiverse areas, which usually face considerable

financial and data constraints but are a priority for rapid con-

servation assessments.

Here, we collate a reference call library for bat species

that occur in a megadiverse country to create acoustic

identification tools using machine learning algorithms. We

focus on Mexico because it contains one of the highest

number of species in the world and has one of the highest

rates of species extinction and habitat loss (Myers et al.

2000; Brooks et al. 2002). We also evaluate the improve-

ment in species-level classification rates gained by using

hierarchical classifications reflecting either taxonomic or

ecological constraints on call design. Our results show that

accurate bioacoustic identification tools can be developed

for rapid biodiversity assessments in megadiverse regions

where hierarchies generally improve species-level classifica-

tions. These tools can also be used effectively to clas-

sify calls at broader levels, so increasing the usefulness of

the tool when there are incomplete species reference

recordings.

Materials andmethods

REFERENCE CALL L IBRARY

We collated reference search-phase echolocation calls for bat species

that occur inMexico through a combination of fieldwork and donated

material. Fieldwork was conducted in central and northern Mexico

from June 2012 toMay 2013 at 35 sites (Fig. 1a). Bats were caught with

mist nets and identified to species level using field keys (Reid 1997;

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution
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Medell�ın, Arita & S�anchez 2008), before being released. Full spectrum,

real-time recordings were made from all individuals in the habitat in

which they were captured using a Pettersson D1000x detector, sam-

pling rate 500 kHz, high-pass filter off (Pettersson Elektronik AB,

Uppsala, Sweden). Files were saved in WAV format on a flash card.

We obtained 907 recordings of 39 species from six families (see

Table S1). Additionally, 1403 full spectrum recordings of bat calls from

87 species that occur in Mexico were donated by colleagues, giving a

total of 2310 recordings (each recording was assumed to contain one

individual call sequence) from 92 species in eight families (68% of spe-

cies and 100% of families of bats occurring in Mexico). These record-

ings were obtained from bats released in different ways using several

different real-time or time-expanded full-spectrum detectors, and in a

range of habitats across species’ distributions (including localities out-

side Mexico) (Table S2). The inclusion of call variation in the data set

avoids generating biases for any particular recording situation or

method (Walters et al. 2013) and provides the acoustic identification

tools withmore flexibility and generality (seeWalters et al. 2012).

Fig. 1. Spatial coverage of the number of spe-

cies recorded in Mexico using a grid size of

50 km2, where (a) shows recording locations

in solid squares (n = 91) overlaid with bat spe-

cies richness, (b) proportion of species

recorded compared to potential species rich-

ness in each grid, and (c) proportion of species

used in the classifiers compared to potential

species richness in each grid. A gradient of

light green to dark blue indicates higher num-

ber of species and higher percentages. Black

solid squares represent collection sites which

were sampled in this study, and red solid

squares represent collection sites of donated

material.

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution
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Taxonomy followed Simmons (2005), but because of taxonomic

changes since 2005, we assume that Natalidae contains only one

species, Natalus stramineus (L�opez-Wilchis et al. 2012). Data from

Molossus sinaloae and the new species M. alvarezi (Gonz�alez-Ruiz,

Ram�ırez-Pulido & Arroyo-Cabrales 2011) were analysed together as

M. sinaloae because most of the material was recorded prior to the

description of the new species. As some species are hard to identify in

the field, we only used the material which were confidently identified.

To examine the taxonomic and geographic coverage of the reference

call library within Mexico, distribution maps were downloaded from

the IUCN mammal assessments (IUCN 2012) and species richness

within each 50-km2 grid cell was estimated by overlaying and counting

howmany of those rangemaps overlap in each grid cell (Hawths Tools,

Beyer 2004). We then calculated the proportion of species both

recorded and used in our classifiers from out of those potentially

distributed in each cell.

ACOUSTIC IDENTIF ICATION TOOLS

We visually inspected all recorded sequences using the sound analysis

software BATSOUND PRO v.3.31b (Pettersson Elektronik AB, Uppsala,

Sweden) to remove non-search-phase calls. We distinguished search-

phase calls from approach-phase and terminal-phase calls as these

phase shifts are characterised by a decrease in call duration and inter-

val, and increase in repetition rate (Schnitzler & Kalko 2001). Social

calls were distinguished from echolocation calls by their duration, fre-

quency and pattern of change over time, with social calls being more

sporadic and often of a lower frequency range (Fenton 2003). In addi-

tion, bats were recorded in situations that significantly minimised the

presence of social calls and approach and end-phase echolocation calls

(e.g. recorded in open spaces upon release). We then automatically

extracted and parameterised search-phase calls using the in-built algo-

rithms in Sonobat v.3 (Szewczak 2010) (following methods in Walters

et al. 2012). For species which used harmonics, we used measurements

from the call used as the main harmonic. We measured a total of

21 064 search-phase echolocation calls from 1692 sequences and 85

species in eight families, with each sequence assumed to be from a dif-

ferent individual. Material recorded in Mexico contained 16 344 calls,

1187 sequences from 65 species in seven families across 91 different

localities (Fig. 1a).

We used Random Forest (RF) models (RANDOMFOREST package,

Liaw & Wiener 2002) to train the classifiers, rejecting species that had

less than five sequences. RF models consist of a collection or ensemble

of decision tree classifiers where each classifier is randomly built using a

bootstrapped sample of the training data set (Breiman 2001). Each clas-

sifier is estimated based on probabilities using a selection of the predic-

tor variables (in our case call parameters) that best separate the classes

of interest (e.g. species, families) at different branching splits or nodes

in the tree. RF model classifications are then derived from averages of

the tree ensembles. RF models possess several advantages over other

machine learning algorithms as they are not affected by heteroscedas-

ticity or distributional errors in the data, are not sensitive to outliers or

irrelevant variables, can deal with mixed data and missing variables

and are relatively simple to train using reasonable computational

resources (Olden, Lawler & Poff 2008). We selected 27 of the relevant

call parameter variables (following methods in Walters et al. 2012)

extracted and parameterised by Sonobat (Table S3), and ran a grid

search to find the mtry value (optimal number of variables to be ran-

domly sampled at each node). This value was allowed to range from 2

to 10, in steps of one. Each forest was grown to 2000 trees, and the final

mtry value and number of trees were selected for their highest accuracy.

The final set of parameters used was 1000 trees and an mtry value of

three. We used the coefficient of the Gini impurity index (used by the

RF models to select the most informative variables at nodes during

training), as an indicator of call parameter variable importance (Brei-

man 2001).

We trained four different RF model classifiers: Classifier 1 – species

level without a hierarchy; Classifier 2 – species level within a family hier-

archy (see call examples in Fig. S1a–f); Classifier 3 – species level within

a genus hierarchy (see call examples in Fig. S1g); and Classifier 4 – spe-

cies level within a guild hierarchy, following definitions of guilds from

Denzinger& Schnitzler (2013) (see call examples in Fig. S2a–e): Guild 1

represented open-space aerial foragers; Guild 2 – edge-space aerial for-

agers; Guild 3 – edge-space trawling foragers; Guild 4 – narrow-space

flutter detecting foragers; and Guild 5 – narrow-space passive gleaning

foragers; and Guild 6 – narrow-space passive/active gleaning foragers.

Guild 7 – narrow-space active gleaning foragers was not included in the

study because of the lack of referencematerial.

We used fivefold cross-validation to assess the accuracy of all four

RF classifiers and assigned the individual calls into the fivefolds by

sequence rather than individual calls (Stathopoulos et al. 2014). This

procedure ensured that calls from the same individual (i.e. sequence)

were not used in the same training and testing run of the cross-valida-

tion to avoid overfitting. We set a maximum of 100 calls per species for

Classifier 1 and a minimum of 20 calls per species for Classifiers 2, 3

and 4, as a compromise between maximising the number of calls and

balancing the data sets, since RF classifiers tend to be biased towards

the majority class (species, genus, family or guild with the highest num-

ber of training calls) (Chen, Liaw & Breiman 2004). Only the highest

quality calls were selected from each sequence (determined by the signal

to noise ratio given by Sonobat), until the selected number of calls was

reached. However, for some species with smaller sample sizes, we con-

tinued selecting calls from sequences in descending order of quality

until we had used all available data or reached the number of calls

allowed (Table S4). The number of calls selected per sequence was a

compromise between maximising the number of calls and avoiding

overfitting theRFmodels. Sample sizes after this selection process were

4685 calls and 1378 sequences from eight families, 32 genera and 59 spe-

cies that occur in Mexico. See Fig. S3 for an outline of the analytical

procedure.

As we used recordings from locations from both inside and outside

ofMexico, we checked that the variation in call parameters recorded in

locations outside of Mexico did not impact species classification accu-

racy. To investigate this, we compared model accuracy using the four

classifiers of two data sets consisting of 47 species recorded from loca-

tions inside Mexico and the same species recorded from all locations.

We found very little difference in classification accuracy between the

two data sets. Classifier 1 had the biggest difference in classification

accuracy, albeit with only 1�5% reduction in correct classification rates

(67�1% and 65�6% for inside Mexico and for all locations, respec-

tively). We therefore used recordings from outside Mexico to comple-

ment species with less than five Mexican sequences. All analyses were

performed in R version 3.0.2 (RDevelopment Core Team2013).

Results

DATA BASE COVERAGE

Our collated library of echolocation call recordings covered

69% of the species, 79% of the genera and 100% of the fami-

lies occurring in Mexico. Data of high enough quality to build

the automatic identification tools covered 43% of the species,

51% of the genera and 100% of the families (Table S5). There

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution
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was generally a good representation of species for the identifi-

cation tools within genera and families (>50%), except for

Phyllostomidae, where only 19% of the species were repre-

sented. Species coverage was more comprehensive within the

central and northern parts of Mexico for both the library and

identification tools (Fig. 1b,c).

ACOUSTIC IDENTIF ICATION TOOLS

Overall 16 of the 27 parameters used to train the models con-

tributed most to all classifiers (based on a score >30 for the

Gini Coefficient from the RF models) (Table S6, Fig. 2a–d).
Although different parameters were important for each hierar-

chy, the most important overall were Fc Characteristic call fre-

quency (kHz), FCtr Frequency at the centre of the call

duration (kHz), FLed Frequency of the ledge (kHz), StartF

Frequency at the start of a call (kHz), HFreq Highest call fre-

quency (kHz) and FMPwr Frequency of the maximum call

amplitude (kHz) (Fig. 2a–d, see Table S3 for further variable

definitions).

Overall mean species-level classification accuracies forMexi-

can bat species varied across the four classifiers between 66�0%
(Classifier 1: species level without a hierarchy) and 72�0%
(Classifier 2: species level within a family hierarchy), with

Classifiers 3 (species level with a genus hierarchy) and 4 (species

level with a guild hierarchy) having accuracies of 71�2% and

69�1%, respectively (Table 1). Across all classifiers, on average

the highest classification accuracies were found for species

within families Natalidae (100%), Mormoopidae (94�6%),

Thyropteridae (81�5%), and Emballonuridae (77�7%), with

the lowest found within Noctilionidae (70�4%), Molossidae

(67%), Vespertilionidae (51�5%) and Phyllostomidae (51�4%)

(Fig. 3). Phyllostomid species were mostly misclassified with

other phyllostomids or with vespertilionids, whereas vespertil-

ionids were commonly misclassified with other vespertilionids

or with molossids (Table 1). For the ecological classifier, spe-

cies within Guild 4 (narrow-space flutter detecting foragers)

(100%), Guild 3 (edge-space trawling foragers) (74�6%) and

Guild 1 (open-space aerial foragers) (63�8%) had on average

the highest classification rates. The lowest average classifica-

tion rates for species were foundwithin in the gleaners (Guild 5

58�5% and Guild 6 57�7%) and Guild 2 (edge-space aerial for-

agers) (54�5%) (Fig. 4).

Classification accuracy at different hierarchical levels was

highest at family level with a mean of 91�7% across all families

(Table 1, Fig. 3), where Natalidae and Mormoopidae had the

highest classification accuracies (100% and 97�3%, respec-

tively). Noctilionidae had the lowest classification accuracy

(72�8%) and was frequently misclassified as Molossidae (17%

of the calls). Genus-level mean classification accuracy was

77�8% across all genera (Table 1), Natalus (Natalidae) and

Rhynchonycteris (Emballonuridae) had the highest classifica-

tion accuracies (100%), and 18 genera had accuracies >80%
(Fig. 3). The genus Myotis yielded a classification accuracy of

Fig. 2. Echolocation call parameters (n = 27) selected to build each RandomForest classifier ranked by Gini Coefficient where (a) Classifier 1: spe-

cies level without a hierarchy; (b) Classifier 2: species level within a family hierarchy; (c) Classifier 3: species level within a genus hierarchy; and (d)

Classifier 4: species level within a guild hierarchy. See Table S3 for parameter definitions.

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution
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73�8%, with two species over >80% (Myotis thysanodes and

Myotis keaysi) and only four with <50%.Genera with the low-

est classification accuracies (<50%)were in the Phyllostomidae

and Vespertilionidae (Fig. 3). Phyllostomids were mostly mis-

classified as other phyllostomids, while vespertilionids were

misclassified as other vespertilionids and molossids. Mean

guild-level classification accuracy was 82�5% across all guilds

(Table 1, Fig. 4). Guild 4 (narrow-space flutter detecting for-

agers) had the highest classification accuracy (100%), followed

by Guild 6 (88�3%) although 6% of these calls were misclassi-

fied with Guild 5. Guild 5 had the worst classification accuracy

(68%), and 18%of calls weremisclassified asGuild 6 (Fig. 4).

Discussion

We have collated the most extensive bat acoustic library for a

megadiverse region (all families and over half of the species

occurring in Mexico) and developed the most comprehensive

bat acoustic automated species-level classifiers to date. The

mean species-level classification accuracy rate of 66–72%
(depending on which hierarchy is chosen) is reasonable given

the high level of call similarity of the bat species in this area

(Walters et al. 2013). The species-level classifiers also contain a

large variation in accuracy rates, where some species are classi-

fied to >80% accuracy (species of Emballonuridae,Mormoop-

idae, Natalidae and Thyropteridae), with the poorest results

overall from species of Vespertilionidae and Phyllostomidae.

This suggests that acoustic monitoring may be more feasible

focusing on a few species whose calls can be reliably classified.

The bat call library and classifiers incorporate both extensive

geographic (from 9 countries within the species range of Mexi-

can bats) and intraspecific variation in call types (e.g. the classi-

fiers were trained on the different search-phase echolocation

call types found within molossid species, Jung, Molinari &

Kalko 2014). However, the species-level classifiers have a

very low coverage of Phyllostomidae and results should be

interpreted with caution. It has been traditionally assumed that

whispering bats, which include all phyllostomids, echolocate at

intensities that were too low for the inclusion of these species in

acoustic studies. However, recent field studies of their echolo-

cation behaviour challenged these assumptions about their

echolocation characteristics (Brinkløv, Kalko & Surlykke

2009; Hackett, Korine &Holderied 2014). Futurework should

focus on collecting more reference material for the family, to

better assess its potential for acoustic monitoring programmes.

Our classifiers will be the most accurate in regions where

there is a higher coverage of the species present, such as the less

species-rich arid and semi-arid regions of Mexico. These

ecosystems (e.g. xerophytic scrubland and grasslands) cover at

least 40% of the territory (Rzedowski 2006), and together with

other North American dry lands, support some of the biggest

concentrations of mammalian abundance, because bats can

form colonies of several millions of individuals (O’Shea &

Bogan 2003). These bat populations can provide important

ecosystem services such as pollination and control of insect

populations (Cleveland et al. 2006; Mungu�ıa-Rosas et al.

2009). These important arid and semi-arid environments are

increasingly threatened by environmental changes (Villers-

Ruiz & Trejo-V�azquez 2003; Rodr�ıguez-Estrella 2007), and

future efforts should focus on these arid areas where there are

considerable information gaps.

Our species-level classifiermean accuracy was similar to that

of previous studies of bats for species shared with this study

(Mexico – MacSwiney, Clarke & Racey 2008; Stathopoulos

et al. 2014; West Indies - Pio et al. 2010; United States –
Skowronski & Harris 2006; Britzke et al. 2011). However, our

classification accuracies were slightly lower for some species

compared with previous work. This is a consequence of the

higher number of classes (species) included in our classifiers

compared to all previous studies. Higher numbers of species

increase the similarity in the call parameters of several species.

For example, we included 26 vespertilionids and 8Myotis spe-

cies, compared to six vespertilionids and oneMyotis in MacS-

winey, Clarke&Racey (2008) and nine vespertilionids and two

Myotis in Stathopoulos et al. (2014). Our study nearly triples

the number of species used compared to any other quantitative

bat call classification study in the Americas or any other

megadiverse tropical region in the world. We also included a

wide range of ecological, technological and methodological

variation in the training data set, which on one hand increases

the classification challenge, but on the other makes the classi-

fiers more robust to real-world recording situations. In spite of

Table 1. Comparison of classification accuracies of four acoustic classifiers for Mexican bat species (n = 59 species). Where Classifier 1 represents

species level without a hierarchy; Classifier 2: species level within families; Classifier 3: species level within genera; Classifier 4: species level within

guild. Misclassification represents those classes commonly misclassified with each other for each classifier and level, where Phyllo Phyllostomidae;

VespVespertilionidae;MoloMolossidae; andNoctNoctilionidae.

Classifier Level

Mean

accuracy%

Accuracy

range%

%of classes ≥
80%accuracy

%of classes

≤60%accuracy Misclassifications

1 Species 66 4�2–100 29 41 Species of Phyllo with themselves

or Vesp; Vespwith themselves orMolo

2 Species 72 0–100 32 44 Species within families

Family 91�7 72�8–100 88 0 Noct withMolo

3 Species 71�2 0–100 36 37 Species within genera

Genus 77�8 0–100 56 16 Phylo with other Phylo andVesp genera; and

Vespwith Phylo andMolo genera

4 Species 69�1 4�5–100 25 44 Species within guilds

Guild 82�5 68–100 50 0 Guild 5 withGuild 6;Guild 6 withGuild 5

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution
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the great difference in the number of species used here, we also

obtained higher classification accuracies to species level and

better mean accuracies than previous studies (e.g. Pio et al.

2010; Stathopoulos et al. 2014).

Our use of taxonomic and ecological guild hierarchies

improved mean species-level classification rates. By using

hierarchical classification approaches, the number of final

classes is considerably reduced and misclassifications are

limited to classes within the respective hierarchy (Vens et al.

2008). Mean species-level classification accuracies were most

improved using a family hierarchy, closely followed by gen-

era (72% and 71%, respectively), although not all species

improved their accuracies (contrary to other studies - Par-

sons & Jones 2000; Walters et al. 2012). The genus-level

hierarchy produced the highest number of species-level clas-

sifications with >80% accuracy, but for many genera, not

Fig. 3. Random Forest percentage classifica-

tion accuracies obtained for the taxonomic

classifiers (Classifiers 1–3). Species-level accu-
racies are shown at the end of each branch for

Classifiers 1, 2 and 3. Classification accuracies

per family and genus are shown in the middle

of each branch (n = 59 species). See Table S4

for species acronymdefinitions.
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all species were included in the analysis and genus-level tax-

onomic names can be subject to rapid changes (Simmons

2005). This may suggest that using a genus-level hierarchy

may be more problematic than a family hierarchy, especially

with incomplete reference material. For example, accuracy

may decrease as more species are included, whereas varia-

tion within a family may be already adequately represented.

In contrast, classification to genus level may be more helpful

to reduce the number of options of possible misclassifica-

tions inside the hierarchy and further methods for call iden-

tification could then be applied (e.g. visual inspection).

Although we found species-level classification rates within

an ecological guild-level hierarchy were worse than species-

level classification rates within either taxonomic hierarchy,

classification of calls to guild-level performed well and could

provide a useful alternative to taxonomic-level classifiers.

Gleaners, in particular the speciose family Phyllostomidae, are

the most abundant and diverse in bat communities in the

Americas, yet poorly represented in acoustic libraries. Our

results at family and guild-level suggest that there is a good

potential for accurate acoustic identification of gleaners. As

more sensitive microphones with better signal/noise ratios

become available, the detectability of these species will

improve, as will the potential formonitoring them acoustically.

Guilds 5 and 6, representing gleaning foragers, were frequently

confused with each other, so these should be grouped into one

class, since the main difference among them is how they use

other non-echolocation cues to forage (Denzinger & Schnitzler

2013).

Acoustic analysis techniques are evolving rapidly, and there

is a growing tendency to replace classifications based on

parameters extraction with those of whole signal analysis.

However, applications of these approaches have mainly

focused on bird and marine mammal acoustics (e.g. Ren et al.

2009; Damoulas et al. 2010) and most bat acoustic classifica-

tion tasks still represent classifications with a few parameters

and further classify them usingmanual or nonparametric tech-

niques. Suchwhole signal analyses in bat acoustics are growing

(Obrist, Boesch & Fl€uckiger 2004; Skowronski & Harris 2006;

Stathopoulos et al. 2014) but should be further explored. Such

exploration of new approaches requires adequate reference

material collected in a systematic way, controlling for variation

introduced by the use of different methods, and we strongly

encourage further efforts to collect comprehensive reference

bat call libraries.

APPLICATIONS

Standardised identification tools such as these offer the oppor-

tunity for objective and repeatable identifications of monitor-

ing ‘units’ to identify changes in populations, distributions or

community structures through time and space. Furthermore,

hierarchical approaches offer the flexibility to adapt the identi-

fication tools to the purpose of the study or monitoring pro-

gramme and the geographic and taxonomic coverage of the

reference material available. Although the accuracy reached

for some groups might not be sufficient for studies targeting

their particular species (e.g.Myotis spp.), the hierarchical clas-

sifiers can act as filters for large amounts of data. The use of

hierarchies considerably reduces the list of species to which an

Fig. 4. Random Forest percentage classification accuracies obtained

for the ecological guild classifier (Classifier 4). Species-level accuracies

are shown at the end of each branch. Classification accuracies per guild

are shown in the middle of each branch (n = 59 species). Guild 1 –
open-space aerial foragers; Guild 2 – edge-space aerial foragers; Guild

3 – edge-space trawling foragers; Guild 4 – narrow-space flutter detect-
ing foragers; Guild 5 – narrow-space passive gleaning foragers and

Guild 6 – narrow-space passive/active gleaning foragers. See Table S4

for species acronymdefinitions.
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unknown call could belong, thus making detailed inspections

and further validationsmore feasible.

Hierarchical classifications, in particular at family level,

could help reduce the costs of monitoring tropical bat commu-

nities, which is crucial due to the limited funding these regions

often devote to conservation efforts.Despite the relatively poor

classification accuracies to species level within the guild-level

hierarchy, classification to guild-level could be used to rapidly

characterise ensemble/environment associations or to track

changes in community structure. The hierarchical approach

may be improved through the use of regional classifiers which

allow the reduction of the number of classes and the improve-

ment of classification accuracy. However, such an approach

should be used with caution as least known species or those

with expanding ranges could be ignored.

Conclusions

Our study shows that there is more potential for bat acoustic

monitoring in megadiverse countries than previously consid-

ered. Hierarchies considerably reduced the complexity of call

identification at different levels and provided sufficient confi-

dence in the classification of unknown calls into higher taxo-

nomic levels and ecological guilds. While the classifiers did not

provide high classification accuracies for several species, they

did offer the opportunity to have objective and repeatable iden-

tification of monitoring ‘units’ to implement in national acous-

tic monitoring programmes.
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