
ACM SIGSOFT Software Engineering Notes vol 24 no 1 January 1999 Page; 82

A Survey of Software Inspection Checklists

Abstract

Software inspection processes call for a checklist to provide review-
ers with hints and recommendations for finding defects during the
examination of a workproduct. Many checklists have been pub-
lished since Michael Fagan created the inspection process in the
mid-1970"s. This paper surveys 117 checklists from 24 sources. Dif-
ferent categories of checklist items are discussed and examples are
provided of good checklist items as well as those that should be
avoided.

Keywords: Checklist, checklist item, software inspection, review.

1. Introduction

"Bhe software inspection process is generally considered a software
engineering "'best practice" [Wheeler 1996]. Inspection processes
usually call for a reviewer to use a checklist in support of the exam-
ination ofa workproduct [Fagan 1976, Gilb 19931. The primary pur-
pose of the checklist is to provide the reviewer with hints and
recommendations for finding defects. Heuristics that are commonly
suggested for creating an effective inspection checklist include:

1. Checklists should be regularly updated based on defect analysis.
By updating checklists regularly, reviewers may be more likely to
read and use them. If the checklist items are updated in response
to frequently occurring defects, then it's more likely they will
help the reviewer in finding additional defects.

2. Checklists should not be longer than a single page. A reviewer is
less inclined to flip through pages of a checklist while examining,
say, a code listing. A single-page checklist can be placed on a
desk and read in close proximity to the product being examined.

3. Checklist items should be phrased in the form of a question (e.g.,
tlas each variable been properly initialized before it is first
used?). This heuristic is rather dubious, though, because all ques-
tion-based checklist items could be re-phrased as imperative sen-
tences (e.g., Verify that each variable as been properly initialized
before it is first used.).

4. Checklist items should not be too general (e.g., Are all require-
ments complete, consistent, and unambiguous?).

5. Checklist items should not be used for conventions better
enforced through other means (e.g., by the use of automated
tools, entry/exit criteria before the inspection meeting).

The inspection checklist has received increased attention in the soft-
ware engineering literature in the past five years. Fagan [1976] first
described the inspection checklist and how it should be based on fre-
quently occurring defects. In their book on the inspection process,
Gilb and Graham [1993] discuss a number of issues relating to
checklist construction, including the use of actual defects to popu-
late checklist items. Porter et al. 11994, 1995] conducted experi-
ments evaluating reviewer effectiveness using different types of

Bill Brykczynski
Institute for Defense Analyses

1801 N. Beauregard St.
Alexandria, VA 22311-1772

bryk@ ida.org
checklists. Other researchers have suggested new and improved
inspection processes that involve checklist techniques [Parnas 1987,
Knight 1993]. Humphrey [1995, 1997] describes how to create per-
sonal checklists to be used by developers in reviewing their work-
products.

This paper surveys 117 checklists from 24 sources. These checklists
are intended for use by reviewers as part of an inspection process,
although several are for other forms of formal technical review
[Yourdon 1989]. A summary of each checklist is provided, iaclud-
ing the number of checklist items it contains and the workproduct it
is intended for. This paper also examines different categories of
checklist items and provides examples of good checklist items as
well as those that should be avoided.

2. Checklist item categories

Many checklists have items that ask whether or not the workproduct
being reviewed conforms to higher-order documents. Thus, a claeck-
list for design may ask "Does the design fully implement its rexluire-
ments?" and a checklist for code may ask "Does the code fully
implement the design?" This kind of check is generally the', first
analysis performed by a reviewer and should be an implicit part of
any review.

Most checklist items are intended to help a reviewer find defects.
tlowever, an inspection might have goals other than defect detec-
tion. Below are example checklist items that support goals other
than defect detection:

1. "Is any part of the code a possible candidate for reuse?" [Johnson
1995]. This checklist item indicates the inspection is also being
used for populating a reuse library.

2. "Are comments used appropriately?" [Johnson 1995]. This
checklist item suggests that improving the maintainability of the
code is a goal of the inspection.

3. "Are necessary buy-vs.-build decisions included?" [McConnell
1993]. This checklist item for an architecture review indicates the
inspection is also being used to ensure proper cost decisions have
been made.

Only two of the checklists in this survey actually suggest that a
check-mark be placed next to the checklist item [Hollocker 1990,
ttumphrey 1997]. For the most part, there is little verification that a
reviewer actually performed any analysis relating to a checklist
item.

2.1 Checklist items for non-code workproducts

Checklists are created for review of workproducts within specific
phases of software development. Table 1 lists the surveyed check-
lists by these phases. Checklists for workproducts other than code
(e.g., requirements and design specifications) are typically lists of

ACM SIGSOFT Software Engineering Notes vol 24 no 1 January 1999 Page 83

Checklist Type

Requirements

Source

[Ackerman 1989], [Basili 1998], [Dunn 1984], [Freedman 1982], [Hollocker 1990], [Humphrey 1989], [Johnson 1995],
[McConnell 1993], [NASA 1993], [Porter 1995], [SPAWAR 1997]

Design

Code

General

Ada
Assembler
C, C++

Cobol
Fortran
PL/I

[Basili 1998], [Dunn 1984], [Fagan 1976], [Freedman 1982], [Hollocker 1990], [Humphrey 1989], [Humphrey 1995],
[Johnson 1995], [Kohli 1975], [Kohli 1976], [Maguire 1993], [McConnell 1993], [NASA 1993], [SPAWAR 1997]
[Dunn 1984], [Fagan 1976], [Freedman 1982], [Hollocker 1990], [Humphrey 1989], [Jackson 1994], [Johnson 1995],
[Kohli 1976], [McConnel11993], [Myers 1979]
[Humphrey 1997], [SPAWAR 1997]
[Ascoly 1976]
[Baldwin 1992], [Dichter 1992], [Humphrey 1995], [Maguire 1993], [Marick 1995], [NASA 1993], [SPAWAR 1997]
[Ascoly 1976]
[Ascoly 1976], [NASA 1993], [SPAWAR 1997]

i [Ascoly 1976]

Testing [Basili 1998], [Hollocker 1990], [Johnson 1995], [Larson 1975], [Maguire 1993], [McConnel11993], [NASA 1993],
[SPAWAR 1997]

Documentation [Freedman 1982], [Hollocker 1990], [Humphrey 1989], [SPAWAR 1997]
Process [Freedman 1982], [McConnel11993], [SPAWAR 1997]

Table 1. Inspection checklists by type
issues that should be analyzed to ensure consistency, correctness, 1. Ada: "Does code redefine meaning of any identifier denoting an
and completeness. These checklists tend to be more general in
nature than code checklists because the workproduct being reviewed
is typically written in descriptive text, not a programming language.
qhe following are example requirement and design specification
checklist items:

1. "Are all the inputs to the system specified, including their source,
accuracy, range of values, and frequency?" [McConnell 1993]

2. "Are all assumptions, limitations, and constraints identified? Are
they all acceptable?" [Dunn 1984]

3. "Are all possible states or cases considered?" [SPAWAR 1997]

2.2 Checklist items for generally accepted programming prac-
tices

Many checklist items warn of cormnon mistakes or risky program-
ming behavior that is language independent. The following exam-
pies are generally accepted programming practice checklist items:

1. "Has each field been initialized properly before it is first used?"
[Ascoly 1976]

2. "Are any filenames or pathnames embedded?" IDichter 1992]

3. "Is the module independent of other modules?" [McConnell
1993]

4. "Are named constants named for the abstract entities they repre-
sent rather than the numbers they refer to?" [McConnell 1993]

5. "Does the routine protect itself from bad input data?" [McCon-
nell 19931

6. "Is it possible for the divisor in a division operation to be zero?"
IMyers 1979]

7. "Are there any 'off by one' errors (e.g., one too many or too few
iterations)?" [Myers 19791

2.3 Checklist items for a particular language

Some checklist items warn of highly error-prone areas for particular
languages or indicate the likely presence of a defect.

attribute of the entities declared in the STANDARD package?"
[SPAWAR 19971

2. Assembler: "Have registers been saved on entry and restored on
exit? Have stacks been properly initializedT' lDunn 19841

3. C: "Are unsigned values tested greater than or equal to zero?/ f (
myUnsignedVar >= 0) will always evaluate true." [Baldwin
1992]

4. C: "Are there any common logical errors (== vs. =, misplaced
semicolons, missing braces)?" [Dichter 1992]

5. C: "Ensure the { } are proper and matched:' [Humphrey 1995]

6. C: "Is the argument to s i z e o f an incorrect type? A common
error is using s i z e o f (13) instead of s i z e o f (*p) ." [Marick
1995]

7. Fortran: "Determine if the DO variable is expected to be used
upon exit of DO loop. The DO variable is not defined at exit."
[Ascoly 1976]. Note that this checklist item may be outdated, as
newer versions of Fortran (e.g., Fortran 90 and 95) allow the DO
index to be used after completion of the DO loop.

8. PL/I: "Are there any mixed-mode computations? An example is
the addition of a floating-point variable to an integer variable.
Such occurrences are not necessarily errors, but they should be
explored carefully to ensure that the language's conversion rules
are understood. This is extremely important in a language with
complicated conversion rules (e.g., PL/1). For instance, the fol-
lowing PL/1 program fragment:

DECLARE A B I T (1) ;

A:I;

leaves A with the bit value 0, not 1." [Myers 1979]

2.4 Checklist items for style issues

A number of general purpose programming style guidelines are
available [Kernighan 1978, Maguire 1993, McConnell 1993]. Pro-
gramming language guidelines are also available for particular lan-
guages such as Ada [SPC 1989], C and C++ [Koenig 1989, Holub

ACM SIGSOFT Software Engineering Notes vol 24 no 1 January 1999 Page 84

1995]. Style guides for writing code for safety critical systems have
also been written [NRC 1996, ltatton 19981.These guides can pro-
vide many useful suggestions for populating preliminary checklists.
These style items may not indicate an actual fault in the program,
but could help to avoid fault injection during downstream mainte-
nance. The following are example style guidelines used as checklist
items:

1. C: "Are all constant names uppercase?" [NASA 1993].

2. C: "Does the value of the variable never change? int

months in vear = 12; should be cons t unsigned

months_in__year = 12;'" [Baldwin i 992]

3. Ada: "Is each task name a noun phrase describing the function of
the task?" [SPAWAR 19971

4. COBOl= "Are all WORKING-STORAGE items that are used as
constants designated as such?" [Ascoly 1976]

2.5 Checklist items tailored to an individual or project

Some checklist items involve mistakes that an individual program-
mer routinely makes. For example, a novice Ada programmer may
find he tends to use integer data types when enumerated data types
are more appropriate. A C programmer may repeatedly find herself
incorrectly using a "do-while" loop instead of a "while" loop.
Sometimes these mistakes derive from misunderstandings involving
the project domain rather than programming language constructs.
For example, a programmer may have a basic misunderstanding
about how scheduling works in a real-time system, and thus repeat-
edly makes mistakes in code dealing with the scheduler.

Humphrey's [1995] Personal Software Process (PSP) prescribes the
use of a checklist tailored to the past mistakes made by an individu-
al. The PSP checklist is used by the developer of the workproduct,
not by other reviewers of the workproduct.

Other checklist items point to problems that a large part of the
project development team is encountering. For example, a design
change may not have been properly communicated to the program-
mers, resulting in many deficiencies found during inspection. Or,
part of the system may be highly complex, and interactions with it
may be highly defect prone for all module writers.

2.6 Checklist items that require non-trivial analysis effort

Some checklists have been developed that require the reviewer to
take a more active role in finding defects. The reviewer must per-
form some analysis before addressing the checklist items. The most
frequently cited example of this kind of checklist is Pamas and
Weiss [1987] on active design reviews. This review process assigns
each reviewer a clear area of responsibility and each review has a
specific purpose and expertise requirement. Table 2 provides an
example of four types of reviews for a module concerned with
peripheral devices. Questionnaires are used to allow reviewers to
make assertions about design decisions. Figure 1 provides an exam-
pie part of a questionnaire for the review types found in Table 2.
Designers then read the questionnaires and meet with reviewers to
resolve issues, qlaese questionnaires are essentially checklists that
require the reviewer to perform analysis before being able to a&lress
the checklist items. Other examples of checklists that involve active
reviewer effort include Knight [1993] and Porter [1995].

Consistency Between Assumptions and Functions

The assumptions should be compared to the function and event descriptions to detect whether a) they are consistent, and b) the assump-
tions contain enough information to ensure that the functions can be implemented and the events can be detected. If an access function
cannot be implemented unless the device has properties that are not in the assumption list, there is a design error, i.e., either a gap in the
assumption list or a function that cannot be implemented for some replacement device. The device interface specifications should be
reviewed for this criterion by avionics programmer reviewers. After studying the assumptions, the design issues, and the functions and
events, they should perform the following reviews:

Review 1

For each of the access functions, the reviewer should answer the following questions:

1. Which assumptions tell you that this function can be implemented as described?

2. Under what conditions may this function be applied? Which assumptions describe those conditions?

3. Is the behavior of this function, i.e., its effects on other functions, described in the assumptions?
Figure 1. Example active design review questionnaire

Type Description

For each device, check that all assumptions made are valid for any device that can reasonably be expected
Assumption Validity

to replace the current device.

For each device, check that the assumption lists contain all the assumptions needed by the user programs to
Assumption Sufficiency make effective and efficient use of the device.

For each module, compare the assumptions to the function and event descriptions to detect whether a) they
Consistency Between

are consistent, and b) the assumptions contain enough information to ensure that the functions can be imple-
Assumptions and Functions

mented, the events can be detected, and the module can be used as intended.

For each device, check that user programs can use the device efficiently and meet all requirements by using
Access Function Adequacy only the access functions provided in the abstract interlace.

Table 2. Example types of active design reviews

ACM SIGSOFT Software Engineering Notes vol 24 no 1 January 1999 Page 85

3. Checklist items to avoid

This section of the paper discusses several types of checklist items
that should be avoided.

3.1 Checks that should be done automatically

Automated tools can be used to check for the potential presence of
certain defects. The most well-known tool is lint for C [Johnson
1977, Darwin 1988]. A number of l int-like tools are available for C
and C++ (e.g., ParaSoft's Insure++) and Java [Gels 1998]. rl]ae fol-
lowing are example checklist items better left to automated tools:

1. "Are nested IFs indented properly?" [Ascoly 1976]. This check
should be performed by a pretty printer.

2. C: "Are functions called with the correct number and type of
parameters?" [Dichter 1992]. This defect is checked, for exam-
ple, by lint. The programmer should examine the lint output to
determine if any flags indicate the presence of a defect. (lint's
high signal-to-noise ratio is a separate issue). Alternatively, if
programming in ANSI C, prototypes could be used to avoid this
defect.

3. "Do actual and formal interface parameter lists match?" [Dunn
1984]. Some languages, such as Ada, provide this check via the
compiler while others (e.g., early versions of C) do not.

3.2 Outdated checklist items

Some checklist items are generally outdated in contemporary soft-
ware development.]he following are example checklist items that
were useful during their time, but are unneeded and defect-prone
today:

1. "Is logic coded in the fewest and most efficient statements?"
[Ascoly 1976]. While there are still circumstances where this
checklist item is applicable, developers today often do not need
to focus on code optimization. This approach led, in part, to the
Year 2000 problem.

2. "Where applicable, can the value of a variable go outside its
meaningful range? For example, statements assigning a value to
the variable PROBABILITY might be checked to ensure that the
assigned value will always be positive and not greater than 1.0."
]Myers 1979]. This checklist item is outdated for programming
languages that provide strong support for data types (e.g., Ada).
With strong typing, the compiler would perform the above check
via a range constraint. However, the programmer would need to
code such a range ctmstraint, which makes for a good checklist
item.

3.3 Checklist items better suited as entry/exit criterion

Some checklist items are better used as entry or exit criterion prior
to the inspection. It may be more effective to have a single person
verify certain properties or actions rather than having an entire
inspection team perform this check. The following are example
checklist items that should be checked prior to the inspection:

I. "Is the compilation (or assembly) listing free of fault messages?"
lI)unn 1984]. This is better checked by the author and verified by
the moderator before sending the material to the inspection team.

2. "Is the output from the requirements language processor com-
plete and fault-free?" [Dunn 1984]. Similar to the above checklist
item, this is better checked by the author and verified by the mod-
erator.

3. "Do all non-void functions have a return value? ... [This item is]
sufficiently checked by lint.'" [Dichter 1992]. The programmer
should run lint and examine the output to ensure that this type of
defect does not exist. Review of lint output should be an entry cri-
terion to the code inspection.

3.4 Checklist items that are too general

Some checklist items are too general to be of much help.

1. "Are software requirements clear and ambiguous?" [SPAWAR
1997]

2. "The code is maintainable." [Hollocker 1990]

3. "Are there any 'go to' statements?" [SPAWAR 1997]

4. "Is the definition of success included? Of failure?" [McConnell
1993]. This checklist item is intended for requirements specifica-
tion. While it can be worthwhile to think about this issue in the
context of a general purpose review, it is too general for individ-
ual reviewers to use as a checklist item for an inspection.

5. "Are the goals of the system defined?" [Porter 1995] and
[SPAWAR 1997]. Similar to the above checklist item, this is a
very general checklist item more suitable for a requirements
walkthrough than an inspection.

4. Summary and observations

Table 3 cites each of the checklists surveyed and characterizes them
in terms of the number of checklists items, the workproduct the
checklist is intended for, and provides a brief comment relating to
the checklist. Some of these checklists are more suited towards gen-
eral purpose walkthroughs, while others are intended for the person
creating the product (e.g., desk-checking).

In examining these checklists, several observations can be made.
None of the checklists should be used "as is." Project staff should
invest the effort necessary to analyze the types of errors being made
and develop tailored checklists for helping reviewers increase their
defect detection effectiveness. These checklists can, however, pro-
vide helpful ideas for populating a project checklist.

Many of the checklists are too lengthy to be used by a reviewer as
part of an inspection process. Half of the surveyed checklists includ-
ed twenty or more checklists items. Checklists should generally be
limited to a page in length.

Feedback on checklist effectiveness can help to determine if the
reviewers are using the checklist or how well it is working. Several
review methods encourage this feedback [Glib 1993, Humphrey
1995, Parnas 1987], but there have been few reports published
describing checklist experiences with these methods.

The observations noted above have been widely discussed in the
software inspection literature. However, there has been little indus-
trial experimentation investigating methods for improving checklist
effectiveness. The inspection checklist appears to be a fertile area
for future software engineering research.

A C M S I G S O F T

Source

[Ackerman 1989]

[Ascoly 1976]

[Baldwin 1992]

[Basili 1998]

[Dicbter 1992]

Dunn 1984]

[Fagan 19761

Freedman 1982]

[Hollocker 1990]

[Humphrey 1989]

Items

Software Engineer ing Notes vol 24 no 1

Intended Workproduct for Checklist

23 Requirements

80 Code (Cobol)

23 Code (Fortran)

93 Code (PL/I)

20 Code (Assembler)

72 Code (C++)

6 i Requirements

6 Design

5 Testing

17 Code (C)

20]Requirements

19 Design (Top-Level)

22 Design (Detailed)

33 Code (General)

19 i Design

12 Code (Assembly and General)

11 Requirements

10 Design (Preliminary)

24 Design (Design Misfit)

14 Code (General)

20 Code (General: Side Effects)

9 Code (General: Data Side Effects)

11 Documentation (Side Effects)

80 Documentation

27 Process (Inspection Recorders)

6 !Misc. (Side Effects)

19 Requirements

17 Design (Document)

22 Design (Architecture)

22 Design (Detailed)

18 Code (General)

23 Testing (Test Plan)

12 Testing (Test Specifications)

18 Testing (Test Reports and Records)

14 Documentation

11 Requirements

24 Design

14 Code (General)

88 Documentation

J a n u a r y 1999 Page 86

Comments

Checklist items are divided into 3 categories: completeness, ambiguity,
and consistency. Items consist of general questions such as "What is
the total input space?" and "What are the types of runs?"

Quite a large collection of checklist items for contemporary pros;ram-
ming languages and environments of the 1970's. Many of the Cobol
items pertain to the format of comments. Document is a bit difficult to
obtain.

This document is part inspection checklist, part style guide, and part
guide to defensive programming. It has many examples of defect-
prone code fragments accompanied by an explanation and suggested
code fragments.

A set of lab materials intended to be used by customers of a product as
part of their assessment of a document, not those who create the docu-
ment.

Four items are identified as being sufficiently checked by lint. Others
include defect-prone aspects of C and style issues.

While some of the items are too general for an inspection checklist,
others are more specific ("Are imported data tested for validity?").

All of these checklist items are derived from [Kohli 1976].

Most of these checklist items are too general to be used for an inspec-
tion and are more suitable for general purpose walkthroughs. For
example, "What have you forgotten?", "What has been done wrong?",

i and "Did you dot the i 's?" are design checklist items.

This is a good source for a wide range of checklist items. Many items
are general but can easily be adapted for specific use.

The checklists in this book are slightly edited versions of those fi~und
in [Freedman 1982].

Table 3. Summary of checklists

A C M S I G S O F T

Source

i [Humphrey 1995]

[Humphrey 1997]

[Jackson 1994]

[Johnson 1995]

[Kohli 1975]

[Kohli 19761

[Larson 1975]

[Maguire 1993]

[Marick 1995]

[McConnell 1993]

Items
26

21

24

21

23

9

10

13

8

35

65

12

13

8

9

15

47

27

26

14

22

9

21

11

31

14

38

8

16

19

12

10

27

27

31

14

34

6

11

9

12

8

11

Sof tware Engineer ing Notes vol 24 no 1

Intended Workproduct for Checklist
Design

Code (C++)

Code(Ada)

Code (C++)

Code (General)

Requirements

Design

Code (General)

Testing

Design (High Level)

Design (Detailed)

Code (General)

Testing (Test Plan)

Design

Code (C)

Testing

Code (C)

Requirements

Design (Architecture)

Code (General: Constructing a Routine)

Code (General: High-Quality Routines)

Code (General: Module Quality)

Design (High-Level Design)

Code (General: Data Creation)

Code (General: Naming Data)

Code (General: Considerations in Using Data)

Code (General: Fundamental Data)

Code (General: Organizing Straight-Line Code)

Code (General: Conditionals)

Code (General: Loops)

Code (General: Unusual Control Structures)

Code (General: Control-Structure Issues)

Code (General: Layout)

Code (General: Self-Documenting Code)

i Code (General: Commenting Techniques)

Testing (Test Cases)

Testing (Debugging)

Testing (Incremental Integration Strategy)

Process (Evolutionary Delivery)

Process (Making Changes)

Process (Configuration Management)

Process (A Quality-Assurance Program)

Process (Effective Inspections)

Table 3. Summary of checklists (continued)

J a n u a r y 1999 Page 87

Comments

The checklists were created by Humphrey based on personal design
and code defect analysis. This type of checklist is to be used by devel-
opers in reviewing their workproducts; they are not intended to be used
by other reviewers. The C++ checklist items are a mix of general items
("Ensure that the code conforms to the coding standards") and defect-
prone aspects of C ("Verify the proper use of -~").

The C++ checklist is re-published from [Humphrey 1995]. See [Hum-
phrey 1995] for a description of PSP checklists.

A checklist for review of a module's design and implementation.

Most of these checklist items are too general to be used for an inspec-
tion ("Do any of the requirements conflict with one another" and "Are
comments used appropriately?").

Mostly outdated. Geared towards IBM mainframe implementations.

Mostly outdated. Geared towards IBM mainframe implementations.

This checklist is still applicable after 24 years.

These checklists are intended more for developers than for reviewers.
However, many of the checklist items could be easily adapted for an
inspection checklist.

Includes narrative to explain defect-prone aspects of C, and includes
bad/good code fragments to demonstrate many of the checklist items.

These checklists cover the range of reviews for a software development
project and are primarily intended for developers rather than for
reviewers. However, many of the checklist items could be easily adapt-
ed to an inspection checklist. This is the most extensive set of check-
lists included in this survey.

A C M S I G S O F T Software Engineering Notes vol 24 no 1 J a n u a r y 1999 Page 88

Source

[Myers 1979]

[Porter 1995]

Items

11

6

10

8

8

11

8

5

0

29

18

Intended Workproduct for Checklist Comments

Code (General: Data Reference)

Code (General: Data Declaration)

Code (General: Computation)

Code (General: Comparison)

Code (General: Control-Flow)

Code (General: Interface)

Code (General: InpuVOutput)

Code (General: Other Checks)

Ad Hoc

! Requirements

[Yourdon 1989] 0

34

73 Requirements (Software) (JPL)

41 Design (Architecture)

47 Design (Architecture Design) (JPL)

64 Design (Functional) (JPL)

37 Design (Detailed)
[NASA 1993]

56 Design (Detailed) (JPL)

55 Code (C)

49 Code (C) (JPL)

90 Code (Fortran) (JPL)

40 Testing (Test Plan) (JPL)

31 Testing (Test Procedure) (JPL)

31 Requirements (System)

25 Requirements (Software)

25 Design (Software Preliminary)

23 Design (Software Detailed)

113 Code (Ada)

[SPAWAR 1997] 50 i Code (C)

80 I Code (Fortran)

31 Testing (Test Plan)

30 Testing (Test Cases and Procedures)

20 Documentation (User)

15 Process (Software Development Plan)

The checklist items are generally programming language independent.

The requirements checklist with 29 items is primarily derived from
other published industry checklists. The checklist with 18 items was

i used in support of scenario-based checklist research, and focuses on
Requirements (Scenario) data type consistency, incorrect functionality, and ambiguities or miss-

ing functionality.

None !No checklists, but provides general guidelines for requirements,
design, and code walkthroughs.

Requirements (Functional) (JPL)

Many of the checklists are derived from an earlier NASA JPL docu-
ment.

Many of the checklist items are derived from [NASA 1993].

Bibliography
[Ackerman 1989]
Ackerman, A. Frank, Lynne S. Buchwald, and Frank H. Lewski. Software
Inspections: An Effective Verification Process. IEEE Software, Vol. 6, No.
3, May 1989, pp. 31-36.

]Ascoly 1976]
Ascoly, Joseph, Michael J. Cafferty, Stephen J. Gruen, and O. Robert
Kohli. Code Inspection Specification. IBM Corp., Kingston, NY, Technical
Report TR21.630, 1976.

Table 3. Summary of checklists (continued)
[Baldwin 1992]
Baldwin, John T. An Abbreviated C++ Code Inspection Checklist. Avail-
able on-line at http://www.ics.hawaii.edu/-johnson/FTIUBib/
Baldwin92.html, Oct. 27, 1992.

[Basili 1998]
Basili, Victor, Scott Green, Oliver Laitenberger, Filippo Lanubile, Forrest
Shiull, Sivert S¢rumg~d, and Marvin Zelkowitz. Lab Package h~r the
Empirical Investigation of Perspective-Based Reading. Available on-line at
http ://www.cs.umd.edu/projects/SoflEng/ESEG/manual/pbr_.package,~nan-
ual. html.

[Darwin 19881
Darwin, Ian F. Checking CPrograms with Lint. O'Reilly, 1988.

ACM S I G S O F T Software Engineering Notes vol 24 no 1 J a n u a r y 1999 Page 89

[Dichter 1992]
Dichter, Carl R. Two Sets of Eyes: How Code Inspections Improve Soft-
ware Quality and Save Money. Unix Review, Vol. 10, No. 2, Jan. 1992, pp.
18-23.

[Dunn 19841
Dunn, Robert tt. Software Defect Removal. McGraw-Hill Book Company,
1984.

[Fagan 1976]
Fagan, Michael E. Design and Code Inspections to Reduce Errors in Pro-
gram Development. IBM Systems Journal, Vol. 15, No. 3, 1976, pp. 182-
211.

[Freedman 1982]
Freedman, Daniel E and Gerald M. Weinberg. Handbook of Walkthroughs,
Inspections, and Technical Reviews: Evaluating Programs, Projects, and
Products. 3rd ed., Boston, Little, Brown & Co., M.A., 1982.

[Geis 1998]
Gels, Jennifer M. JavaWizard: Investigating Defect Detection and Analy-
sis. Master's Thesis, Information and Computer Sciences, University of
Hawaii, May 1998.

[Gilh 19931
Gilb, Tom and Dorothy Graham. Software Inspection. Addison-Wesley,
Reading, MA, 1993.

[Hatton 19981
Hatton, Les. Safer C: Developing Software for High-Integrity and Safety-
Critical Systems. McGraw-Hill, 1998.

[Hollocker 1990]
Hollocker, Charles P. ,Software Reviews and Audits Handbook. John Wiley
& Sons, N.Y., 1990.

[Holub 1995]
Holub, Allen I. Enough Rope to Shoot Yourself in the Foot: Rules for C and
C+ + Programming. McGraw-Hill, 1995.

[Humphrey 1989]
tlumphrey. Watts S. Managing the Software Process. Reading, MA: Addi-
son-Wesley Publishing Co. 1989.

[Humphrey 1995]
Humphrey, Watts S. A Discipline for Software Engineering. Reading, MA:
Addison-Wesley Publishing Company, 1995.

[Humphrey 1997]
Humphrey, Watts S. Introduction to the Personal Software Process. Read-
ing, MA: Addison-Wesley Publishing Company, 1997.

[Jackson 1994]
Jackson, Ann and Daniel Hoffman. Inspecting Module Interface Specifica-
tions. Software Testing, Verification, & Reliability, Vol. 4, No. 2, Jun. 1994,
pp. 101-117.

[Johnson 1977]
Johnson, S.C. Lint." A C Program Checker. Technical Memorandum 77-
1273-14, Sep. 16, 1977.

[Johnson 1995]
Johnson, Jay, Rod Skoglund, and Joe Wisniewski. Program Smarter, Not
Harder: Get Mission-Critical Projects Right the First Time. McGraw-Hill,
Inc. 1995.

[Kernighan 19781
Kemighan, Brian W. and P.J. Plauger. Elements of Programming Style. 2nd
edition, New York: McGraw-Hill, 1978.

[Knight 19931
Knight, John C. and E. Ann Myers. An Improved Inspection Technique.
Communications oftheACM, Vol. 36, No. 11, Nov. 1993, pp. 51-61.

[Koenig 1989]
Koenig, Andrew R. C Traps and Pitfalls. MA: Addison-Wesley Publishing
Company, 1989.

[Kohli 19751
Kohli, O. Robert. High-Level Design Inspection Specification. Tech.
Report TR 21.601, IBM Corp., Kingston, N.Y., Jul. 21, 1975.

[Kohli 1976]
Kohli, O. Robert and Ronald A. Radice. Low-Level Design Inspection
Specification. Tech. Report TR 21.629, IBM Corp., Kingston, N.Y., Apr.
1976.

[Larson 1975]
Larson, Rodney R. Test Plan and Test Case Inspection Specification. Tech.
Report TR21.585, IBM Corp., Kingston, N.Y., Apr. 4, 1975.

[Maguire 1993]
Maguire, Steve. Writing Solid Code. Microsoft Press, 1993.

[Marick 1995]
Marick, Brian. The Craft of Software Testing. Prentice Hall, 1995.

[McConnell 1993]
McConnell, Steve. Code Complete. Microsoft Press, 1993.

[Myers 1979]
Myers, Glenford J. The Art of Software Testing. Wiley, 1979.

[NASA 1993]
National Aeronautics and Space Administration. Software Formal Inspec-
tions Standard, NASA-STD-2202-9, Apr. 1993.

[NRC 1996]
U.S. Nuclear Regulatory Commission. Review Guidelines on Software
Languages for Use in Nuclear Power Plant Safety Systems. NUREG/CR-
6463, Jun. 1996.

[Parnas 1987]
Parnas, David L. and David M. Weiss. Active Design Reviews: Principles
and Practices. Journal of Systems and Software, No. 7, 1987, pp. 259-265.

[Porter 1994]
Porter, Adam A. and Lawrence G. Votta. An Experiment to Assess Differ-
ent Defect Detection Methods for Software Requirements Inspections. In
Sixteenth International Conference on Software Engineering, Sorrento,
Italy, May 1994, pp. 103-112.

[Porter 1995]
Porter, Adam A., Lawrence G. Votta, Jr., and Victor R. Basili. Comparing
Detection Methods for Software Requirements Inspections: A Replicated
Experiment. IEEE Transactions on Software Engineering, Vol. 21, No. 6,
Jun. 1995, pp. 563-575.

[SPAWAR 1997]
Space and Naval Warfare Systems Center. Formal Inspection Process, Ver-
sion 2.2. Sep. 29, 1997. Available on-line at http:llsepo.nosc.mill
FIProc.zip.

[SPC 1989]
Software Productivity Consortium. Ada Quality and Style: Guidelines for
Professional Programmers. Van Nostrand Reinhold, New York, 1989.

[Wheeler 1996]
Wheeler, David A., Bill Brykczynski, and Reginald Meeson, Jr., editors.
Software Inspection: An Industry Best Practice. IEEE Computer Society
Press, 1996.

[Yourdon 1989]
Yourdon, Edward. Structured Walkthroughs. 4th Edition. Prentice-Hall,
Englewood Cliffs, N.J., 1989.

