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Abstract: Homotopy Perturbation Method (HPM) is applied to solve stochastic models and in the simialr 
context Fokker-Planck equation for non-equilibrium statistical systems and Black-Scholes model for 
pricing stock options are tackled The analytical solutions are calculated in the form of convergent power 
series. The results reveal that HPM is very effective and convenient for stochastic models. 
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INTRODUCTION 
 
 Stochastic  partial  differential  equations  are essentially partial differential equations that have additional 
random terms. [1] which are usually very difficult to solve, either numerically or theoretically. However, they have 
strong connections with quantum field theory and statistical mechanics [1]. The study of stochastic partial 
differential  equations  bring  together  techniques from probability theory, functional analysis and the theory of 
partial differential equations. Stochastic partial differential equations have wide applications in various fields of 
sciences: study of random evolution of systems with a spatial extension (random interface growth, random evolution 
of surfaces, fluids subject to random forcing), study of stochastic models where the statevariable is infinite 
dimensional (for example, a curve or surface). The solutions to stochastic partial differential equations may be 
viewed in several manners [2, 3]. One can view a solution as a random field (set of random variables indexed by a 
multidimensional parameter). An imortant stochastic model is the Fokker-Planck equation whihc arises in various 
fields in natural science, including solid-statephysics, quantum optics, chemical physics, theoretical biology and 
circuit  theory. The  Fokker-Planck equation was first used by Fokker and Plank [4] to describe the Brownian 
motion of particles. If a small particle of mass m is immersed in a fluid, the equation of motion for the distribution 
function F(x, t) is given by 
 

                                                               
2

2

F F KT F
t v m v

∂ ∂ ∂
= γ + γ

∂ ∂ ∂
 (1.1) 

 
where v is the velocity for the Brownian motion of a small particle, t is the time, γ is the fraction constant, K is the 
Boltzmann’s constant and T is the temperature of the fluid [4]. Eq. (1.1) used in the force filed for studying 
stabilities of a collisions plasma and Brownian particle moving through a medium at some fixed temperature. 
 A more general form of FPE, is the nonlinear FPE, which has important applications in various areas, such as, 
plasma physics, population dynamics, biophysics, engineering, laser physics and marketing [5]. In one variable case, 
the nonlinear Fokker-Planck equation is written in the following form [4]. 
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                                                      ( ) ( )2

2

A x,t,u u B x,t,u uu
t x x

 ∂ ∂∂
= − + ∂ ∂ ∂ 

 (1.2) 

with the initial condition given by 
                                                                u(x,0) f(x),x R= ∈  (1.3) 
 
where u(x,t) is the unknown distribution function. In Eq. (1.2), B(x,t,u)>0 is called the diffusion coefficient and 
A(x,t,u)>0 is called the drift coefficient. A special case of Eq. (1.2) is the FPE from plasma physics which has the 
form [6] 
 

                                                     
2

1 2 2
2

p 1 1 1x p x p
t 2 x 2 x 4

− ε − ε∂ ∂ ∂   = −   ∂ ∂ ∂   
 (1.4) 

 
p(x, t) is the probability density function. Making use of the replacement 
 

                                             (2 1 ) / 2p(x,t) 2x ( ,y ) ,ε −= ω τ  (2 1 ) / 22 2
t ,y x

2 1
ε +τ = =

ε +
 (1.5) 

 
Eq. (1.4) reduces to the FPE for the linear Brownian motion as 
 

                                                           
2

2

( , y ) 1
y 2y 2 y

 ∂ ω τ ∂ ω ∂ ω
= −  ∂τ ∂ ∂ 

 (1.6) 

with initial condition 

                                                        2 2y / 2 y / 21(0,y) erf 2y e e
2

 ω = +  
 (1.7) 

 
 The stochastic analysis has interesting applications in mathematical modeling of financial market option pricing 
[6]. In option pricing theory, the Black-Scholes equation for the determination of the fair value of a call option or 
derivative security on the market, is one of the most effective models [7, 8]. For European options, the Black-
Scholes equation can be solved in terms of a diffusion equation boundary value problem, or directly using the Mellin 
transform [1]. 
 The most well-known stochastic model for the equilibrium condition between the expected return on the option, 
the expected return on the stock and the riskless interest rate is the Black-Scholes equation [9] 
 

                                                 
2 2

2
2

C(s,t) v C(s,t) C(s,t)
s rs rC(s,t)

t 2 s s
∂ ∂ ∂

= + −
∂ ∂ ∂

 (1.8) 

 
where s is the assert price, which undergoes geometric Brownian motion C(s,t) is the call price, v is the velocity and 
r is the reckless interest rate.  
 It is to be highlighted that several tecniques including HPM, Adomian’s Decomposition (ADM), Variational 
Iteration, Semidiscrete Glariken have been used to solve some stochastic models [2, 11-16] and the refernces 
therein. The basic motivation of this paper is the extension of a relativel new technique which is called Homotopy 
Perturbation Method (HPM) for analytic and approximate solutions of some stochastic models. It is ibserved that the 
proposed scheme is fully compatible with the physical nature of such problems and the same may be exteneded to 
other physical models also. 
 

DESCRIPTION OF METHOD 
 
Consider the following nonlinear differential equation [12-14]: 
 
                                                               A(u) f(r) 0, r− = ∈ Ω  (1.9) 
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with boundary conditions 

                                                                uB u, 0,r
n

∂  = ∈ Γ ∂ 
 (1.10) 

 
where A is a general differential operator, B is a boundary operator, f (r) is a known analytic function, G is the 
boundary of the domain O.  
 The operator A can, generally speaking, be divided into two parts L and N, where L is linear and N is nonlinear; 
therefore, Equation (1.9) can be written as, 
 
                                                             L(u) N(u) f(r) 0+ − =  (1.11) 
 
By using homotopy technique, one can construct a homotopy  which satisfies 

 
                                       [ ] [ ]0H(v,p) (1 p) L(v) L(u ) p A(v) f(r) 0 p [0,1]= − − + − = ∈  (1.12a)  

or 
                                             [ ]0 0H(v,p) L(v) L(u ) pL(u ) p N(v) f(r) 0= − + + − =  (1.12b) 

 
where p∈[0,1] is an embedding parameter and u0 in the initial approximation of Eq. (1.9) which satisfies the 
boundary conditions. Clearly, we have 
 
                                                             0H(v,0) L(v) L(u ) 0= − =  (1.13) 

 
                                                              H(v,1) A(v) f(r) 0= − =  (1.14) 

 
 The changing process of p from zero to unity is just that of v(r,p) changing from u0(r) to u(r). This is called 
deformation and also L(v)-L(u0) and A(v)-ƒ(v) are called homotopic intopology. If, the embedding parameter 
p;(0≤p≤1) is considered as a “small parameter,”applying the classical perturbation technique, we can naturally 
assume that the solution of Eqs.(1.13) and (1.14) can be given as a power series in p, i.e., 
 

 
 
and setting p = 1 results in the approximate solution of Eq. (1.12) as; 
 
                                                      (1.16)  

 
APPLICATIONS 

 
The Fokker-Planck Equaiton 
Example 3.1: [14] 
In Eq. (1.2): 

                                                                  ( )
x

2
2A x,t ,u

t x

−
=

+
 (1.17) 

and 
                                                                     ( )B x,t,u 1=  (1.18) 

Consider (1.3) with : 
                                                              u(x,0) f(x) x,x R= = ∈  (1.19) 
We rewrite Eq.(1.2) as 
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 
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 (1.20) 

With the initial condition 
                                                                0u (x,0) u(x,0) x= =  (1.21) 

To solve Equations (1.20)-(1.21) by HPM 
 

                                              
2
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Assume the solution of Equation (1.22) in the form: 
 
                                                      2 3

0 1 2 3u u pu p u p u ...= + + + +  (1.23) 

 
Substituting (1.23) into Equation (1.22) and collecting terms of the same power of p gives: 
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t t
∂ ∂

− =
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M  
The solution reads 
 

                                              
2

1

2x 1 x
u(x , t ) xln(t x) 2ln(t x) x

t x 2 t x
= + − − + + −

+ +
 (1.24) 
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2
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M  
and so on. 
Hence,we have  
 

                 

4 3 2 3 2
3 2

2 2

1 53 1 1 1 5 83
u(x,t) x x ln(t x) x 3x 11x 12 x x 47x 52

(t x) 4 8 (t x) 4 8 8
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ln(t x) x x 23 x x 33 ln(t x) x ln2
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    = − + + + − + − − + − +    + +    
    + + − + − + − + + + − − −    +     

 (1.27) 

 
which is the approximate solution of equation.This approximate solution is shown in Fig. 1. 
 
Example 3.2: Consider the following Fokker-Planck equation which arises [6] 
We find the solution of Eq.(1.4) by HPM. We simply solve Eq.(1.6). 
 

                                                 
2

0 0
2 2

w
w w 1 1 w 1 w wyp

2 y 2 y 2 y

∂ 
 ∂ ∂ ∂ ∂∂ − = − + + −

∂τ ∂τ ∂ ∂τ 
  

 (1.28) 

 

                                                            
2 21 1y y

2 2
0

1w erf 2y e e
2

 = +  
 (1.29) 

 

 
Fig. 1: Approximate series solution of example 3.1 
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 (1.32) 

 
The behavior of the probability density p(x, t) versus x for different values of time is shown in Fig. 2. 
 
Example 3.3: Itõ stochastic differential equation. 
 The Fokker-Planck equation can be used for computing the probability densities of other stochastic differential 
equations.

 
Consider Itõ stochastic differential equation

   

                                                         t t t tdX (X, t )d t (X,t)dW= µ + σ  (1.33)  
 
where N

tX R∈  is the state  and M
tW R∈ is a standard M-dimensional Wiener process. If the initial distribution is

 
0X p(x,0)∈

 
then the probability density p(x,t) of the state Xt is given by the FP equation (3.4) with i iF(x,t) (x,t)= µ  

and diffusion terms  
 

 
Fig. 2: The behavior of the probability density function p(x, t) in Example 3.2 
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ij ik kjk

1
D (x,t) (x,t)

2
= σ σ∑  

 
A standard scalar Wiener process is generated by the stochastic differential equation 
 

t tdX dW=  
 
 Now the drift term µ is zero and the diffusion coefficient is 1/2 and thus the corresponding FP equation is the 
simplest form of diffusion equation 
 

2

2

p(x,t) p(x,t)
t x

∂ ∂
=

∂ ∂
 

 
The black-scholes equation: Stochastic analysis have interesting applications in mathematical modelling and 
financial market option pricing. The most well-known stochastic model for the equilibrium condition between the 
expected return on the option, the expected return on the stock and the riskless interest rate is the Black-Scholes 
equation (1.8). Following [6], we reformulate (1.8) by introducing a new dependent variable 
 

rtx lns,p(x,t) e C(s,t)= =  
 
where p(x,t) is the probability density function. As a result, Eq. (1.8) transfers to a diffusion convection-reaction 
equation of Brownian motion. 
 
Example 3.4: The Black-Scholes model [9]. 
 The Black-Scholes model for time evolution of the call price option C(s, t), as a function of the underlying asset 
price s and time t, is given by Eq. (1.8). To solve (1.8) by HPM, the correction functional reads as 
 

                                                   
2

2 20
2

C C 1 C C
p v s rs rC

t t 2 s s
  ∂ ∂ ∂ ∂

− = + −   ∂ ∂ ∂ ∂  
 (1.34) 

 

                                                                    0 7 / 5

1
C s

s
= +  (1.35) 

 

                                                              
2
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42 v 12 r
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25s 5 s
 

= − 
 

 (1.36) 

 

                                                   
4 2 2

2 7 / 5 7 / 5 7 / 5

1764 v t 1008v tr 144 r t
C t

625 s 125 s 25 s
 

= − + 
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 (1.37) 

 

                                       
6 2 4 2 2 2 2 2 3

3 7 / 5 7 / 5 7 / 5 7 / 5

74088vt 6 3 5 0 4 v t r 18144v t r 1 7 2 8 t r
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 
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 (1.38) 

M  
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2 84 v t 12 tr 1 4 7 v t 1008v t r 1 4 4 t r
C(s,t) 3s

s 25s 5 s 52 s 125 s 25 s
17 74088v t 6 3 5 0 4 v t r 18144v t r 1 7 2 8 t rrt s
5 15625s 3125 s 625 s 125 s

= + + − + − +

− + + − + −
 (1.39) 

 

p(x,t) is computed for 
1

v 0.2,r 0.01,
2

= = ε =  and shown Fig. 3. 
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Fig. 3: The behavior of the probability density function p(x, t) in Example 3.4 
 

CONCLUSIONS 
 
 Homotopy Perturbation Method (HPM) has been successfully applied to linear and nonlinear stochastic models. 
Numerical results are fully supporitve of the efficiency and reliability of proposed algorithm. 
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