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Abstract: Homotopy Perturbation Method (HPM) is applied to solve stochastic models and in the simialr
context Fokker-Planck equation for non-equilibrium statistical systems and Black-Scholes model for
pricing stock options are tackled The analytical solutions are calculated in the form of convergent power
series. Theresultsreveal that HPM is very effective and convenient for stochastic models.
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INTRODUCTION

Stochastic partial differential equations are essentially partial differential equations that have additional
random terms. [1] which are usualy very difficult to solve, either numerically or theoretically. However, they have
strong connections with quantum field theory and statistical mechanics [1]. The study of stochastic partial
differential equations bring together techniques from probability theory, functional analysis and the theory of
partial differential equations. Stochastic partial differential equations have wide applications in various fields of
sciences: study of random evolution of systems with a spatial extension (random interface growth, random evolution
of surfaces, fluids subject to random forcing), study of stochastic models where the statevariable is infinite
dimensional (for example, a curve or surface). The solutions to stochastic partial differential equations may be
viewed in severa manners [2, 3]. One can view a solution as a random field (set of random variables indexed by a
multidimensional parameter). An imortant stochastic model is the Fokker-Planck equation whihc arises in various
fields in natural science, including solid-statephysics, quantum optics, chemical physics, theoretical biology and
circuit theory. The Fokker-Planck eguation was first used by Fokker and Plank [4] to describe the Brownian
motion of particles. If a small particle of mass m is immersed in a fluid, the equation of motion for the distribution
function F(x, t) isgiven by
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where v is the velocity for the Brownian motion of a small particle, t is the time, gis the fraction constant, K is the
Boltzmann's constant and T is the temperature of the fluid [4]. Eq. (1.1) used in the force filed for studying
stabilities of a collisions plasma and Brownian particle moving through a medium at some fixed temperature.

A more general form of FPE, is the nonlinear FPE, which has important applications in various areas, such as,
plasma physics, population dynamics, biophysics, engineering, laser physics and marketing [5]. In one variable case,
the nonlinear Fokker-Planck equation iswritten in the following form [4].
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with theinitial condition given by
u(x,0) =f(x),x1 R (13

where u(x,t) is the unknown distribution function. In Eq. (1.2), B(x,t,u)>0 is called the diffusion coefficient and
A(x,t,u)>0 is caled the drift coefficient. A special case of Eq. (1.2) is the FPE from plasma physics which has the
form [6]
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p(x, t) isthe probability density function. Making use of the replacement
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Eq. (1.4) reduces to the FPE for the linear Brownian motion as
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with initial condition

W0,y) = erf %ﬁygef’z +err (1.7)

The stochastic analysis has interesting applications in mathematical modeling of financial market option pricing
[6]. In option pricing theory, the Black-Scholes equation for the determination of the fair value of a call option or
derivative security on the market, is one of the most effective models [7, 8]. For European options, the Black-
Scholes equation can be solved in terms of a diffusion equation boundary value problem, or directly using the Mellin
transform [1].

The most well-known stochastic model for the equilibrium condition between the expected return on the option,
the expected return on the stock and the riskless interest rate is the Black-Scholes equation [9]
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where s is the assert price, which undergoes geometric Brownian motion C(s,t) isthe call price, v isthe velocity and
r istherecklessinterest rate.

It is to be highlighted that several tecniques including HPM, Adomian’s Decomposition (ADM), Variational
Iteration, Semidiscrete Glariken have been used to solve some stochastic models [2, 11-16] and the efernces
therein. The basic motivation of this paper is the extension of a relativel new technique which is called Homotopy
Perturbation Method (HPM) for analytic and approximate solutions of some stochastic models. It isibserved that the
proposed scheme is fully compatible with the physical nature of such problems and the same may be exteneded to
other physical models also.

DESCRIPTION OF METHOD
Consider the following nonlinear differential equation [12-14]:
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with boundary conditions
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where A is a general differential operator, B is a boundary operator, f (r) is a known analytic function, G is the
boundary of the domain O.

The operator A can, generally speaking, be divided into two parts L and N, where L islinear and N is nonlinear;
therefore, Equation (1.9) can be written as,

L(u)+ N(u)- f(r)=0

(111
By using homotopy technique, one can construct a homotopy v(r,p): 12 x [0,1] = R which satisfies

H(v,p) = @- PL(V)- L(w)] +P[AV) - f(N]=0 pl [01]
or

(1.123)
H(v,p) = L(v)- L(u,)+pL(u,) +p[N(v)- f(r)] =0

(1.12b)
where d [0,1] is an embedding parameter and  in the initial approximation of Eq. (1.9) which satisfies the
boundary conditions. Clearly, we have

H(v,0) =L(v)- L(u,) =0 (1.13)
H(v,1) =A(v)- f(r)=0

(119
The changing process of p from zero to unity is just that of v(r,p) changing from ug(r) to u(r). Thisis called
deformation and also L(v)-L(ug) and A(v)-} (v) are called homotopic intopology. If, the embedding parameter

p;(OEp£L) is considered as a “small parameter,”applying the classical perturbation technique, we can naturally
assume that the solution of Egs.(1.13) and (1.14) can be given as a power seriesinp, i.e.,

v = vy + Py +*p:1:':. +

and setting p = 1 resultsin the approximate solution of Eq. (1.12) as;

u=lim, yv=vy +v +v; + (1.16)
APPLICATIONS
The Fokker-Planck Equaiton
Example 3.1: [14]
InEg. (1.2):
2
Ax,t,u)= 11
(xtu)=—2 117
and
B(x,t,u) =1 (118)
Consider (1.3) with :
u(x,0) =f(x)= x,xI R
Werewrite EQ.(1.2) as

(119)
71



Studiesin Nonlinear <i., 3 (2): 69-77, 2012

e &, X u u
é é2'§ 0 a
é Te—=uy a
é ét+X Y 2 ]
lu_ée e a, Tug
T e ™ ped 20
é a
é a
é a
3 3
With theinitial condition
Uy (X,0) =u(x,0) = x (1.21)
To solve Equations (1.20)-(1.21) by HPM
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Assume the solution of Equation (1.22) in the form:
U=Uy+puy +p2u, + piu; +... (123)
Substituting (1.23) into Equation (1.22) and collecting terms of the same power of p gives:
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The solution reads
_ 2x 1 x?
ul(x,t)—xln(t+x)-m-ZIn(t+x)+§t+X-x (1.24)
10 5 x* 5 x? 6x 1 X2In(t + X)
U, (X,t) = - - - +
(t+x) 4(t+x) 2(t+ x)? (t+x)2 2 (t+x) (125
. :
) 3x|n(t+x)+ X +2In(t+x)+ X 4In(t+x)
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which is the approximate solution of equation.This approximate solution is shownin Fig. 1.
Example 3.2: Consider the following Fokker-Planck equation which arises[6]
We find the solution of Eq.(1.4) by HPM. We simply solve Eq.(1.6).
e w 0
(; -
ﬂ_W_M: c- lﬂ+ __2 lﬂ - Tw o (1.28)
Tt §2y 2y 21y Tt =
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w, =er g?/_yb (129)

Fig. 1: Approximate series solution of example 3.1
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The behavior of the probability density p(x, t) versus x for different values of timeis shownin Fig. 2.

Example 3.3: 10 stochastic differential equation.
The Fokker-Planck equation can be used for computing the probability densities of other stochastic differential
equations. Consider 1td stochastic differential equation

dX, =m(X,t)dt +s(X,t)dw, (133)
where X, 1 R" isthe state and W,1 R"is a standard M-dimensional Wiener process. If the initial distribution is
X, 1 p(x,0) then the probability density p(x,t) of the state X; is given by the FP equation (3.4) with F(x,t) =m(x,t)
and diffusion terms

Fig. 2: The behavior of the probability density function p(x, t) in Example 3.2
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A standard scalar Wiener processis generated by the stochastic differential equation

dX, =dw,

Now the drift term W is zero and the diffusion coefficient is 1/2 and thus the corresponding FP equation is the
simplest form of diffusion equation

Tp(x,t) _ T'p(x.t)
qt %2

The black-scholes equation: Stochastic analysis have interesting applications in mathematical modelling and
financial market option pricing. The most well-known stochastic model for the equilibrium condition between the
expected return on the option, the expected return on the stock and the riskless interest rate is the Black-Scholes
equation (1.8). Following [6], we reformulate (1.8) by introducing a new dependent variable

x =Ins,p(x,t) =e"C(s,t)

where p(x,t) is the probability density function. As a result, Eqg. (1.8) transfers to a diffusion convection-reaction
equation of Brownian motion.

Example 3.4: The Black-Scholes model [9].
The Black-Scholes model for time evolution of the call price option C(s, t), as a function of the underlying asset
price sand timet, isgiven by Eq. (1.8). To solve (1.8) by HPM, the correction functional reads as
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p(x,t) is computed for v=0.2,r=0.01, e:% and shown Fig. 3.
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Fig. 3: The behavior of the probability density function p(x, t) in Example 3.4

CONCLUSIONS

Homotopy Perturbation Method (HPM) has been successfully applied to linear and nonlinear stochastic models.

Numerical results are fully supporitve of the efficiency and reliability of proposed algorithm.
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