

Mesa temática 4: Ciencia y medio ambiente

Dr. Francisco Córdoba Montiel

13 de noviembre de 2023

PLANTEAMIENTO

Los retos actuales en los proyectos de geociencias es la interdisciplinariedad y fortalecer la comunicación de diferentes disciplinas con una óptica de cooperación para alcanzar metas y objetivos con fines de investigación básica y aplicada, en ese sentido nace el proyecto financiado por CONAHCYT en un sitio estratégico de alto valor científico, ambiental e histórico el volcán Citlaltépetl, comúnmente conocido como Pico de Orizaba.

El objetivo de este proyecto es implementar una red de sensores geofísicos distribuidos en ocho estaciones sobre el edificio volcánico del Pico de Orizaba para habilitar un sistema de monitoreo, registro remoto y transferencia de datos y vídeo en tiempo real de la actividad sísmica vulcano-tectónica y regional, de la actividad eruptiva durante una eventual reactivación, de fenómenos de remoción en masa (lahares, derrumbes y deslizamientos), de fenómenos hidrometeorológicos estacionales (lluvias, nevadas, caídas de granizo, vientos y tormentas) y de incendios forestales en media y alta montaña

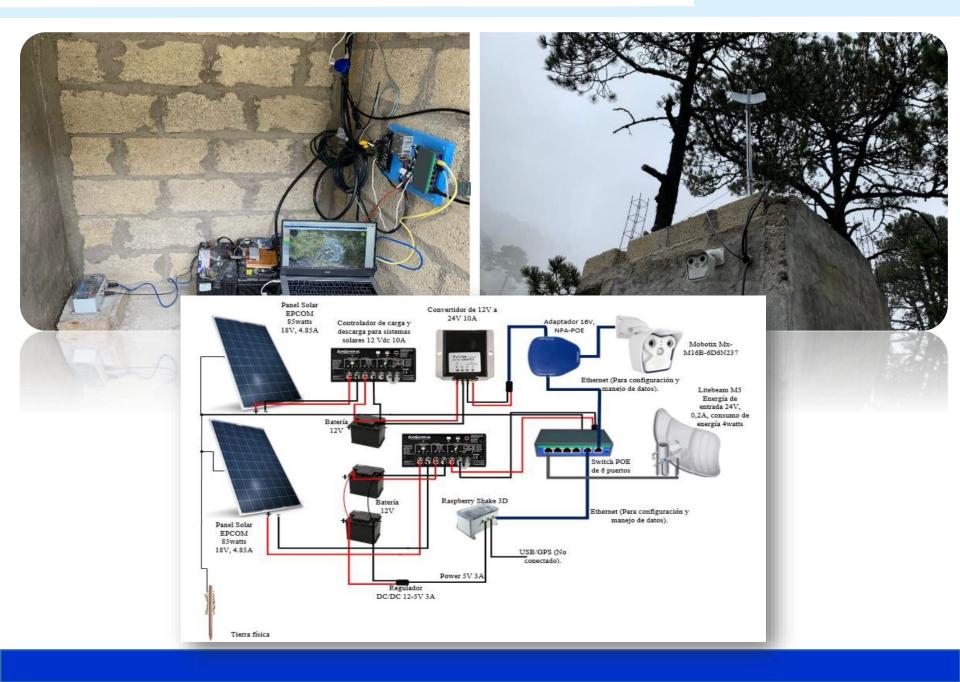

PRIMERA ETAPA: MONITOREO SÍSMICO DEL VOLCÁN...

A 25 años de funcionamiento de la estación Halcón POHV

SEGUNDA ETAPA: MONITOREO DE LAHARES

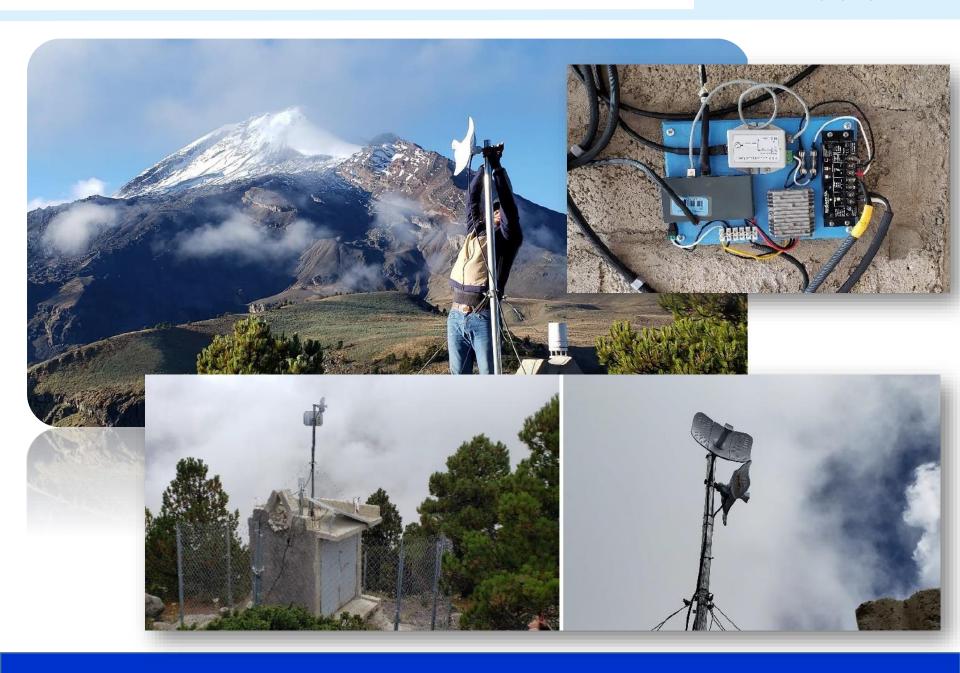
Glaciar Jamapa y parte baja del río Jamapa

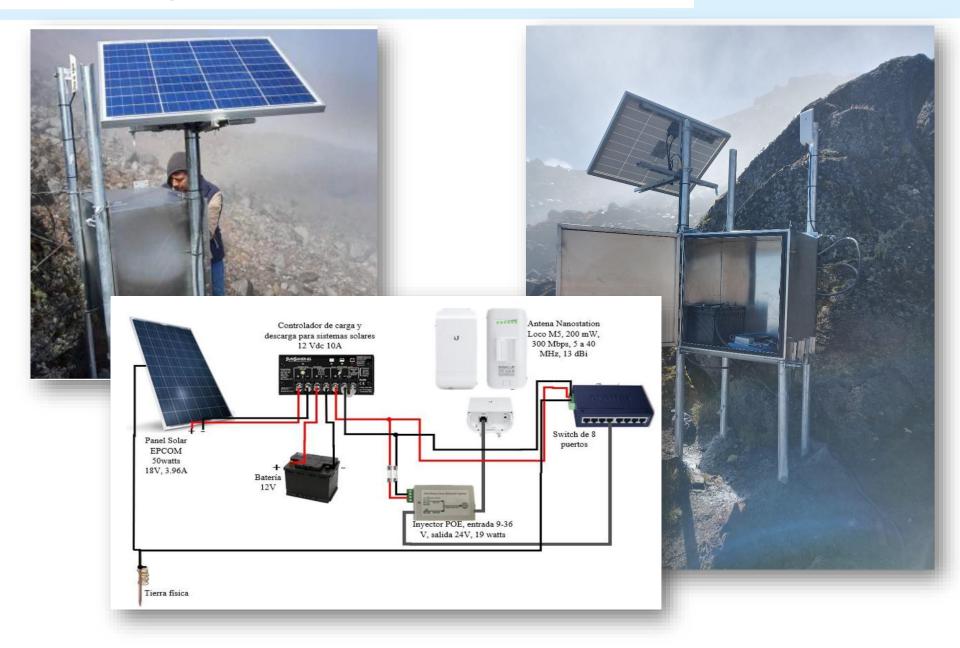
Lahar de 2012: área de formación y depósitos


EL FLANCO NORTE DEL VOLCÁN PICO DE ORIZABA

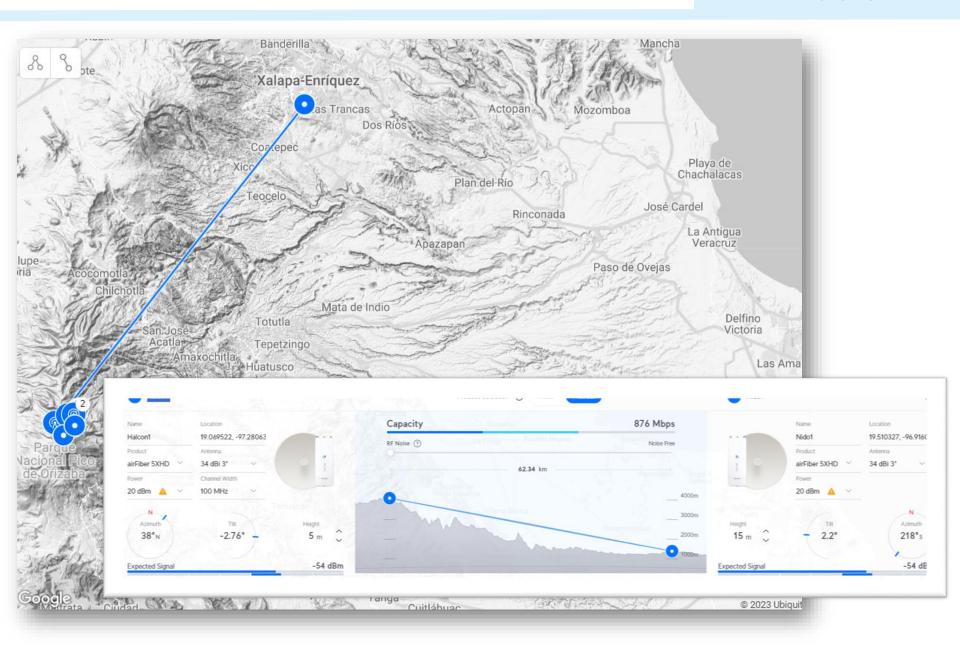
UN PRIMER EXPERIMENTO DE MONITOREO DE LAHARES

Nombre de la estación	Instrumentación	Telemetría
Cruce Jamapa	 Sismógrafo Raspberry Shake® 1D con sismómetro vertical (geófono) Cámara de video Mobotix M16 	Radio <i>Ubiquiti</i> 5 Ghz 10 Mbps <i>LiteBeam®M</i> ⁵ modelo LBE-MS-23 (enlace Cruce Jamapa-Repetidora)
Repetidora	No aplica	Radio <i>Ubiquiti</i> 5 Ghz <i>NanoStation</i> ®loco <i>M</i> ⁵ modelo <i>LOCOM5</i> (enlace Repetidora- Campbell)
Caja de Agua	 Estación Meteorológica DAVIS Instruments Vantage Pro2™ Plus que incluye pluviómetro, anemómetro, termohigrómetro, sensor de radiación UV y de radiación de solar. Sismógrafo Raspberry Shake® 3D con geófonos ortogonales en las direcciones este, norte y vertical 	Radio <i>Ubiquiti</i> 5 Ghz <i>NanoStation</i> ®loco <i>M</i> ⁵ modelo <i>LOCOM5</i> (enlace Caja de Agua- Campbell)
Campbell	Estación meteorológica Campbell Scientific ClimaVUE™50, que contiene datalogger CR300-RF407 con los siguientes sensores: piranómetro, anemómetro ultrasónico, sensor de temperatura, sensor de humedad relativa, pluviómetro e inclinómetro.	Radio <i>Ubiquiti</i> 5 Ghz 10 Mbps <i>LiteBeam</i> ® <i>M</i> ⁵ modelo LBE-MS-23 (enlace Campbell-Caja de Agua) Radio <i>Ubiquiti</i> 5 Ghz 10 Mbps <i>LiteBeam</i> ® <i>M</i> ⁵ modelo LBE-MS-23 (enlace Campbell-Halcón)
Halcón	No aplica	Radio <i>Ubiquiti</i> 5 Ghz <i>NanoStation</i> ®loco <i>M</i> ⁵ modelo <i>LOCOM5</i> (enlace Campbell-Halcón) Radio <i>Ubiquiti airFiber</i> ® 5XHD modelo AF-5XHD (enlace Halcón-Xalapa)


ESTACIÓN CRUCE JAMAPA


ESTACIÓN REPETIIDORA

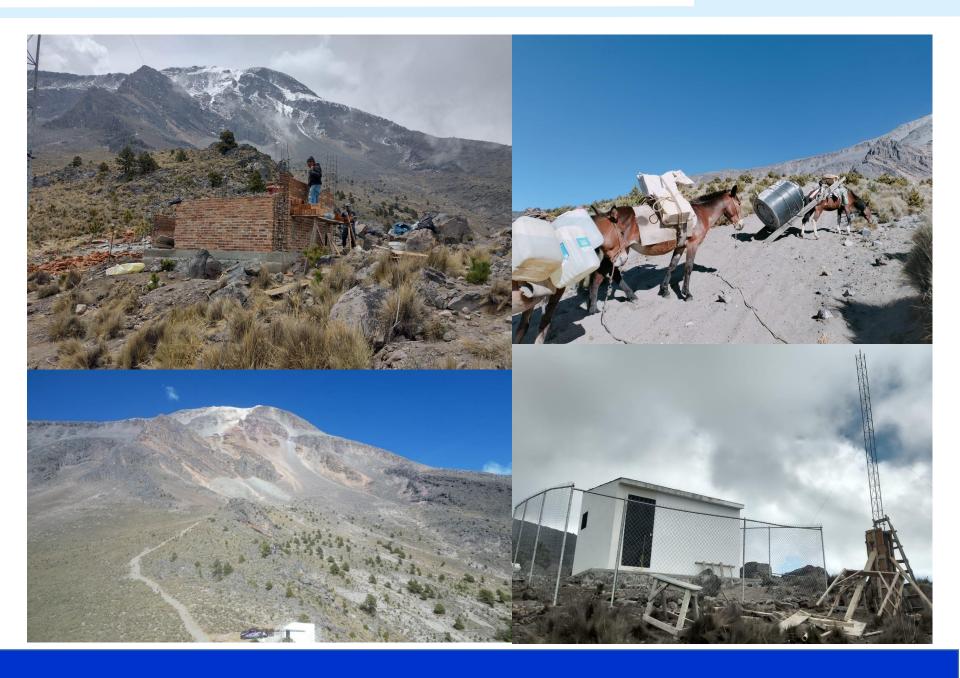
ESTACIÓN CALVARIO


ESTACIÓN CAJA DE AGUA

COMUNICACIÓN CRUCE JAMAPA-CALVARIO-HALCÓN

ENLACE TRONCAL PUNTO A PUNTO PO-XALAPA

ESTACIÓN SÍSMICA HALCON POHV – FLANCO NORTE


TERCERA ETAPA: AMPLIACIÓN DE LA RED DE MONITOREO

AMPLIACIÓN DE LA RED DE MONITOREO

No.	Ubicación	Tipo de instalación	Instrumentación sísmica	Instrumentación meteorológica	Monitoreo visual	Telemetría	Clave (nombre.red)
1	Flanco norte	Caseta ^{3,1}	Sismómetro vertical de periodo corto MarkL4 (en proceso instalación de <u>SISMÓMETRO</u> TRIAXIAL DE BANDA ANCHA) ^{1,3,4}	Estación Campbell Scientific ClimaVUE50 ⁶	No aplica	Halcón-Xalapa (enlace punto a punto)1,3,4,6	HAL1.PO
2	Cruce Jamapa, flanco norte	Caseta¹	Raspberry Shake ¹	No aplica	Cámara de video Mobotix ¹	Halcón-Xalapa (enlace punto a punto) 1,3,4,6	JAMA.PO
3	Repetidora, flanco norte	Estructura ¹ metálica con gabinete de acero inoxidable	No aplica	No aplica	No aplica	Transceptor Ubiquiti	No aplica
4	Caja de Agua, flanco norte	Estructura ¹ metálica con gabinete de acero inoxidable	Raspberry Shake ¹	Estación Meteorológica Davis Instruments ¹	No aplica	Halcón-Xalapa (enlace punto a punto) 1,3,4,6	CAAG.PO
5	Campbell, flanco norte	Caseta ¹	No aplica (sitio no adecuado para sismómetro)	Pluviómetro CSI???	Por definir	Halcón-Xalapa (enlace punto a punto) 1,3,4,6	No aplica
6	Halcón II, flanco este	Estructura metálica congabinete de acero inoxidable ⁴	Raspberry Shake ²	No aplica	No aplica	Repetidor con Villas Pico ^{6,7}	HAL2.PO
7	Villas Pico, flanco sureste	Caseta ⁷ (estándares SSN)	SISMÓMETRO TRIAXIAL DE BANDA ANCHA ²	Estación Campbell Scientific ClimaVUE50 ⁶	Cámara de video Mobotix ⁶	Radio Mikro Tik con conectividad a internet ⁷	VIPI.PO
8	Chipe, flanco suroeste	Caseta ^{3,1,4}	SISMÓMETRO TRIAXIAL DE BANDA ANCHA ³	Estación Campbell Scientific ClimaVUE50 ⁶	No aplica	Enlace Chipe- INAOE- CENAPRED ³	СНІР.РО
9	Toro, flanco oeste	Estructura metálica congabinete de acero inoxidable ⁴	Raspberry Shake ²	Estación Meteorológica Davis Instruments ⁵	No aplica	En evaluación enlace Pico de Orizaba-Ciudad Serdán	TORO.PO
10	Flanco oeste	Estructura metálica con gabinete de	Raspberry Shake ²	Estación Meteorológica Davis Instruments ⁵	No aplica	En evaluación enlace Pico de Orizaba-Ciudad Serdán	????.PO

TERCERA ESTACIÓN SISMICA DE BANDA ANCHA

Prototipo de estación de monitoreo geofísico y ambiental

Instrumentos

- Digitalizador Centauro de 24 bits
- Sismómetro de banda ancha Trillium 120 Nanometrics
- Receptor Trimble NetR9
- Sensor metereológico Vaisala WRX520
- Antena GNSS
- Cámara de video Mobotix

Suministro de energía

 Sistema fotovoltaico con banco de baterías de 600 Ah en flotación con panel solar de 550 W

Telecomunicaciones

Radios Mikrotik RBLHG-5nd

CENTRO DE MONITOREO OSV-CCT

REFLEXIÓN Y RETOS

- 1) Modernización continua de la infraestructura.
- 2) Recepción e intercambio de datos en tiempo real.
- 3) Acceso remoto a bases de datos (sísmicos, meteorológicos, etc.).
- 4) Incremento de la capacidad de almacenamiento de volúmenes grandes de información.
- 5) Desarrollo de sistemas de alerta temprana.
- 6) Estandarización de datos y generación de repositorios.

¡Gracias por su atención!