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Abstract

Deep Artificial Neural Networks have been at the forefront of the Artificial Intelligence

revolution. These powerful computational models loosely mimic the intricate structures of the

brain. They have demonstrated an impressive performance at many tasks such as computer

vision, language translation, autonomous driving, among others. Particularly, Convolutional

Neural Networks have been one of the most popular branches of Deep Learning. Nonetheless,

the design and implementation of such algorithms is not trivial.

In the field of Neuroevolution, the design of Artificial Neural Networks is automated by the

use of Evolutionary Algorithms. These techniques have demonstrated an enormous potential

to deal with the complexity of applying these deep networks. Recently, major advances on

neural encodings have been introduced; neural encodings are an abstract representation of a

computational genome that can be evolved and mapped into an actual deep neural network.

In this thesis, the effects of a newly proposed neural encoding to evolve Convolutional Neural

Networks are studied. It is argued that the design of a suitable computational representation

can highly improve the design of these networks’ architectures, by achieving high perfor-

mances with low computational costs. A new Neuroevolution framework was designed in

order to test that certain encodings are more desirable than others in specific scenarios, such

as the classification of chest X-ray images for COVID-19 detection, which is the prospec-

tive case study. It has been discovered that a more compact representation promotes the

discovery of more competitive architectures in both single- and multi-objective evolutionary

optimization. Furthermore, these automatically designed networks outperformed several

of the handcrafted state-of-the-art methods, including DarkCovidNet, Bayes SqueezeNet,

Xception + ResNetV50, ResNet18, EfficientNet-B0, VGG-16, Xception, MobileNet V2, and

CNN + LSTM by obtaining an equivalent accuracy (96.7% of accuracy, which is in the range

3
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[0.8702, 0.9934] found in the reviewed literature) but significantly reducing the complexity

(32107 against the smallest handcrafted architectures of 1.164 million parameters).



CHAPTER 1

Introduction

Convolutional Neural Networks (CNN) are presumably the most representative architecture

of Artificial Neural Networks (ANN) within the field of Deep Learning (Khan et al. 2020;

LeCun, Bengio, and Hinton 2015). These networks have been at the forefront of different

tasks in Machine Learning and Computer Vision, such as image classification (He et al. 2016;

Huang et al. 2017; Kizhevsky, Sutskever, and Hinton 2012; Rawat and Wang 2017), image

segmentation (Badrinarayanan, Kendall, and Cipolla 2017; Ronneberger, Fischer, and Brox

2015; Taghanaki et al. 2020), object detection (Girshick 2015; Redmon et al. 2017; Zhao,

Zheng, et al. 2019), among others. These algorithms have also extended their application

scope to areas such as audio processing (Han, Kim, and Lee 2016) and text classification

(Kim 2014).

Since 2012, there have been a considerable number of advances towards the improvement of

CNNs, including skip connections (He et al. 2016; Huang et al. 2017), depthwise convolutions

Chollet 2017, and regularization methods such as dropout (Srivastava et al. 2014). Although

the progress has been significant, a lack of well-established notions on how to design these

networks still remains, besides the empirical expertise of practitioners. The design and

hyperparameters configuration for CNNs is a time consuming, trial-and-error process that

requires of expert knowledge in both Deep Learning and the application domain (Sun, Xue,

et al. 2019c), for which Neuroevolution aims to assist.

Neuroevolution is a research field that for over three decades has advanced in the automatic

design and training of ANNs through Evolutionary Computation (EC) techniques (Stanley,

Clune, et al. 2019). Starting from simple approaches to train small neural networks in the

late eighties, Neuroevolution has grown and expanded into the realm of Deep Learning,

5



6 1 INTRODUCTION

including Convolutional Neural Networks. Since 2017, some of the main contributions in

Neuroevolution of CNNs relate to the design of neural encodings.

A neural encoding is a genetic representation of an ANN. The encoding is the first and most

important step to design an Evolutionary Algorithm (Eiben and Smith 2015a), as it defines

the type of solutions that will be part of the search space. The hybrid encodings are one of the

recent advances in the field. Nonetheless, these representations might be designed in such a

way that there is an implicit bias towards larger networks. This is caused by the number of

CNN components that are represented inside a single block of the encoding (i.e., modularity).

Neuroevolution aids researchers and practitioners to relief the usually long, trial-and-error

process of building the highly complex CNNs. Unfortunately, most of the previous works have

centered on solving problems related to benchmark datasets such as MNIST1 or CIFAR-102,

which are large sets of image data that often require larger networks to generalize. Large

CNNs frequently entail higher training and inference times, sometimes demanding high-end

computational resources such as Graphical Processing Units (GPU). This introduces the

problem of applying current Neuroevolution techniques to niche problems. Niche problems,

as presented in this document, are tasks related to datasets that tend to be smaller, and whose

application relies on usually limited computational resources.

To address this issue, this thesis proposes that a Neuroevolution approach requires:

(1) A suitable search space led by a powerful neural encoding that encompasses neural

architectures that solve the task at hand without excessive computational complexity

measured by the number of trainable parameters, and compared with previously

handcrafted architectures.

(2) A fitness mechanism that considers not only the networks’ learning performance,

but also its complexity, promoting a trade-off between both of them.

The aforementioned requirements are the target of this research project. To test the adequacy

of this proposal, a niche problem is necessary. For this study, the chosen application is the
1MNIST is a dataset composed of binary images of hand-written digits.
2CIFAR-10 is a dataset of color images with ten different classes, such as bird, horse, and car.
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classification of biomedical images. Biomedical images are regularly scarce (Calimeri et al.

2017), thus customized models are needed in order to better generalize and reduce the risk of

overfitting. Furthermore, the application of learning algorithms to this domain in the wild,

e.g., in hospitals, might be limited to low-end computational resources.

This biomedical imaging scenario provides for a useful environment to design customized

CNNs with a moderate, almost optimal complexity. In particular, the diagnosis of Coronavirus

Disease 2019 (COVID-19) in chest X-ray (CXR) images is adopted as the case study. The

application of Artificial Intelligence techniques to this problem is of great interest, in view of

the emergence of a global pandemic.

The standardize Reverse-Transcription Polymerase Chain Reaction (RT-PCR) testing approach

has shown to be slow, expensive, low-specific and prone to failure (Ai et al. 2020; Beeching,

Fletcher, and Beadsworth 2020). Due to these drawbacks, the analysis of CXR images has

been explored as a potentially faster and effective alternative testing method. There is evidence

of visibility of COVID-19-related symptoms in CXR images even when a negative result is

obtained from the test (Kanne et al. 2020), which greatly improves classification rates.

Convolutional Neural Networks have demonstrated to be highly competent in the automatic

analysis of CXR imagery (Baltruschat et al. 2019) and have obtained promising results

COVID-19 diagnosis. Nonetheless, and as mentioned before, the design of these networks

has been based on the designer’s expertise, generally leading to large models. Recurrently,

the state-of-the-art architectures (which were created for considerably large datasets) end up

being applied, exceeding the complexity requirements and risking the performance on limited

computing resources. To the best of the author’s knowledge, Neuroevolution has not been

applied to the COVID-19 classification on CXR images.

In this thesis, a Neuroevolution technique for the automatic design of Convolutional Neural

Networks is introduced. This method is capable of building networks that classify lung

conditions, including COVID-19 pneumonia, from CXR images without excessive complexity.
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1.1 Problem Definition

The design of Convolutional Neural Networks for customized tasks is a time consuming, trial-

and-error process that requires expertise in Deep Learning and the application domain. This

often leads to the utilization of large networks, requiring high-end computational resources

and being at risk of overfitting when data is scarce.

Neuroevolution deals with the automatic design of Convolutional Neural Networks architec-

tures. However, the construction of a neural encoding plays a crucial role in improving or

harming the search of architectures.

1.2 Research Proposal

The proposal of this work is to design a Neuroevolution algorithm to automatically design

Convolutional Neural Networks for COVID-19 classification in CXR images. The system

should comprise the following:

• Encoding: to design a flexible encoding leading to a search space of compact

networks.

• Search Algorithm: to employ a Genetic Algorithm due to its known exploration-

exploitation balance.

• Fitness: to use a fitness mechanism that considers both, the learning performance as

well as the complexity of the networks.

1.3 Justification

Most of Neuroevolution methods concentrate only on classification performance, disregarding

the networks’ complexity. Multi-Objective Neuroevolution has been explored, considering

the size of the networks as a second objective. Nonetheless, these methods rely on genetic

encodings which can be biased towards larger models.
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Automatic COVID-19 pneumonia classification in CXR images has the potential to com-

pensate the lack of testing kits, and to assist for better diagnosis accuracy. Although Deep

Learning has shown good results in this task, the Convolutional Neural Networks architectures

remain being human-designed, leading to highly complex models.

1.4 Hypothesis

• Hypothesis 1: A Genetic Algorithm with a new neural encoding and a bi-objective

fitness approach can find Convolutional Neural Networks able to classify lung

conditions (including COVID-19) in CXR images with (a) an accuracy of 90% or

more, (b) specificity and sensitivity values within the range of the state-of-the-art, and

(c) a lower number of parameters with respect to the previously used architectures.

• Hypothesis 2: A hybrid encoding based on simple convolutional blocks and binary

connectivity patterns helps to find less complex networks with respect to a hybrid

encoding based on DenseBlocks (Wang, Sun, et al. 2019b)

1.5 General Objective

To use a Genetic Algorithm with a hybrid encoding to find an architecture of Convolutional

Neural Networks capable of correctly classifying COVID-19 pneumonia in multi-class clas-

sification of CXR images with high performance and a smaller number of parameters than

those in the state-of-the-art.

1.5.1 Specific Objectives

(1) To collect and annotate a CXR image dataset of COVID-19, bacterial/viral pneu-

monia, and healthy patients, and to apply a preprocessing procedure to augment the

quality of images.

(2) To design a hybrid encoding for CNNs along with variation operators able to modify

it.
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(3) To design a fitness mechanism that considers the learning performance of a CNN as

well as its complexity measured by its number of parameters.

(4) To execute a given number of experiments using the Genetic Algorithm, the proposed

encoding and the fitness mechanism. Executions using a rival encoding from the

state-of-the-art are also going to be carried out. A high-performance computing

facility is to be used.

(5) To statistically analyze the experimental data to evaluate the hypotheses.

1.6 Contributions

The contributions of this thesis are presented below:

• A literature review and a proposed taxonomy of the existing encodings for Neuroevo-

lution of CNNs.

• A novel flexible hybrid encoding able to generate compact Convolutional Neural

Networks to classify COVID-19 in CXR images.

• A series of variation operators able to handle this new encoding. These operators

form part of the Genetic Algorithm framework, called DeepGA.

• A new fitness mechanism based on a linear aggregate function, considering classifi-

cation accuracy and the networks’ complexity.

• Experimental evidence on the impact of two different hybrid encodings on the

complexity of the networks during the search.

1.7 Chapter Summary

In this chapter, a general introduction to the thesis content has been provided. Convolutional

Neural Networks have been presented as widely utilized and effective learning algorithms.

However, the design of their complex architectures is a time consuming process that requires

expert knowledge in Deep Learning and the application domain.
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A Neuroevolution method is proposed, in order to automatically design Convolutional Neural

Networks using a Genetic Algorithm. The chosen application domain is COVID-19 classi-

fication in Chest X-ray images. The contributions of this thesis are (1) a literature review

on neural encoding for Neuroevolution of Convolutional Neural Networks, (2) the design of

a genetic hybrid encoding capable of representing compact networks, (3) a set of variation

operators to handle the new encoding, (4) a fitness mechanism that takes into account the

networks’ accuracy and their number of parameters, and (5) empirical evidence on the impact

of two different hybrid encodings on the complexity of the networks during the search.



CHAPTER 2

Theoretical Framework and Background

In this chapter, a theoretical framework is presented in order to familiarize the reader with the

key concepts on which this thesis is based. In essence, three main fields of research are broadly

introduced: Evolutionary Algorithms, Convolutional Neural Networks, and Neuroevolution.

A review on the state-of-the-art both on Neuroevolution of CNNs and pulmonary disease

classification using CXR images will be also presented.

2.1 Evolutionary Algorithms

Evolutionary Algorithms (EA) are computational metaphors that mimic the process of natural

evolution (Eiben and Smith 2015a). EAs are search and optimization algorithms that have

demonstrated highly competitive performance in a wide variety of problems.

EAs are able to perform well in complex optimization problems with multiple variables,

discontinuities, multiple objective functions, multiple global and local optima, among other

challenges (Galván and Mooney 2020). Evolutionary Computation (EC) is the sub-field of

Artificial Intelligence that groups this set of bio-inspired algorithms with a series of common

characteristics as defined in (Baldominos, Saez, and Isasi 2019b), which are introduced next.

Population-based algorithms. An EA consists of a series of potential solutions, usually

identified as individuals. This approach is useful to cover different regions of the search space

at the same time. Here, the term search space is used as the set of all possible solutions to a

given optimization problem. The operators in the EAs grant the individuals to move, explore

and exploit the search space looking for an optimal solution.

12
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Stochastic algorithms. The stochastic nature of an EA refers to its non-determinism. The

effect of many evolutionary mechanisms inside the EAs possess a random component, making

the output of the algorithm to be different in each execution. However, the randomness of an

EA does not prevent it to have a robust behavior over many executions.

Metaheuristic algorithms. EAs do not require any application-specific knowledge, unlike

heuristic methods that are highly related to the search problem at hand. Furthermore, an EA

can be utilized in many different problems without changing its functioning. However, and

mainly due to their stochastic nature, EAs cannot guarantee finding the optimal solution to a

problem in most cases (ibid.).

There are two major families of bio-inspired algorithms: evolutionary algorithms, and swarm

Intelligence (SI) algorithms. EAs take inspiration from the evolution of species, whilst SI

algorithms are based on complex behaviors that emerge from the communication between

simple individuals. There are some distinctive exemplars from the former, such as the

Genetic Algorithm (GA), Evolution Strategies (ES), Evolutionary Programming (EP), Genetic

Programming (GP), and Differential Evolution (DE). The SI group is composed mainly by

Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and Artificial Bee

Colony (ABC) algorithm, among others. This thesis focuses on the Genetic Algorithm. An

overview and analysis on the field of EC can be found in (Eiben and Smith 2015b).

2.1.1 The Genetic Algorithm

The Genetic Algorithm was originally proposed by John Holland in 1975 (Baldominos, Saez,

and Isasi 2019b; Holland 1975) becoming on of the most popular representatives of EAs.

This algorithm loosely mimics the basic principles of the Darwinian Evolution Theory of the

survival of the fittest (Mirjalili et al. 2019).

The GA is an optimization and search algorithm, that has evolved and improved through the

years to adapt to very diverse problems and representation schemes. Its general operation

is based on a population of solutions that during a number of generations are selected to
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recombine in order to travel the search space of a problem. Fig. 2.1 illustrates the general

framework of a GA.

FIGURE 2.1: The general template of a Genetic Algorithm. A subset of
parents is selected from an initial population to recombine and mutate in order
to create the offspring, which are later used as the new population.

The GA is presented here as a symbiosis of three important factors: (1) genetic representation,

(2) environment, and (3) evolutionary operators.

The genetic representation or encoding is a computational metaphor of the biological

genome in living beings. The encoding is a mechanism that describes any potential so-

lution in a search and optimization problem. As discussed by Eiben & Smith (2015a), the

representation is the first and most important part in the design of any EA. One of the reasons

for this is that the set of all possible instances of an encoding corresponds to the size and

complexity of the search space S. For example, a numerical optimization problem can be

solved by using a binary encoding of four bits to represent integer numbers in the range [0, 15].

On the other hand, the utilization of floating point numbers with four decimal positions as

the encoding would offer more precision, at the cost of considerably increasing the size of

the search space. Secondly, the evolutionary operators are chosen or designed based on the

genetic encoding.
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The genetic encoding can be compared to the genotype and to the phenotype. A genotype level

encoding requires a decoding step to be evaluated. In numerical optimization, for example, a

binary string needs to be transformed into a decimal number so as to be used as input for a

numerical function. A phenotype level encoding requires no further processing in order to be

evaluated.

The environment is the optimization problem to which the individuals need to adapt in order

to survive. The environment, thus, is defined by the fitness function (also named objective

function) to be optimized. A standard optimization problem, in the context of minimization,

is defined as in Eq. (2.1b) (Boyd and Vandenberghe 2004):

min
x

f(x) (2.1a)

subject to gi(x) ≤ bi, i = 1, ...,m (2.1b)

where the vector x = (x1, ..., xn) groups the n decision variables that are used to minimize

the fitness function f whose mapping is f : Rn → R. There are m constraint functions, which

are limited by the constants bi. The optimal vector x∗ solves the problem of minimizing the

function f given that there is no other vector x such that f(x) ≤ f(x∗), and by satisfying the

constraints gi. The variable vector x can be generalized to the previously mentioned genetic

encoding. A fitness value is assigned to an individual by evaluating its encoding in the fitness

function. The environment plays a crucial role in guiding the search process, as it determines

which individuals are better adapted to solve a problem, against those who are not.

The evolutionary operators are in charge of performing the search. The GA is characterized

by the presence of crossover as its flagship operator, and the mutation as a secondary operator.

These two operators provide for mechanisms to expand the current population towards new

solutions that are expected to be better as the generations go by.

Additionally, there is a parents selection procedure that allows the algorithm to choose

some of the best individuals based on fitness. The parents selection process seeks to select
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some of the individuals in the population for recombination (Drezner and Drezner 2020).

Parents selection is in most cases a biased procedure towards the solutions with higher fitness.

A stochastic component can or cannot be added. Four important selection families exist

(Goldberg and Deb 1991): ranking methods (Baker 1985), proportional methods (Jong 1975),

tournament methods (Brindle 1981), and genitor methods (Whitley 1989). For the proposed

Neuroevolution technique in this thesis, the tournament selection framework is chosen due to

its low computational complexity and ease of implementation (Goldberg and Deb 1991).

The deterministic tournament selection bases simply on randomly choosing a subset of s

individuals (tournament), and selecting the one with the higher fitness (see Algorithm 1).

This procedure is repeated until the parents pool P is full (usually P = N
2

, with N being the

population size).

Algorithm 1 Deterministic Tournament Selection
Require: A population Pop
Output: A parent solution parent.

Randomly Select s individuals for tournament from Pop.
Choose the individual with the highest fitness as parent.

A stochastic version of tournament selection can be devised by using a probability p that

determines whether the best solution is chosen or not. If the best individual is not selected,

the second best individual could be chosen with a probability p(1− p); otherwise, the third

best individual with a probability p(1 − p)2, and so on. The Algorithm 2 summarizes this

procedure.

Algorithm 2 Stochastic Tournament Selection
Require: A population Pop
Output: A parent solution parent.

Select s individuals for tournament from Pop.
Sort the tournament by fitness from 0 to s− 1 (k is the position of each individual).
if U(0,1) ≤ p(1− p)k then

Choose the k-th best individual from the tournament as parent.
end if

The symbol U(0, 1) represents a random uniform distribution. Once the parents are selected,

the recombination is performed. The crossover operator combines two chromosomes in order
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to produce the offspring. In the GA, a series of offspring solutions are generated, being the

number of them equal to the number of parents |P | or to the population size N .

In crossover, two parent solutions are combined at the genotype level, unless they are encoded

at the phenotype level, for which crossover is also possible. An important factor in crossover,

is that the offspring should possess information inherited from the parents only; no new

information should be added. The aforementioned is important as this ensures the exploitation

of the search space. Exploitation consists on taking advantage of the region of the search

space that is nearby the parents, hoping to find solutions with higher fitness. This could also

lead to find a local optimum. The notion of exploitation is shown in Fig. 2.2-(a).

FIGURE 2.2: A scheme of the search process during recombination. A sample
optimization problem of two variables x1 and x2 is presented. Two parents
Pa1 and Pa2 form the parents region, colored in blue. a) Exploitation occurs
when the offspring C1 and C2 are in the region enclosed by the parents. b)
Exploration occurs when the offspring C1 and C2 are outside the parents’ area.

Given two parents Pa1 and Pa2 that are randomly selected from the pool P , crossover is

applied with a probability CXPB called crossover rate. Crossover is performed differently

based on the encoding. In this thesis, one of the utilized representations is the binary string.

One simple way to combine two of these encodings is using single-point crossover. Given

two equally-sized binary strings of n bits, a random position i is selected. All the bits in the

positions i+ 1, ..., n− 1 are exchanged between both strings, as can be seen in Fig. 2.3.
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FIGURE 2.3: Single-point crossover between two binary strings. In this
example, the cutoff point is in the position i = 3 (red colored). All the
subsequent bits are exchanged between strings

In several cases, the crossover results in two new offspring solutions. As mentioned before,

the new solutions are composed of a mixture of the information of the two parents, without

inserting any new knowledge.

When the offspring solutions are produced, the mutation is applied with a probability MUPB,

called mutation rate. The objective of mutation is to encourage exploration in the search

space. Unlike crossover, the mutation seeks to position the offspring away from the parents’

area to discover other potentially competitive regions to search (see Fig. 2.2-(b)). It also adds

or changes the information in the offspring’s encoding on a random, unbiased basis. In the

binary string scenario, a simple mutation can be done by the bit flip mutation, in which a

random bit i is selected: if its value is 0, it is flipped to 1 and vice versa.

After crossover and mutation take place, a survival selection or replacement is employed.

This process consists in renewing the population with new solutions. In generational genetic

algorithms, the entire population is replaced by the offspring at each generation. If the best

solution is always preserved, it is said to be an elitist replacement approach. An elitist GA with

a sufficiently large number of generations always converges to the optimal solution (Bhandari,

Murthy, and Pal 1996). In this thesis, the chosen survival and replacement approach is the

µ+λ replacement, which was introduced in Evolution Strategies (Mezura-Montes and Coello

2008). In the adaptation of this approach for a GA, the population set µ is merged with the

offspring set λ. The entire set is sorted based on fitness, and the best |µ| individuals are

chosen to be part of the next generation.
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When the number of generations is used as a stop criterion, a GA is described in Algorithm 3.

The crossover and mutation rates are user-defined parameters, as well as the number of

generations T and the population size P . If tournament selection is used, the tournament size

s is also a user-defined parameter.

Algorithm 3 Genetic Algorithm
Require: Population size N , number of generations T , tournament size s, crossover rate

CXPB, mutation rate MUPB.
Output: A set of near-optimal solutions Pop.

Initialize population Pop with N random solutions.
t← 0
while t ≤ T do

Fill parents pool P with |P | parents with tournament selection. //Parents Selection
while Offspring set Off is not full do

Randomly choose two parents Pa1 and Pa1
if uniform(0,1) ≤ CXPB then

Apply crossover between parents to obtain offspring C1 and C2. //Crossover
end if
if uniform(0,1) ≤ MUPB then

Mutate offspring C1 //Mutation
end if
if uniform(0,1) ≤ MUPB then

Mutate offspring C2 //Mutation
end if

end while
Sort Pop ∪ Off by fitness.
Select the N individuals with higher fitness. //µ+ λ Replacement
t← t+ 1

end while

A similar template is used for the project presented in this thesis. Being a metaheuristic

algorithm, the GA can be applied to a variety of problems, including Neuroevolution.

2.1.2 Multi-Objective Genetic Algorithm

There is a family of GAs that deal with a special type of optimization problems. In different

search and optimization scenarios, it is not possible to choose one solution based solely

on one objective function. Multi-Objective Evolutionary Algorithms (MOEAs) (Deb et al.

2002) have gained considerable momentum by being highly competitive in Multi-Objective
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Optimization problems (MOPs). The automatic design of Convolutional Neural Networks

architectures can be posed as a Multi-Objective Optimization problem therefore it is relevant

to discuss MOPs.

A multi-objective optimization problem can be defined as to find an n-dimensional solution

vector x = [x1, x2, ..., xn]T that minimizes a set ofm functions f(x) = [f1(x), f2(x), ..., fm(x)]T ,

where each variable xj ∈ [loj, upj] (Vargas-Hákim, Mezura-Montes, and Galván 2020). The

terms lo and up represent the lower and upper bounds of a variable, respectively. In multi-

objective optimization, the objective functions are in conflict with each other; a solution that

improves one of the functions, may worsen one or several of the others.

In these problems, it is not possible to sort the population based on one of the objectives and

to expect that the top of these solutions is the best overall solution. Conversely, the population

might contain a set of solutions that represent trade-offs among the objective functions. For this

reason, a different sorting criterion is needed to highlight the best individuals from the others.

Unlike single-objective optimization, where a single solution is found, in multi-objective

optimization the best possible trade-offs among the objectives gives rise to a collection of

solutions which are called the Pareto Set. To evaluate the fitness of the individuals inside this

set, Pareto dominance is introduced. Mathematically, a solution vector x = [x1, x2, ..., xn]T

dominates y = [y1, y2, ..., yn]T , denoted as x ≺ y, if and only if, fi(x) ≤ fi(y) for all

i ∈ [1, ...,m] and fi(x) < fi(y) for at least one i ∈ [1, ...,m]. The above is in the context of

minimization. The Pareto dominance between two points is presented in Fig. 2.4.
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FIGURE 2.4: Pareto dominance between solutions x and y in a function
space with two objective functions f1 and f2. a) x and y are equal on f2
(f2(x) = f2(y)) but x improves f1 in comparison to y (f1(x) < f1(y)). b) x
and y are equal on f1 (f1(x) = f1(y)) but x improves f2 in comparison to y
(f2(x) < f2(y)). c) x improves both f1 and f2 with respect to y (f1(x) < f1(y)
and f2(x) < f2(y)). d) neither x nor y dominate each other, as f1(x) < f1(y)
but f2(y) < f2(x).

A solution x∗ belongs to the Pareto Optimal Set P ∗ if there is not any other solution x such

that x ≺ x∗. The Pareto Optimal Front is therefore defined as PF ∗ = {f(x)|x ∈ P ∗}. It is

important to further clarify that Pareto sets are composed of solutions, meanwhile Pareto

fronts are composed of function values evaluated using the solutions in the Pareto sets.

In MOEAs, the population is to be sorted with respect to dominance (non-dominated sorting)

(Deb 2007); the individuals are grouped in different sub-optimal Pareto fronts. These fronts

are also ranked, being the first front the best, and the last front the worst. The first PF is

composed of all the solutions x that do not dominate each other, but that dominate all the

excluded solutions. The second front is composed of those excluded solutions that do not

dominate each other but dominate a new group of excluded solutions. The process repeats

until all the individuals are inside their corresponding fronts. Fig. 2.5 exemplifies how the

individuals inside a population can be classified into different fronts.
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FIGURE 2.5: A graphical example of the different Pareto fronts in a popula-
tion, in contrast with the Pareto Optimal Front.

The exact non-dominance sorting procedure is performed in Algorithm 4. In a Multi-Objective

Genetic Algorithm (MOGA), this sorting process is used to rank the population for replace-

ment, instead of using a traditional sorting with respect to a single objective function.

As in the ranking of individuals, measuring the quality of a MOEA is more complex in

comparison to its single-objective counterparts. A number of performance indicators have

been proposed (Yen and He 2014), from which Hypervolume is one of the most popular.

The Hypervolume metric has become a very powerful indicator due to three important

characteristics (Shang et al. 2020): (1) it is highly related to the Pareto front; all the Pareto

optimal sets maximize the Hypervolume. (2) It evaluates the optimization quality at the same

time as the spread of solutions. (3) Hypervolume requires one parameter only. Based on

Shang et al. (2020), the mathematical definition of Hypervolume is presented next.

Consider a set of m-dimensional points Z and let 1Z be a function that returns a 1 when the

argument is a point z ∈ Z and 0 otherwise. The Lebesgue measure of the set Z is computed by

integrating
∫

z∈Z 1Z(z)d(z). Now, let PF ∈ Rm be the final Pareto front, with m-dimensional

points. A reference point r ∈ Rm is defined such that no point in PF is dominated by r.The
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Algorithm 4 Non-Dominance Sorting Algorithm
Require: Population Pop of N individuals, m objective functions.
Output: Sorted population F based on non-dominance criterion.

while |Pop| is not 0 do
ind← Pop[0]
Fi ← [ind]
for q in Pop but not in Fi do

if |Fi| = 1 then
p← Fi[0]
if q ≺ p then
p← q
Fi ← [p]

else if p ⊀ q and q ⊀ p then
Fi ← Fi ∪ [q]

end if
else
n← 0
for f in Fi do

if q ≺ f then
if q not in Fi then

Replace f by q in Fi
else

Remove f from Fi
end if

else if f ⊀ q and q ⊀ f then
Increase n by 1

end if
end for
if n = |Fi| then
Fi ← Fi ∪ [q]

end if
end if

end for
F ← F ∪ Fi
Pop← Pop− Fi

end while

Hypervolume is then the Lebesgue measure of the union of all the points b that dominate r

and at the same time are dominated by the points in PF , as shown in Eq. (2.2):

HV (PF, r) = L
( ⋃
a∈PF

{b|a ≺ b ≺ r}
)

(2.2)
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The Hypervolume represents a length, an area and a volume, when m is equal to 1, 2 and

3, respectively. For the case of two objective functions, the Hypervolume would result in

the area between the Pareto front and a previously defined reference point, as can be seen in

Fig. 2.6. In the case of having three objective functions, the Hypervolume would equal the

volume of a set of prisms.

FIGURE 2.6: Visual meaning of the Hypervolume on a) a space of two
objective functions and b) a space of three objective functions.

The definition of a reference point is crucial for the computation of the Hypervolume. A

common approach is to normalize the values of each objective function fi in PF. This can be

done by using Eq. (2.3):

fni =
fni − fmini

fmaxi − fmini

, i = 1, ...,m, n = 1, ..., N (2.3a)

where fni is the n-th value of the i-th function in PF. fmini and fmaxi are the minimum and

maximum values of fi, respectively, in PF. After normalizing the Pareto Front, the functions’

values will be in the range [0, 1]. A commonly used reference point is the Nadir point, that

consists of the worst possible values of the functions that are inside PF. In the scenario

of minimization of m normalized objectives, the Nadir point would be the 1 × m vector

r = (1, ..., 1).
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A secondary evaluation metric solely consists in measuring diversity. As mentioned before, a

diverse distribution in a Pareto Front is useful for decision-making purposes. The so-called

Spacing (Yen and He 2014) metric is utilized to assess diversity using Eq. 2.4:

S =

√√√√1

t

t∑
i=1

(di − d̄)2 (2.4)

where t is the total number of solutions in the objective functions’ space, di is the Euclidean

distance between the i−th solution and its closest solution, and d̄ is the mean of all distances

di. A smaller Spacing value corresponds to a better distributed front.

2.2 Convolutional Neural networks

Convolutional Neural Networks (CNN) are a type of Artificial Neural Networks (ANN)

that are loosely inspired by the visual cortex (LeCun, Bottou, et al. 1998). One of the

characteristics that boosted the popularity of CNNs is their ability of automatically extracting

features from data without human intervention. Features from data are useful for learning,

however, the manual extraction of these features is an engineering process that also requires

domain expertise (LeCun, Bengio, and Hinton 2015).

It is likely that the term Deep Learning had been coined mainly due to the CNNs, as a notion

of depth is associated to them. In fact, the feature extraction occurs through a (normally deep)

composition of mathematical functions in the form of layers. It is said that the first layers in a

CNN extract low-level features, such as edges in an image. Meanwhile, the medium and last

layers are in charge of building mid- and higher-level features, such as shapes and texture,

based on the previous ones (Oquab et al. 2014).

A considerable amount of the research on CNNs has dealt with designing and testing new

architectures to solve different tasks. Nonetheless, the building blocks used in the construction

of these networks have remained mostly unchanged to this day. Next, the most important of

these components are explained in detail.
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2.2.1 Convolutional Layers

Convolutional layers are the principal part of a CNN. These layers possess interesting proper-

ties that make them self-trained feature extractors. Convolutional layers owe their name to

the operation they perform: the convolution (∗). To introduce and explain this concept, the

context of image processing is going to be used.

An image can be mathematically represented as a function I that receives pixel coordinates

x and y (column and row, respectively) as inputs and maps to the pixel’s intensity as output

(Gonzalez and Woods 2017). In grayscale images, the intensity p is an scalar in the range

[0, 255], thus the mapping of the function is I : R2 → R. A grayscale image is also

represented as a bi-dimensional array, analogous to a surface.

Color images such as RGB (acronym of Red Green Blue) images, in turn, map the pixels’

coordinates x and y to an intensity vector p, whose components (also called channels)

represent the red, green and blue intensities of the pixel. The mapping of the function is

I : R2 → R3. A color image is therefore represented as a three-dimensional array (or

3D-Tensor), analogous to a volume.

In the convolution, a second function, called filter or kernel, is spatially translated through the

image function. The filters are usually smaller than the image, and are filled with numerical

values. When applied in a certain position of I , a filter applies the inner product between its

values and the covered region of I . The sub-area or patch in the image that is covered by the

filter is known as receptive field.

In the framework of ANNs, a filter can also be seen as an artificial neuron, and its values

are called weights. A neuron is associated with a bias value that is summed at the end of

the inner product. Both the weights and the bias are learned parameters during training,

using the backpropagation algorithm (Lillicrap et al. 2020). Fig. 2.7 graphically describes the

convolution between a filter of size 3× 3 and an image.
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FIGURE 2.7: The convolution operation between a 2D image and a 2D filter
of size 3 × 3. The output pixel will be placed in the same position as in the
pixel framed in green in the image. The bias b is summed at the end of the
inner product.

The mathematical definition of a bi-dimensional convolution, such as the one performed in

image processing, is shown in Eq. (2.5):

(f ∗ g)(x, y) =
N−1∑
i=0

M−1∑
j=0

g(i, j)f(x− i, y − j) (2.5)

where f and g are two bi-dimensional functions, with x and y as their input variables (pixels

coordinates), and i and j are the indexing values that shift f through g. N and M are the

number of rows and columns, respectively. If the input is an RGB image, the filter must also

be a 3D tensor. Fig. 2.8 displays an example of how the convolution is applied.

FIGURE 2.8: Convolution between a color RGB image and a 3D filter. Each
cube represents a numerical value. The 3D filter is slid through the input tensor
and the inner product is applied.

The convolutional layer consists of a collection of filters that are applied to an image. All

the filters inside a layer have the same spatial resolution, i.e., size. Although the filters are
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translated through the image, each position is processed by different weight values. This is

due to the fact that each neuron is in charge of covering one section of the input image. This

also causes a considerable growth in the number of trainable parameters when many filters

are used in a layer. The weights of all the convolutional layers are optimized during training,

so as to reduce an error metric.

The number of spaces that a filter is moved to the right and down is called stride. Larger

stride values reduce the number of neurons per filter, as more regions of the image are ignored

by the filter. Optionally, the borders of the image can be filled with “dummy” values so that

the centers of the filters can be placed in the original border pixels. This procedure is called

padding, and zero is a common used value (zero-padding).

It is worth mentioning that the convolutional layer’s output size might not be the same as in

the input. The output size decreases in proportion to the filter size, the stride size, and the

number of padding borders (Fei-Fei, Krishna, and Xu 2020). If the filter and the image are

squared (same height and width), then Eq. (2.6) is used to compute the output size:

Osize =

⌈
W − F + 2P

S

⌉
+ 1 (2.6)

where W is the input image size (given that height and width are equal), F is the filter size,

P is the number of borders of padding added to the image, and S is the stride value. The

symbols d·e denote the ceil function, which returns the closest upwards integer of a given

real number. The number of output channels, called feature maps, is equal to the number of

filters in the layer. For example, let a convolutional layer contain five filters of size 5 × 5,

with stride of 2 and applying 1 border of zero-padding. Consider also an input RGB image

(with three channels) of 256× 256 pixels (the depth of the filters are adjusted to the depth of

the input; 3 in this case). The output of the layer would consist of five feature maps with a

spatial resolution of 128× 128, which equals a 3D volume of 128× 128× 5.

Convolutional layers are linear operations, since the inner product is used in each position.

As in standard ANNs, a non-linear function is required to expand the representation power of
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the extracted features. This function is also called activation function, and plays an important

role in the performance of the networks (Ramachandran, Zoph, and Le 2017). The Rectifier

Linear Unit (ReLU) (Hahnloser et al. 1998) is commonly used as it favors better optimization

results. Eq. (2.7) presents the mathematical definition of the ReLU activation function:

ReLU(x) = max(0, x) (2.7)

where x is a numerical input and max returns the largest of its inputs. The ReLU activation

function is commonly placed after the convolutional layer to transform the extracted features

on a non-linear basis. Fig. 2.9 displays the plot of this activation function.

FIGURE 2.9: Plot of ReLU. The x axis represents the input and the y axis
represents the output. The function takes the value of 0 when the input is
negative, but has a constant positive slope of 45 deg for positive inputs.

2.2.2 Batch Normalization Layers

Batch normalization (Ioffe and Szegedy 2015) can significantly improve the training of the

CNNs. As explained by Ioffe and Szegedy, the batch normalization works against the Internal

Covariate Shift (ICS). This issue is present as activation values distribution changes in a

network during training, and occurs as the weights keep changing while new inputs are passed

forward through the architecture. When the ICS is high, the training process might take longer

so as to compensate and continually adapt the weights to new distributions.
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To better understand batch normalization, it is important to clarify that the inputs of CNNs,

e.g., images, are introduced in groups of m inputs. A single of these groups is called batch.

The error value of the network during each iteration is calculated based on a batch instead

of individual images. Therefore, batch normalization adjusts the weights to the incoming

batches.

Let a batch B of size m be composed of a d−dimensional input x = (x(1), ..., x(d)). The mean

and variance of the batch can be computed as µB and σ2
B, respectively. For each component

xi in the batch, the normalization shown in Eq. (2.8) is used:

x̂i =
xi − µB√
σ2
B + ε

(2.8)

with ε being a small constant and is used to avoid divisions by zero. The normalized

element x̂i has now zero mean and a variance of one. In order to avoid constraining the

representation power of the previous convolutional layer, another transformation is applied

over each normalized value x̂i as shown in Eq. (2.9):

yi = λx̂i + β (2.9)

where λ and β are new learnable parameters associated to each original input xi inside

the batch B. The batch normalization is then mathematically written as the transformation

BNλ,β : xi → yi. As mentioned in (Santurkar et al. 2018), batch normalization can be applied

in the form of a layer, augmenting the CNN architecture repertoire.

2.2.3 Pooling Layers

The pooling layers apply a sub-sampling operation to the input feature maps. Pooling plays

an important role in reducing the spatial resolution of the feature maps, which decreases the

number of required weights in subsequent convolutional layers. The purpose of pooling is to
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merge features into a single one, based on their neighborhood semantics (LeCun, Bengio, and

Hinton 2015), i.e., how meaningful features are with respect to surrounding features.

Pooling layers consist of a pooling kernel, which is similar to a convolutional filter, except

that the former has no weights. As in the convolution, the pooling kernels are slid through the

input with a certain stride value and applying padding if needed. The task of pooling is to

only extract certain features based on a given criterion.

There are two popular pooling types. The first one is max pooling, in which the kernel’s

output is the maximum value of the covered patch in its current position. The second one is

average pooling, that returns the average of the values seen by the kernel. Fig. 2.10 illustrates

both pooling types.

FIGURE 2.10: The pooling operation of a 2D pooling kernel of size 2 × 2
on a 2D image. a) Max pooling, that returns the maximum value of the patch
covered by the kernel. b) Average pooling, where the returned value is the
arithmetic average of the patch values.

As in convolutional layers, the spatial resolution of the outputs of pooling layers can be

calculated based on the kernel size, the stride size and the number of padding layers. Given

the fact that the input image has a height and width of the same size, and the pooling kernel is

squared, Eq. (2.6) can be used.
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2.2.4 Fully-Connected Layers

Fully-connected layers are ensembles of artificial neurons. Each neuron is a computational

processing unit that is an extended version of Rosenblatt’s perceptron (Aggarwal 2018). A

neuron receives a series of d inputs x = [x1, ..., xd] through its d connections. Each connection

is associated with a weight wi that is multiplied by the corresponding input xi. As a first step,

the neuron processes the inputs by computing a weighted sum of them. In its vector form,

this operation has the form of z = wTx + b, with b as the associated bias value of the neuron.

This new numerical output is then used as argument for a non-linear function, being ReLU a

possible option. The detailed model of a neuron is shown in Fig. 2.11.

FIGURE 2.11: The model of an artificial neuron with three inputs. The yellow
circle represents the weighted sum of inputs and the green circle represents
the non-linear activation function f . The bias is represented by b.

A fully-connected layer is a set of neurons that are arranged in such a form that all the

information from previous layers is received and processed by all the neurons of a current

layer. The stacking of these layers produces a powerful composition of functions, and is

called neural network or multi-layer perceptron. In Fig. 2.12, a simple neural network with

three fully-connected layers is presented.



2.2 CONVOLUTIONAL NEURAL NETWORKS 33

FIGURE 2.12: A simple model of a neural network composed of three fully-
connected layers. Each circle represents a neuron, while the edges correspond
to the weighted connections.

The origin of the term fully-connected comes from the connectivity pattern of these layers; all

the neurons in a layer connect to all the neurons in the following layer.

Fully-connected layers are appended at the end of the feature-extraction section of the CNN

(convolutional and pooling layers). In the context of this thesis, the fully-connected layers are

used for classification purposes; assigning the correct label to an input image. All the feature

maps at the end of the last convolutional/pooling layer need to be used as inputs for the first

fully-connected layer. A flatenning process is applied, which consists in transforming a bi- or

three-dimensional array into a one-dimensional array. Fig. 2.13 displays the flattening of two

examples of feature maps.
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FIGURE 2.13: Two examples of flattening of feature maps. a) The flattening
of a 2D feature map into a one-dimensional array. b) The flattening of a 3D
feature map with three channels representing the red, green, and blue colors.
As in the 2D example, the three vectors r, g, and b are concatenated into one
single vector.

To perform classification, the last fully-connected layer should have as many neurons as the

number of classes to predict. Each of these neurons performs a prediction for its corresponding

class. Therefore, a probability estimation is to be computed.

Let x = (x1, ..., xJ) be the vector that contains the J outputs of the penultimate fully-

connected layer, being xj the output of the j-th neuron. The last fully connected layer is

composed of K neurons in order to predict K classes. The k-th neuron receives J connections

from the previous layers’ neurons, each of which has an associated weight wjk. All these

weights are grouped in the vector wk = (w1k, ..., wJk)
T . The first step of the k-th neuron

results in the computation of the weighted sum wT
k x. Each of the K neurons in the last

fully-connected layer performs this calculations, then the softmax activation function can be

applied (Aggarwal 2018).
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The softmax function allows the k-th neuron to calculate the probability of assigning the class

k given the incoming values x. This is expressed as the posterior probability P (k|x) and is

computed using Eq. (2.10).

P (k|x) =
exp(wT

k x)∑K
i=1 exp(wT

i x)
(2.10)

The sum of the posterior probabilities of the last layer sums to 1, and the class with the highest

probability is selected.

To train the CNNs, the backpropagation algorithm is utilized (Lillicrap et al. 2020), then it

is necessary to calculate a differentiable error based on the network’s inference. The error

is calculated using a loss function, and the negative log-likelihood loss function is the most

suitable for multi-class classification (Aggarwal 2018). As a reminder, the input data is

merged in batches of m images, thus the negative log-likelihood loss is calculated as in

Eq. (2.11):

L = −
m∑
n=1

log[Pm(c|x)] (2.11)

where c corresponds to the real class of the corresponding image in the batch. The logarithm

of the likelihood of choosing the actual class corresponds to the confidence on assigning

the correct label successfully. The maximization of the logarithm function is achieved by

minimizing its negative.

2.2.5 The Dense Architecture

In this thesis, a special emphasis is placed on the Dense Architecture. Residual Networks

(ResNet) (He et al. 2016) and Dense Networks (DenseNet) (Huang et al. 2017) greatly

improve the performance of CNNs for image classification. The main attribute towards this

success was the introduction of skip connections.



36 2 THEORETICAL FRAMEWORK AND BACKGROUND

A skip connection, or shortcut connection, occurs when the output feature maps of a convolu-

tional/pooling layer are transferred not only to the immediate consecutive layer, but also to

further, non-consecutive ones. The rationale behind skip connections relates to the gradient

vanishing problem (Hanin 2018). When an ANN grows in depth, the gradients sent backwards

by backpropagation start to vanish, causing that the first layers’ weights do not get updated

properly. By using skip connections, the gradients from one layer can be transferred not

only to the previous consecutive layer, but also to other previous layers in order to update

the weights. These breakthroughs allowed to design CNNs that are deeper than their earlier

counterparts.

The DenseNet architecture, as its name suggests, is made using a Dense Architecture. The

feature extraction part of the CNN is organized with several DenseBlocks. Each DenseBlock

consists of a number of convolutional layers with 3× 3 filters, applying zero-padding and a

stride of 1. These layers are connected using a dense connectivity pattern: each layer connects

to all the following layers. The convolutional layers’ configuration ensures that the output

feature maps in all the layers have always the same spatial resolution, hence they can be

concatenated to further features maps. Fig. 2.14 illustrates the structure of a DenseBlock.

FIGURE 2.14: An example of a DenseBlock containing five convolutional
layers. Each layer connects to all its following layers using skip connections.

In DenseNet, there is a hyperparameter called growth rate, which determines how many

feature maps are received by the k-th layer. The growth rate is the number of filters in the

convolutional layers inside the DenseBlock. The number of filters is equal to the number of

output feature maps. If the growth rate is 3, for example, the k-th layer would receive the 3

feature maps from the immediate previous layer, as well as the 3 feature maps coming from
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all the earlier layers. Therefore, the k-th layer receives k(k − 1) inputs. Fig. 2.15 shows how

the feature maps are concatenated from the third layer onward.

FIGURE 2.15: A detailed example of the feature maps concatenation in a
DenseBlock with five convolutional layers. The third layer receives the outputs
from the previous layer (first three squares) and the outputs from all the
previous layers. This also applies for the following layers.

It is important to notice that when the growth rate and the number of convolutional layers

are larger, the number of weights and bias also increase in the network. The authors suggest

a growth rate below or equal to 12 (Huang et al. 2017). After a DenseBlock, a 3 × 3

convolutional operation with a number of filters of half the growth rate of the previous block

is applied. Next, batch normalization, ReLU and pooling are used. It will be presented that

the DenseBlock has an important role in Neuroevolution.

2.3 Neuroevolution

Neuroevolution is an application of EAs that nowadays has an important impact in one of the

most active areas of research: Deep Learning (Baldominos, Saez, and Isasi 2019b; Elsken,

Metzen, and Hutter 2019; Galván and Mooney 2020; Stanley, Clune, et al. 2019). Since 2002,

Neuroevolution has been positioned as a very effective technique to optimize standard ANNs,

however, it was not until 2017 when the CNNs started to increasingly attract the attention

to be merged with Neuroevolution. Fig. 2.16 presents a general Neuroevolution framework

based on a GA.
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FIGURE 2.16: A general template of Neuroevolution based on the use of a GA.
The red arrow indicates that a decoding process from genotype to phenotype
might be required.

The primeval publication on Neuroevolution dates back to 1989, in which an EA evolved

the weights of a feed-forward ANN (Montana and Davis 1989). Little more than a decade

later, a breakthrough had been developed. Neuroevolution of Augmenting Topologies (NEAT)

(Stanley and Miikkulainen 2002) introduced several important concepts still relevant to our

days. The popularity of NEAT was due, in part, to its ability to automatically design neural

networks and to increasingly complexify them as needed depending on the task.

Neuroevolution of CNNs has been prolific in solving the demanding task of designing their

architectures. Unlike before, when both the architectures and the weights were evolved

simultaneously, current trends in Neuroevolution deal with evolving the architectures and

training them using backpropagation. The contributions in this field can be categorized as the

following:

• Neural Encodings and Evolutionary Operators. This branch is the most popular,

where the research focuses on designing new encodings for CNNs as well as evolu-

tionary operators to manipulate them. This has allowed to exploit the wide variety of

available EC algorithms.

• Evaluation Methods. As backpropagation is utilized, the evaluation of the individ-

uals consists on training the networks with the specified data. This process can be
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time-consuming, specially when datasets are big and the learning task is complex.

Some papers intend to improve on this issue by proposing alternative evaluation

approaches in order to reduce the computational cost of training.

• Optimization Approaches. Neuroevolution research has mainly focused on evolv-

ing CNNs to maximize their learning metric (e.g., accuracy in classification prob-

lems). In the mean time, some directions have also been explored in order to

introduce multi-objective Neuroevolution, in which more than one fitness function is

optimized.

• Learning Tasks. Most of the research on Neuroevolution of CNNs has been applied

for the problem of image classification, with MNIST and CIFAR-10 as the most

common benchmarks. However, some work has been done towards expanding the

application scope of Neuroevolution, whether it is for different classification prob-

lems (e.g. different datasets) or to solve other problems such as image segmentation,

object detection, text classification, among others.

This thesis concentrates mainly on neural encodings as a mean to reduce the computational

cost of training the evolved CNNs. Accompanying this proposal, two different fitness

mechanisms are also studied, which are using a linear aggregate objective function, and

multi-objective optimization. Finally, this work explores the application of Neuroevolution

for classification using a dataset different from benchmarks. As mentioned in Chapter 1,

benchmark datasets usually include a considerable number of examples, which forces the

CNN architectures to grow in size in order to fit the data. On the other hand, other datasets,

such as medical imaging datasets, are not as large as benchmarks. Due to this issue, increasing

the size of the CNNs would make them prone to overfitting.

As in standard EAs, neural encodings are computational representations for ANNs. The same

ideas remain: the neural encodings are the first step in the design of any Neuroevolution

algorithm, and they highly impact the complexity of the search space (Chen, Meng, et al.

2019).

Neural encodings of ANNs can be classified in two main categories: Direct Encodings and

Indirect Encodings (Stanley 2004). These two types are analogous to the phenotype-level and
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genotype-level encodings in EAs, respectively. A comprehensive literature review revealed

that in the context of CNNs, the neural encodings can also be classified within these two

groups. The proposed taxonomy of neural encodings, along with the state-of-the-art, is

provided next.

2.3.1 Indirect Encodings

An indirect encoding is a genotype-level representation that requires a set of rules to be

transformed into a phenotype that can be evaluated. An attractive aspect of these encodings

is that they do not encode all the information of the networks explicitly, yet all the hyper-

parameters of a CNN can be extracted by following the decoding rules. On the other hand,

these encodings might suffer from a lack of flexibility when trying to represent more complex

CNNs architectures.

2.3.1.1 Binary Encodings

Binary Encodings use binary arrays to represent CNNs topologies. One-dimensional binary

arrays were some of the primeval representations in the field of EC, and encompass the benefit

of being compatible with several well-known evolutionary operators, specially in GAs.

The decoding of binary encodings tend to be straightforward as presented in the specialized

literature. However, these representations are normally fixed in length and, due to the nature

of binary numbers, the search spaces are constrained. The reduced flexibility becomes evident

as larger networks usually require larger arrays, which at the same time forces the population

to grow. However, Binary Encodings excel at representing the connectivity between layers,

and are also useful for the problem of pruning a CNN. Binary Encodings are categorized into

binary strings and binary matrices.

Binary strings are one-dimensional arrays of bits that have been utilized to represent several

hyperparameters of CNNs. Usually, binary strings are divided into sub-strings that are

later transformed into real numbers. Baldominos et al. (2018a) utilized a fixed-length

binary string of 69 bits. The string is divided between the feature extraction sub-string
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(representing convolutional and pooling layers) and the classification sub-string (representing

fully-connected layers). Each sub-string is also divided in small strings that correspond to gray

codes that can be transformed into actual hyperparameters such as number of convolutional

layers, number of filters, filter sizes, pooling type, pooling sizes, number of fully connected

layers, number of neurons per layers, learning rate, among others.

Xie and Yuille (2017) introduced the Genetic CNN, in which a CNN is conceived as a

sequence of stages, each containing a number of convolutional layers with the same number

of filters and the same output sizes. The connectivity between layers is determined by a binary

string. Jiang et al. (2020) expanded this encoding by utilizing a second string that determines

the hyperparameters of the layers inside each stage. This latter encoding is shown in Fig. 2.17.

FIGURE 2.17: An example of the binary encoding for a single stage used in
Jiang et al. 2020. Each node i, except the first one, has i− 1 bits specifying
connections from the previous nodes. Also, each node is represented by a 3-bit
sub-string. In this example, 010 is related to a 3× 3 average pooling.

Some other works have utilized binary strings for Neural Architecture Pruning (NAP). NAP

is the top-down version of Neuroevolution; instead of building a CNN from scratch, an

existing architecture is reduced to some extent until a compromise between performance and

computational cost is achieved. If a binary string has a length equal to the number of filters in

a CNN, then each bit can determine if a given filter is turned on (1) or off (0). This approach

has been exploited in (Fernandes and Yen 2021; Jr. and Yen 2021; Junior and Yen 2019b;

Wang, Xu, et al. 2018; Zhou, Gen, and Yi 2021; Zhou, Yen, and Yi 2020).



42 2 THEORETICAL FRAMEWORK AND BACKGROUND

FIGURE 2.18: A binary matrix that describes the connectivity between four
convolutional layers. Only the upper-right triangle is considered. a) Simple
configuration of feed-forward connectivity. b) The introduction of skip con-
nections as in DenseNet (Huang et al. 2017). c) The main diagonal is never
considered, as it corresponds to recurrent connections, which are not allowed
in standard CNNs.

Binary matrices are squared, higher-dimensional arrays of boolean values that are utilized

as adjacency matrices for fixed-size graphs. These encodings are solely used to represent the

connectivity. In an adjacency matrix A of N × N , a layer i connects to the layer j if and

only if Aij = 1. Notice that j > i as recurrent connections are forbidden in CNNs. Thus,

the only important part is the upper-right triangle in A. Fig. 2.18 demonstrates different

configurations of a binary matrix and the result in the connectivity of a CNN with four layers.

Some representatives of this encoding method can be found in Lorenzo and Nalepa 2018;

O’Neill, Xue, and Zhang 2019, 2020.

A summary of Binary Encodings is provided in Table 2.1, regarding the type of encoding, its

length, and the hyperparameters that can be represented within the representation.
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TABLE 2.1: Summary of Binary Encodings.

Publications Hyperparameters Length

Binary String

Bivaeba et al. (2018), Chung et al. (2020), Yangyang et al. (2019),
Baldominos et al. (2018a; 2019a), Chen et al. (2019),

Liu et al. (2020), Ye et al. (2020), Zhou et al. (2021; 2020; 2021),
Wang et al. (2018), Yuan et al. (2021),

Fernandes and Yen (2021; 2019b)

Filters’ size, No. of Filters,
Pooling Type, Kernel Size,

Stride, No. of Neurons,
Activation Function, Batch Size,

Learning rate, Optimizer

Fixed

Wang et al. (2018a; 2018b), Xie and Yuille (2017),
Akut et al. (2019), Ahmad et al. (2020), Ma et al. (2021)

Lee et al. (2021), Jiang et al. (2020)

Filters’ size, Kernel Size,
Pooling Type, Connectivity

Variable

Binary Matrix Lorenzo et al. (2018), O’Neill et al. (2019; 2020) Connectivity Fixed

2.3.1.2 Grammar Encodings

Grammar Encodings are some of the most scarce representations. These approaches are based

on the theory of Grammatical Evolution (O’Neill and Ryan 2001). A CNN here is represented

using a formal grammar in Backus-Naur notation. Once this grammar is characterized, it

can be used to produce flexible networks with a wide range of changeable parameters. A

grammar is defined as a 4-tupleG = (N, T, S, P ) whereN is a non-empty set of non-terminal

symbols, T is a non-empty set of terminal symbols, S is the starting symbol and P is a set of

production rules in Backus-Naur form. A grammar allows the production of languages, i.e.,

all the possible sequences of terminal and non-terminal symbols that can be derived from the

starting symbol. A single of these languages, thus, represents a CNN instance.

Baldominos et al. (2018b) utilized this encoding approach, arguing that it avoids redundancies

found in their 69-bit strings. An example of a production rule in their encoding has the

form: < conv >::=< n_kernels >< k_size >< act_fn >< pool >, which means that a

convolutional layer is defined by a number of kernels, their sizes, the activation function, and

the pooling operation to perform. These elements are non-terminals that can also be generated

by other rules, which creates a hierarchical structure.

DENSER (Assuncao, Lourenco, Machado, et al. 2018) is arguably the leading representative

of Grammar Encodings. DENSER is composed of two levels: the genetic algorithm level,

which represents the macro-structure of the CNN as a sequence of layers, and the Dynamic

Structured Grammatical Evolution (DSGE) level, which describes the micro-structure of the

genotype. The DSGE level contains the parameters to configure the GA level. Each element
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TABLE 2.2: Summary of Grammar Encodings.

Publications Hyperparameters Length

Grammar Encoding
Baldominos et al. (2018a; 2018b), Lima et al. (2019),

Assunçao et al. (2019; 2018; 2019; 2020),
Cetto et al. (2019)

Filters’ size, No. of Filters,
Pooling Type, Kernel Size,

Stride, No. of Neurons,
Activation Function, Regularization,

Dropout, Optimizer, Padding,
Batch Norm., Connectivity

Fixed

in the GA level is used as the initial non-terminal symbol for the DSGE grammar. The authors

suggest that this representation is flexible enough to also represent other types of ANNs.

The summarized Grammar Encodings are presented in Table 2.2.

2.3.2 Direct Encodings

Direct Encodings have been widely used as shown in the specialized literature. They are

phenotype-level representations as there is no rule to transform their parts into actual CNN

hyperparameters; all the characteristics of the networks are explicitly defined in the encod-

ing. The popular utilization of these encodings have also brought a large and customized

evolutionary operators to handle these representations.

2.3.2.1 Block-chained Encodings

The Block-chained Encodings represent the CNNs using linear structures. This encoding is

composed of a sequence of blocks, which are abstractions of CNNs’ elements. Each block

is computationally characterized by a series of hyperparameters that describe the internal

elements, such as number of filters or number of neurons, depending on the type of layer. For

this reason, any linear data structure, such as the linked list, is suitable for Block-chained

Encodings.

Block-chained Encodings are sub-divided into three main categories, depending on the level of

abstraction of the blocks; low-level, medium level or high-level blocks. More abstract blocks

contain several standard CNN components arranged in a predefined way (Sun, Wang, et al.

2020). Lower abstraction blocks represent single layers only (Prellberg and Kramer 2018). It

is possible that during the search, a low-level Block-chained Encoding finds structures similar
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to those in medium- and high-level blocks. Nonetheless, the justification of using blocks of

higher abstraction lies in the efficiency of some well-known architectures, such as ResNet

(He et al. 2016) and DenseNet (Huang et al. 2017).

Low-level blocks are used to represent the simplest of the CNN components, such as con-

volutional, pooling, and fully-connected layers. Works such as in (Ahmed, Darwish, and

El-Sherbiny 2019; Dong, Juan, et al. 2018; Keshari 2017; Young, Rose, Johnston, et al. 2017)

use the lowest granularity possible, by using batch normalization, ReLU, and dropout as single

blocks. In other approaches, such as in (Fielding and Zhang 2018; Prellberg and Kramer 2018;

Rikhtegar, Pooyan, and Manzuri-Shalmani 2016), elements like batch normalization and

ReLU are integrated inside convolutional blocks. Sun et al. (2019a) employed convolutional

and pooling blocks only, disregarding fully-connected layers. Similar methods are found in

(Jalali et al. 2019; Operiano, Iba, and Pora 2020; Ren et al. 2019). Sun et al. (2019c) proposed

what can be considered as the standardize version of a low-level Block-chained Encoding,

which also includes fully-connected blocks. Fig. 2.19-a) shows an example of this encoding.

Medium-level blocks take abstraction one step further. In this type of encoding, a block

contains more than one operation or layer of the same type. This type of block helps to achieve

a higher modularity in the final architecture. Moreover, the utilization of more abstract blocks

that are linked to well-established concepts in Deep Learning, such as skip connections. On

the other hand, there is a trade-off between abstraction and expressiveness. For instance, the

hyperparameters of the elements contained by medium-level blocks are usually fixed.

Some approaches combine several layers in a feed-forward fashion into a single block. Sapra

et al. (Sapra and Pimentel 2020) defined a chain of medium-level blocks formed by a fixed

number of convolutional, pooling or fully-connected layers. Similar methods were used in

(Hajewski, Oliveira, and Xing 2020; Loni, Sinaei, et al. 2020; Loni, Zoljodi, et al. 2019; Lu,

Deb, et al. 2019). Other authors included skip connections to improve the training phase

of the CNNs, particularly the DenseBlock and the ResBlock. Both types of blocks were

combined in (Hassanzadeh, Essam, and Sarker 2020a; Sun, Wang, et al. 2020; Sun, Xue, et al.

2019b). Fig. 2.19-b) shows an example of medium-level encoding based on DenseBlocks.

Finally, other medium-level blocks contain fixed-size, fixed-structure directed acyclic graphs
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(Lu, Whalen, Dhebar, et al. 2020; Tan et al. 2020; Zhou, Zhou, et al. 2020). Real et al. (2019)

introduced the so-called normal cells and reduction cells. The former contains a graph of

layers that generates an output whose size is equal to the input. The latter, on the other hand,

reduces the output size, usually by half, with respect to the input.

High-level blocks use recently discovered structures that have advanced the performance of

human-designed CNNs. Hassanzadeh et al. (2020c) evolved a chain of four possible attention

blocks for image segmentation. Each of them contains a configurable sub-block in terms of

number of layers, number of filters and their sizes, among other characteristics. In another

encoding, a block is made of two parallel chains that merge together and split afterwards

(Zhang, Wang, et al. 2020). This representation is shown in Fig. 2.19-c). Other high-level

Block-chained Encodings were proposed in (Gottapu and Dagli 2020; Song et al. 2020; Xu

et al. 2020; Yao et al. 2020).

FIGURE 2.19: Different abstraction levels in Block-chained Encodings. a)
Low-level blocks representing simple layers (Sun, Xue, et al. 2019c). b)
Medium-level blocks represent DenseBlocks (Wang, Sun, et al. 2019a). c)
High-level blocks represents more complex arrangements of layers, similar to
those of popular hand-made CNNs (Zhang, Wang, et al. 2020).

Block-chained Encodings are organized into the three main categories and presented in

Table 2.3.
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TABLE 2.3: Summary of Block-chained Encodings.

Publications Hyperparameters Length

Low-level

Fielding & Zhang (2018),
Ahmed et al. (2019), Awad et al. (2020),

Jalali et al. (2019), Chu et al. (2020),
Wang et al. (2021), Tang et al. (2020),

Litzinger et al. (2018), Hassanzadeh et al. (2020b;2021)

No. of Filters,
Filters’ size,

Pooling Type,
Kernel Size,

Stride,
No. of Neurons,

Activation Function,
Learning Rate,

Optimizer,
Batch Size,

Connectivity

Fixed

Prellberg & Kramer (2018),
Young et al. (2017), Dahou et al. (2019),
Keshari (2017), Kwasigroch et al. (2020),
Johner et al. (2019), Fujino et al. (2019),
Loni et al. (2020), Badan et al. (2019),

Rikhtegar et al. (2016), Sun et al. (2019a; 2019c),
Ren et al. (2019), Operiano et al. (2020)
Young et al. (2015), Zhang et al. (2018),

Mitschke et al. (2018), Dahal et al. (2020)
Fernandes & Yen (2019a), Hadjiivanov & Blair (2019),

Strumberger et al. (2019),
Kotyan et al. (2020), Zhao et al. (2020), Dong et al. (2020),

Martin et al. (2017; 2018; 2020),
Vidnerova et al. (2020; 2020),

Bochinski et al. (2017), Dong et al. (2018)

Variable

Medium-level

Sapra et al. (2020), Qu et al. (2020),
Lu et al. (2019; 2020; 2020), Hajewski et al. (2020),

Chen et al. (2019), Tan et al. (2020)
Rajagopal et al. (2020),

Hasanzadeh et al. (2020a), Prandini et al. (2019)

No. of Layers,
No. of Filters,
Pooling Type,

Activation Function,
Optimizer,

Connectivity

Fixed

Loni et al. (2020; 2019), Wang et al. (2019,2019a),
Chen et al. (2021), Liu et al. (2018),
Zhu et al (2019), Real et al. (2019),

Zhou et al. (2020), Sun et al. (2020;2019b),
Fernandes & Yen (2021), Ye et al. (2020)

Variable

High-level
Yao et al. (2020), Hassanzadeh et al. (2020c),

Xu et al. (2020), Gottapu et al. (2020),
Song et al. (2020), Zhang et al. (2020)

Filters’ sizes,
Connectivity

Fixed

2.3.2.2 Graph-based Encodings

Graph-based Encodings are the non-linear variants of block-chained encodings. As in the

latter, graph-based encodings exploit the modularity of the CNNs, by abstracting the layers’

characteristics inside units similar to blocks, connected with other units in a network called

graph. Graph-based Encodings include the graph encodings and tree encodings.

A graph is a 2-tuple G = (Q,E), where Q is the non-empty set of nodes and E is the non-

empty set of edges connecting the nodes. A graph is directed if the edges point to a specific

direction. A directed graph is acyclic if it does not contain any loop. When graphs are used to

represent CNNs, highly flexible architectures can be achieved. Nonetheless, this flexibility

comes at the cost of complexity due to the following: (1) the extraction of hyperparameters

from a graph needs to be done carefully, in order to preserve the real structure of the CNN,
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(2) the evolutionary operators must be architecture-aware by, for example, avoiding the

generation of cycles in graphs, as they would not represent reliable CNN architectures.

A standard graph encoding is shown in Fig. 2.20. One example of these encodings is the one

utilized by Real et al. (2017), however they used edges as operations, e.g., convolutional or

pooling, whilst nodes are data holders, containing and concatenating feature maps coming

from the edges and applying batch normalization and ReLU.

FIGURE 2.20: A graph-based encoding, in which nodes can represent con-
volutional and pooling layers, as well as addition/concatenation of feature
maps.

The second type of Graph-based Encoding is the tree encoding, as can be seen in Fig. 2.21.

Neither directed nor undirected cycles are present in trees. Furthermore, all the nodes that

do not receive any edges are called leaf nodes, while the only node that receives edges but

does not transfer any edge is called root node. One main advantage of tree encodings is that

they can be utilized with Genetic Programming, allowing to find powerful compositions of

convolutional operators (Bi, Xue, and Zhang 2019; Evans et al. 2018; Homburg et al. 2019;

Irwin-Harris et al. 2019; McGhie, Xue, and Zhang 2020).
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TABLE 2.4: Summary of Graph-based Encodings.

Publications Hyperparameters Length

Graph

Desell (2017), Zhang et al. (2018),
Barnes et al. (2020), Real et al. (2017),
Zheng et al. (2020), Su et al. (2020),
Chen et al. (2019), Byla et al. (2019),

Witsuba et al. (2018), Maziarz et al. (2019),
Saltori et al. (2019),Yu et al. 2020,

Miikkulainen et al. (2019), Liang et al. (2019),
Fernando et al. (2016), Verbancsics et al. (2013)

Suganuma et al. (2020; 2017),
Kobayashi et al. (2020), Yuan et al. (2020)

No. of Layers, No. of Filters, Filters’ size, pooling type,
kernel size, Batch Normalization, Connectivity

Variable

Tree
Homburg et al. (2019), Harris et al. (2019),

McGhie et al. (2020), Bi et al. (2019),
Evans et al. 2018

FIGURE 2.21: A tree encoding, which is used in Genetic Programming.

In Table. 2.4, the Graph-based Encodings are summarized and organized into the two available

categories.

2.4 Hybrid Encodings

2.4.1 Hybrid Encodings

Hybrid Encodings have raised by combining ideas from the other families of encodings.

These hybrid representations are useful to distribute the different motifs of a CNN between

different structures. Also, these out of the ordinary encodings help tackling the limitations
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FIGURE 2.22: An example of the Wang encoding. The first-level encoding
consists of a block-chained sequence of DenseBlocks, whilst the second-level
encoding is a set of binary strings that determine the connectivity of each
block.

that the other representations have. For these reasons, the research towards hybrid encodings

is highly encouraged. In this category, other encodings based solely on hyperparameters and

vectors of real numbers are considered as well.

In this thesis, the hybrid encoding here called as Wang encoding is studied in detail. Wang

et al. (2019b) combined the Block-chained Encoding (first-level encoding) and the Binary

Encoding (second-level encoding). The Block-chained Encoding includes handling and

decoding facilities, making the process of building a CNN straightforward. However, these

encodings are less flexible on their own. The binary encoding is used to determine the

connectivity patterns of the layers. Here, a binary string provides for more flexibility to

medium-level blocks, while maintaining the same level of abstraction as in low-level blocks.

In the Wang encoding, a block abstracts several layers in the form of a DenseBlock; each

block is described by its number of convolutional layers and the growth rate. However, the

dense connectivity pattern inside each DenseBlock is determined by a binary string. Starting

from the third layer, a 1 corresponds to a skip connection, whereas a 0 turns off that skip

connection. This happens because the first layer receives the input only, and the second layer

can only receive the output from the first layer. This encoding allows the EA to independently

search for the characteristics of the inner layers as well as their topology. An instance of this

representation appears in Fig. 2.22.
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TABLE 2.5: Summary of Hybrid Encodings.

Publications Hyperparameters Length

Hybrid

Lu et al. (2019), Zhang et al. (2020),
Broni et al. (2020), Wang et al. (2019b),

Yang et al. (2020)
No. of Filters, Filters’ Size,

Connectivity
Variable

van Wyk & Bosman (2019), Kang et al. (2020),
Yotchon et al. (2020), Hu et al. (2020)

Fixed

Hyperparameters
Liu et al. (2019), Oh et al. (2021),

Mostafa et al. (2020), Baldeon et al. (2020,
Kobayashi et al. (2020), Javaherpi et al. (2020), Wang et al. (2021)

No. of Filters, Filters’ Sizes,
Pooling Type, Kernel Size,
Learning Rate, Optimizer,

Activation Function, Connectivity

Fixed

Other Hybrid Encodings combine other representation schemes, such as Block-chained and

Graph-based Encodings (Lu, Whalen, Boddeti, et al. 2019; Tan et al. 2020; Zhang, Jin, et al.

2020). Table 2.5 summarizes this family of encodings.

2.5 COVID-19 in Chest X-ray Images

The outbreak of the new SARS-CoV-2 originally found in China at the end of 2019 has

evolved into a worldwide public health emergency. As of August 2020, the World Health

Organization (WHO) announced more than 12 million positive cases diagnosed solely in the

Americas (World Health Organization Last accessed August 22, 2020). Unfortunately, more

than 400 thousand deceases have been registered as of the same date.

The testing process of COVID-19 is mainly based on the Reverse-Transcription Polymerase

Chain Reaction (RT-PCR) (Ai et al. 2020). As discussed in (Peto 2020), a generalized testing

around the population is of vital importance as a measure to eradicate this disease. However,

the standard testing method still needs to overcome obstacles. For instance, inadequate

and insufficient tests have been reported in abounding scenarios (Beeching, Fletcher, and

Beadsworth 2020). On the other hand, with a sensitivity between 30%–60%, a considerable

number of COVID-19 carriers could be wrongly diagnosed (Ai et al. 2020).

In response to this complicated situation, the analysis of CXR images has been explored as

a potentially faster and effective alternative testing approach. The lung damage caused by

COVID-19 is visible in CXR images, even when a negative result is obtained from a RT-PCR

test (Kanne et al. 2020), which greatly improves accuracy. Furthermore, computational tools
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can also be used to perform this alternative testing at a larger scale. Fig. 2.23 shows an

example of three X-ray images from a COVID-19 patient, a viral/bacterial pneumonia patient,

and a healthy patient.

FIGURE 2.23: Chest X-ray images of three different patients: a) A patient
with COVID-19, b) a patient with viral/bacterial pneumonia, and c) a healthy
patient. Images obtained from (Cohen et al. 2020; Mooney 2017; Wang, Wong,
et al. 2020)

CNNs have demonstrated to be competent at automating the analysis of CXR imagery (Baltr-

uschat et al. 2019). During 2020, several hand-crafted architectures, such as DarkCovidNet

(Ozturk et al. 2020), Xception + ResNetV50 (Rahimzadeh and Attar 2020), CNN + LSTM

(Islam, Islam, and Asraf 2020) have been designed or re-utilized with the aim of solving this

problem. Several of these works, such as (Oh2020; Altan and Karasu 2020; Civit-Masot et al.

2020), rely on the well-known architectures that have been tested in benchmark problems.

Multi-class image classification consists in correctly assigning a label to an image from a

pool of C different classes. For each class c, the true positives (TP ) are the images that are

correctly classified, whilst true negatives (TN ) are those images that do not belong to the

class c and that are correctly classified as such. On the other hand, false positives (FP ) are

images from other classes that are wrongly classified into the class c, and false negatives

(FN ) are the images that belong to class c but are misplaced in other classes.

The aforementioned metrics are used to compute some classification scores that provide

for valuable insights on the performance of a classification algorithm. Accuracy is the rate
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of correctly classified instances (TP and TF ) against the total of instances, as shown in

Eq. (2.12).

accuracy =
TP + TF

TP + TF + FP + FN
(2.12)

Accuracy is an overall score. Sensitivity and specificity, however, are calculated per class. The

Specificity is the rate of images that are correctly classified into class c (TP ) with respect to

the total number of images that are placed into the same class (TP and FP ), as in Eq. (2.13).

specificity =
TP

TP + FP
(2.13)

Sensitivity (or recall) is the rate of images that are correctly classified into class c (TP ) with

respect to all the images that originally belonged to that class (TP and FN ). Eq. (2.14) shows

this computation.

sensitivity =
TP

TP + FN
(2.14)

Table 2.6 shows the characteristics of the state-of-the-art on CNNs-based COVID-19 clas-

sification. The literature review focused on papers that solved the multi-class classification

of CXR images with three classes; COVID-19, pneumonia, and healthy. Each reviewed

work indicates the number of images per class, the name of the CNN architecture that was

employed, its number of trainable parameters, and the achieved classification scores, which

are sensitivity, specificity, and accuracy. Specificity and sensitivity are averaged for the three

classes.

2.6 Chapter Summary

In this chapter, the theoretical foundations of this thesis were presented. Evolutionary

Algorithms were discussed as powerful bio-inspired search and optimization methods, paying



54 2 THEORETICAL FRAMEWORK AND BACKGROUND

TABLE 2.6: State-of-the-art in COVID-19 CXR imagery multi-class classifi-
cation based on CNNs. The performance of each architecture is measured by
its number of parameter (#Params), sensitivity, specificity, and accuracy.

Authors Dataset CNN #Params Sensitivity Specificity Accuracy

Ozturk et al.
(2020)

127 (COVID-19),
500 (pneumonia),

500 (healthy)
DarkCovidNet 1.164 85.35 89.96 87.02

Ucar et al. (2020)
76 (COVID-19),

4290 (pneumonia),
1583 (healthy)

Bayes
SqueezeNet

1.263 98.25 99.13 98.26

Rahimzadeh
et al. (2020)

180 (COVID-19),
6054 (pneumonia),

8851 (healthy)

Xception +
ResNetV50

45.855 87.31 93.99 91.40

Oh et al. (2020)
180 (COVID-19),
6012 (pneumonia),

305 (healthy)
ResNet18 11 85.9 96.4 88.9

Altan et al.
(2020)

219 (COVID-19),
1345 (pneumonia),

1341 (healthy)
EfficientNet-B0 5.3 93.61 96.05 95.24

Civit-Masot et al.
(2020)

132 (COVID-19),
132 (pneumonia),

132 (healthy)
VGG-16 138 100 91.41 82.81

Dat et al. 2020
127 (COVID-19),
500 (pneumonia),

500 (healthy)
Xception 22.855 97.09 97.29 97.41

Togaçar et al.
(2020)

295 (COVID-19),
98 (pneumonia),

65 (healthy)

MobileNet V2
and

Squeeze Net
4.635 99.32 99.37 99.34

Islam et al.
(2020)

1525 (COVID-19),
1525 (pneumonia),

1525 (healthy)
CNN + LSTM 14.174 99.1 99.6 99.2

Brunese et al.
(2020)

250 (COVID-19),
2753 (other),

3520 (healthy)
VGG-16 138 96 98 98

special attention to the Genetic Algorithm. The building blocks of Convolutional Neural

Networks have been explained in order to build the notions of Deep Learning. Finally, the

concepts related to Neuroevolution were introduced, with an important emphasis on the

genetic encodings to represent Convolutional Neural Networks.

This chapter also presented a comprehensive review on the state-of-the-art on: (1) genetic

encodings for convolutional neural networks, and (2) classification of COVID-19 patients

through chest X-ray images.

As an output from this chapter, an expanded version of the literature review on encodings of

convolutional neural networks for Neuroevolution has been submitted and accepted to the

IEEE Transactions on Evolutionary Computation.



CHAPTER 3

Deep Genetic Algorithm

In this chapter, the main proposal of Neuroevolution of CNNs for CXR images is presented

under the name of Deep Genetic Algorithm (DeepGA). This chapter comprises (1) the image

dataset collection and preprocessing, (2) the algorithm design, and (3) the experimental

methodology that is followed to acquire, evaluate, and analyze the empirical results.

3.1 Image Collection and Preprocessing

A CXR image dataset has been built by collecting images from three different classes: (a)

COVID-19 patients (Cohen et al. 2020; Tabik et al. 2020; Wang, Wong, et al. 2020), (b)

viral/bacterial pneumonia patients (Cohen et al. 2020; Mooney 2017; Wang, Wong, et al.

2020), and (c) healthy patients (Mooney 2017). The dataset is balanced, meaning that the

number of images in each class is equal. A total of 2754 images has been acquired, with 918

images per class.

To improve the classification, a series of preprocessing steps were applied to the images,

based on the proposal of Oh et al. (2020), who also utilized COVID-19 CXR images for

computer vision purposes. The preprocessing consists of the following:

(1) Transforming the images to grayscale (only one channel).

(2) Casting datatype to float32.

(3) Equalizing histograms, which consists in obtaining a uniform distribution in the

pixels’ values (Gonzalez and Woods 2017). In a grayscale image, there are L

55
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FIGURE 3.1: The distribution of pixels’ values in a grayscale image a) be-
fore Histogram Equalization and b) after Histogram Equalization. After this
process, a more uniform distribution in grayscale intensities is achieved.

intensity levels, usually ranging from 0 (black) to 255 (white), being L = 256. The

probability of obtaining a pixel with the value rk is calculated with Eq. (3.1)-a):

P (rk) =
nk
n
, k = 0, 1, ..., L− 1 (3.1a)

where nk is the number of pixels with the intensity value k in grayscale, and np is the

total number of pixels in the image. Histogram equalization maps the pixel values rk

to sk, and is performed using Eq. (3.2)-a):

sk =
k∑
j=0

P (rj), k = 0, 1, ..., L− 1 (3.2a)

This procedure results in an increased contrast in the final image. Fig. 3.1 shows an

example of the distribution of pixels’ values before and after Histogram Equalization.

(4) Applying the gamma correction, which linearly transforms the pixels sin values to

sout by using Eq. (3.3):

sout = γsin (3.3)
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where γ = 0.5 for this application.

(5) Resizing the images to 256× 256 pixels.

(6) Normalizing the pixels’ values to the range [0, 1].

After the aforementioned steps, the images were ready to be used for classification during

Neuroevolution.

3.2 DeepGA

The proposed Neuroevolution algorithm is called DeepGA, as it is based on the foundations

of the standard GA. This framework comprises three main features: (1) a hybrid encoding,

(2) evolutionary operators to handle the hybrid encoding, and (3) a linear aggregating fitness

function to evaluate the individuals based on classification accuracy and their number of

parameters.

Furthermore, this chapter details the methodology to evaluate the performance of DeepGA at

classifying chest X-ray images, and to compare the proposed neural representation against

the competitor encoding (Wang, Sun, et al. 2019b). The experimental results are presented

and discussed.

3.2.1 Compact Hybrid Encoding

As discussed in Chapter 2, Wang et al. (2019b) utilized a hybrid encoding based on Dense-

Blocks and binary strings (named Wang encoding). Each DenseBlock is characterized by

its number of convolutional layers and its growth rate. A binary string determines the dense

connectivity pattern of the layers inside a block (see Fig. 2.22). DeepGA is based on this

encoding. However, the proposed approach goes one step backwards in the modularity of the

representation.

An individual with the Wang encoding might consist of several DenseBlocks, which lead to

increase the number of parameters as more blocks are added. In this thesis, a different hybrid
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FIGURE 3.2: An example of the proposed encoding. The blocks represent
simple convolutional operations instead of a set of convolutional layers. A
single binary string is required to define the dense-like connectivity patterns
between convolutional blocks.

encoding with simpler, less modular blocks is designed. The first-level encoding considers

two different blocks; convolutional blocks and fully-connected blocks. Instead of utilizing

DenseBlocks, which have several convolutional layers, a convolutional block is defined only

by one convolutional layer and one (optional) pooling operation. The second-level encoding

is a binary string that defines the connectivity between convolutional blocks. Fig. 3.2 displays

an example of this new representation.

Convolutional blocks abstract the characteristics of a convolutional layer; number of filters

and filters’ size. The convolution utilized stride of 1 and zero-padding of 1. Additionally,

these blocks can use max pooling, average pooling, or no pooling at all, depending on the

individual. Hence, the pooling is defined by the pooling type and the kernel size. ReLU and

batch normalization are always applied immediately after the convolution. Table 3.1 presents

the different values that each hyperparameter can have during the evolution.

Unlike the Wang encoding, where each DenseBlock has its own binary string, this new

encoding requires only one binary string per individual. From the third layer onward, each bit

corresponds to a received connection from a previous, non-consecutive layer. For example,

the fourth convolutional block in Fig. 3.2 may receive inputs from the first and second blocks,
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TABLE 3.1: Evolvable hyperparameters in the proposed encoding. Yellow
rows correspond to convolutional blocks, while the pink row corresponds to
the fully-connected blocks.

Values
No. of Filters {2, 4, 8, 16, 32}

Filter size {2, 3, 4, 5, 6, 7, 8}
Pooling Type {Max, Avg}
Pooling Size {2, 3, 4, 5}

No. of Neurons {4, 8, 16, 32, 64, 128}

thus two bits are required. The connection from the third block (the immediate previous

block) is always granted, therefore a bit is not required.

It is important to notice that in this encoding, the output size of each block is not equal to the

input size. This issue makes the adjustment of the spatial resolutions of incoming feature

maps from skip connections necessary to meet the dimensional requirements of the current

block’s input. Let the block n receive an input x from the immediate previous block. Given

that xk is the incoming input from the block k through a skip connection, there are three

possible scenarios, as well as three actions to take:

• The size of the current input x is smaller than the size of the incoming input xk.

Max pooling is applied to reduce the size of xk according to the size of x. The kernel

size is adaptively computed using Eq. (2.6), given that the stride is equal to 1 and no

padding is used.

• The size of the current input x is greater than the size of the incoming input xk.

Zero-padding is used on xk until both tensors’ dimensions match. This case is less

frequent than the previous one.

• The size of the current input x is equal to the size of the incoming input xk. No

operation is required, as both tensors are compatible for concatenation.

In Fig. 3.3, these three scenarios are graphically explained.

Fully-connected blocks are always placed at the end of the feature extraction section (simple

convolutional blocks or DenseBlocks), and are described by their number of neurons (see

Table 3.1). ReLU is the chosen activation function. As the CXR image classification scenario
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FIGURE 3.3: Adjustments to the spatial resolution of the feature maps trans-
ferred through skip connections (xk) in order to be concatenated with the
current input x. a) When the size of xk is greater than the size of x, max
pooling is applied on xk. b) When the size of xk is less than the size of x, zero
padding is applied on xk. c) When the size of xk is equal to the size of x, no
operation is needed.

TABLE 3.2: Evolvable hyperparameters in the Wang encoding. Yellow rows
correspond to convolutional blocks, while the pink row corresponds to the
fully-connected blocks.

Values
No. of Conv. Layers {3, 4, 5}

Growth Rate [3, 12]
No. of Neurons {4, 8, 16, 32, 64, 128}

is a three-class classification problem, a last fully-connected block with three neurons is

always added, using the softmax activation function.

The utilization of this encoding could provide for important advantages, specially in contrast

with the Wang encoding. First, utilizing a hybrid encoding allows to independently represent

CNNs’ motifs, as well as to separately manipulate them. Secondly, using simpler blocks

would imply that adding more blocks would not cause an important growth in the number

of parameters. In the Wang encoding, in turn, the addition of a DenseBlock implies the

utilization of a number of new convolutional layers, requiring new parameters accordingly.

Even when using fitness mechanisms that enforce the networks to keep a reduced size,

the Wang encoding might be biased towards larger architectures, or limited without fully

discovering a more competitive topology. The Wang encoding’s hyperparameters values can

be found in Table 3.2.
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Next, the evolutionary operators of the DeepGA are designed to cope with this new encod-

ing (and the Wang encoding), while taking advantage of the search power of the Genetic

Algorithm.

3.2.2 Evolutionary Operators

As in a standard GA, DeepGA utilizes three main operators; parents selection, crossover, and

mutation. Special versions of them are designed in order to handle the new hybrid encoding.

Furthermore, a variant of each operator is employed to manipulate the Wang encoding and

perform experimental comparisons within the same optimization framework.

Parents Selection. In Chapter 2, the deterministic and stochastic tournament selection

methods were introduced. In DeepGA, a modification on the stochastic version is proposed in

order to further encourage exploration during the search.

The purpose of an alternative parent selection algorithm relates to the possibility of choosing

a parent from the population that is not very successful, but whose potential to generate

improved offspring is latent. As the networks grow in size during evolution, it is intuitive

to expect that larger networks are going to perform better, as deeper CNNs might possess

more powerful representation capabilities. However, in order to enforce the search in a more

efficient region of the search space, smaller individuals could be useful. For this reason, we

propose to use the tournament selection shown in Algorithm 5:

Algorithm 5 Modified Stochastic Tournament Selection
Require: A population Pop, probability pt.
Output: A parent solution parent.

Randomly select s individuals for tournament from Pop.
if U(0, 1) ≤ pt then

Choose the individual with the highest fitness as parent.
else

Choose a random individual as parent.
end if

It can be seen that a probability pt of choosing the best individual needs to be set. For this

research, 0.8 is chosen. It is expected that 80% of the total number of selections is biased
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FIGURE 3.4: The crossover operation of DeepGA. a) The first-level crossover
exchanges the last m convolutional blocks and the last n fully-connected
blocks of both parents. b) The second-level encoding exchanges the last c bits
of both parents’ binary strings.

towards the best individual in a tournament, while in the remaining 20% of the cases, another

possibly less fit individual is going to be utilized for crossover. It is important to notice that

even in the second case, the best individual has a chance to be selected as well.

Crossover. The crossover operator combines two parents to generate two offspring. The

recombination must be performed in such a way that the new individuals have information

solely from their parents, without any added datum. As the hybrid encoding is formed by two

levels, the crossover in DeepGA is carried out in two parts; the first-level crossover and the

second-level crossover. This operation results in two offspring individuals.

The first-level crossover consists in exchanging a certain number of blocks between the parents.

First, the smallest parent is identified; let m be the floor function of half of the number of

convolutional blocks, and let n be the floor function of half the number of fully-connected

blocks in the same smallest parent. The first-level crossover consists in exchanging the last m

convolutional blocks between both parents, as well as their last n fully-connected blocks. The

two new offspring o1 and o2 will have the same size as the parents pa1 and pa2, respectively.

In the second-level encoding, c is the floor of the half of the bits in the smallest parent’s

binary string (second-level encoding). The last c bits of both parents are therefore exchanged.

Fig. 3.4 presents an example of the entire crossover routine.
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FIGURE 3.5: The mutation of DeepGA. When a new convolutional block is
added (red circle in the fourth position), a number of new random bits are
introduced in the new block’s corresponding position in the binary string. Each
displaced block at the right side of the new block requires one new random bit
at the matching position of its corresponding sub-string.

For the Wang encoding, a similar operation is performed. As a reminder, each DenseBlock

has its own binary string. Thus, when the block exchange is performed, the binary strings are

also exchanged between parents. It can be seen that more modular encodings can also involve

higher-level operations.

Mutation. The mutation promotes unbiased exploration through the search space, and is

applied to the offspring. In DeepGA, the mutation is also divided in two parts: (1) the

first-level mutation, which affects the blocks, and (2) and the second-level mutation, that

affects the connections. The latter part is simpler, and expresses by choosing a random bit in

the binary string of an offspring individual, and flipping its value. The former part can appear

in two possible forms: (a) restarting a block (if U1(0, 1) ≤ 0.5), which means a random

change in all the block’s hyperparameters, or (b) adding a new block (if U1(0, 1) > 0.5). In

the proposed encoding, adding a new convolutional block requires to adjust the binary string,

as shown in Fig. 3.5.
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The decision of adding a convolutional block or a fully-connected block is also dependent on

a random uniform number U2; if U2(0, 1) ≤ 0.5, a convolutional block is added; otherwise, a

fully-connected block is added. If the fully-connected block option is selected, the second-

level encoding requires no further change. The blocks addition uses randomly generated

hyperparameters.

In the Wang encoding, the same mechanism is applied. The mutation can be expressed as

restarting a block or adding a new block, depending on a random number. Furthermore, the

addition of a DenseBlock or a fully-connected block is also decided on a stochastic basis.

Again, as each DenseBlock possesses its own binary string, there does not exist the need to

make supplementary modifications when adding new blocks.

The three evolutionary operators are merged together under the GA framework of Algorithm 3.

Elitist replacement is selected, so as to preserve the best individuals as generations go by.

3.2.3 Fitness Function

As mentioned previously in this thesis, this work proposes a Neuroevolution approach that

focuses not only on maximizing classification performance, but also on designing competitive

CNNs in terms of computational efficiency. In this chapter, a single-objective alternative is

explored in order to solve the CXR classification problem.

The computational cost of training a CNN is correlated with its number of trainable parameters.

These parameters include the filter’s weights, the batch normalization variables, and the

connections’ weights. As the classification performance is measured in terms of accuracy, the

number of parameters need to be included into a new fitness function.

Let cnn represent an arbitrary instance from the proposed encoding (or the Wang encoding).

The number of parameters of this instance is NP. Given a weight value w in the range [0, 1],

the fitness function of DeepGA is computed using Eq. (3.4):

f(cnn) = (1− w) ∗ accuracy(cnn) + w ∗ MP −NP
MP

(3.4)
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where MP is an user defined parameter that corresponds to the maximum number of parameters

that are allowed without penalization. Eq. (3.4) is a weighted sum in which the accuracy

and the number of parameters play an important role. The weight w aggregates a proportion

of the difference between NP and MP with respect to the total MP. It is worth noticing that

when NP > MP, the second term of the function is negative, affecting the weighted accuracy.

On the other hand, if NP < MP, the second term is positive and improves the overall fitness.

Moreover, when MP − NP is a larger positive value, the fitness increases proportionally,

meaning that smaller CNNs are preferred. Based on preliminary experiments, the weight w

is set to 0.3, as it showed to aid at dealing with both objectives (accuracy and complexity)

successfully. The maximum allowed number of parameters MP is set to 2 million.

The survival selection based on this fitness function is performed using the µ+ λ approach

from Evolution Strategies: the population µ is merged with the offspring λ, and only the best

N individuals are selected as the new population.

This new fitness function is used to guide the search of CNN architectures that improve on

the state-of-the-art in classification of CXR images. Next, the methodology and experimental

settings to assess the performance of DeepGA are detailed.

3.3 Methodology

The purpose of the experiments in this chapter is twofold: first, they aim to test the Hypothesis

1, while measuring the performance of DeepGA in comparison to the state-of-the-art CNNs

for CXR classification (see Table 2.6). Second, the experiments aim to evaluate how a less

modular hybrid encoding behaves against a higher modular one, in terms of both accuracy

and complexity (Hypothesis 2). Both hypotheses are stated again:

• Hypothesis 1: A Genetic Algorithm with a compact neural encoding and a bi-

objective fitness approach can find Convolutional Neural Networks able to classify

lung diseases (including COVID-19) in CXR images with (a) an accuracy of 90%
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or more, (b) specificity and sensitivity values within the range of the state-of-the-

art, and (c) a lower number of parameters with respect to the previously used

architectures.

• Hypothesis 2: A hybrid encoding based on simple convolutional blocks finds and

binary connectivity patterns helps to find less complex networks with respect to a

hybrid encoding based on DenseBlocks.

DeepGA is executed 30 times using the proposed hybrid encoding, and 30 times using the

Wang encoding. In both cases, the training of the CNNs is achieved using backpropagation,

with a learning rate lr = 1× 10−4 and a batch size of 24 images. Only ten epochs of training

are used, as they are enough to evaluate the behavior of the CNNs, as suggested by Sun et al.

(2020). During the Neuroevolution, 70% of the image dataset is used for training, while the

other 30% is used for validation. The fitness function utilizes the validation accuracy only.

The best individual of each execution is reported in terms of its architecture, its fitness value,

its accuracy, and its number of parameters. Furthermore, this final CNN is used to compute

the sensitivity and specificity for each of the three classes.

In the proposed hybrid encoding, the CNNs are randomly initialized with a number of

convolutional blocks in the range [2, 5] and a number of fully-connected blocks in the range

[1, 4]. The second-level encoding is a binary string with random bits. In the Wang encoding,

the number of DenseBlocks is also initialized within the range [2, 5]; each DenseBlock is

randomly created with a number of convolutional layers in the range [3, 5], in order to have at

least one skip connection. The DenseBlocks can have a growth rate in the range [3, 12].

As DeepGA is based on the standard GA, a series of parameters are required: a population

size (N = 20), the number of generations (T = 50), the crossover rate (CXPB = 0.7), the

mutation rate (MUPB = 0.3) and the tournament size (tsize = 5). These parameters are

equal for the two encodings. These parameters were defined based on a small series of

preliminary experiments. The computational costs associated to training a large number

of CNN architectures per execution prevents the utilization of automatic parameter tuning

software such as IRACE (López-Ibáñez et al. 2016).
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The experiments were executed on the High Performance Computing (HPC) system from the

Supercomputing Laboratory of Bajio (Laboratorio de Supercómputo del Bajío, in Spanish).

These included servers with two Intel Xeon Silver 4214 processors with 12 cores each and

128 GB of RAM. Each server possesses two NVIDIA Titan RTX GPUs with 24 GB. The

framework of DeepGA was programmed using Python 3.7 and the PyTorch package for Deep

Learning.

3.4 Results and Discussion

The experimental process of DeepGA is provided for 30 samples of different metrics from

the two encodings, as discussed previously. The executions closest to the median of the

fitness function in both cases are used to generate the convergence plots (see Fig. 3.6). The

fitness function, the accuracy, and the number of parameters are plotted independently, and

the results of the two encodings are compared.

It is noticeable from Fig. 3.6 that the convergence speed of the proposed encoding seemed to

be faster, which leads DeepGA to settle at its final solution in 22 generations, while with the

Wang encoding, the settlement occurs at the 48−th generation. This could be related to an

early convergence to a local optima, however, the proposed encoding in the three plots finds

better final results in comparison to the Wang encoding, with respect to the three metrics;

fitness function, accuracy, and number of parameters.

The samples are now tested using the Kolmogorov-Smirnov (KS) Test to appraise normality in

their distributions. Table 3.3 presents the resulting p−value of each sample. With a confidence

interval of 5%, a p−value larger than 0.05 accepts the hypothesis of a sample coming from

a normal distribution, otherwise the hypothesis is rejected. In all cases, the samples did not

follow a normal distribution.

In view of the results from the KS test, a non-parametric test is used to compare the DeepGA

samples from both encodings. The Wilcoxon Rank Sum Test at 5% is chosen. This test is

useful to measure if two independent populations have equal distributions. With a p−value
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FIGURE 3.6: Convergence plots over 50 generations of the fitness function
(upper left), the Accuracy (upper right), and the number of parameters (below)
of the median executions. The proposed encoding is plotted in blue, whilst the
Wang encoding is plotted in red.

TABLE 3.3: Kolmogorov-Smirnov Test results from the samples obtained
with DeepGA using the proposed encoding (our encoding) and the Wang
encoding.

Metric p-value KS Result Metric p−value KS Result
Fitness 8.83× 10−19 Not Normal Fitness 9.15× 10−19 Not Normal

Accuracy 1.08× 10−18 Not Normal Accuracy 1.23× 10−18 Not Normal
# Params 5.31× 10−27 Not Normal # Params 5.31× 10−27 Not Normal

COVID-19
Speficity

1.51× 10−18 Not Normal
COVID-19
Speficity

9.5× 10−19 Not Normal

COVID-19
Sensitivity

5.31× 10−27 Not Normal
COVID-19
Sensitivity

5.31× 10−27 Not Normal

Pneumonia
Specificity

2.85× 10−18 Not Normal
Pneumonia
Specificity

1.21× 10−18 Not Normal

Pneumonia
Sensitivity

9.51× 10−18 Not Normal
Pneumonia
Sensitivity

1.43× 10−18 Not Normal

Healthy
Specificity

4.62× 10−18 Not Normal
Healthy

Specificity
1.12× 10−18 Not NormalO

ur
E

nc
od

in
g

Healthy
Sensitivity

1.17× 10−17 Not Normal

W
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Healthy
Sensitivity

6.5× 10−18 Not Normal
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TABLE 3.4: Mean and standard deviation values of fitness function, accuracy,
and the number of parameters (# Params), presented as (M ± S). Also, the
median values and the 25−th and 75−th percentiles. The p−values from the
Wilcoxon test (W) indicate when the proposed encoding surpassed the Wang
encoding (+), when the Wang encoding surpassed the proposed encoding (-),
or when both yield equal results (=).

Our Encoding Wang Encoding
Metric M ± S Median P25 P75 M ± S Median P25 P75 p-value W
Fitness 0.9671± 0.0037 0.9670 0.9648 0.9693 0.9619± 0.0019 0.9619 0.9606 0.9631 1.47× 10−7 +

Accuracy 0.9593± 0.0056 0.9588 0.9564 0.9625 0.9504± 0.0037 0.9504 0.9492 0.9555 1.03× 10−6 +
# Params 28944± 8974.11 30002 24049.5 32438 29770.23± 10872.72 29395.5 20858.75 35014.5 0.709 =

greater than 0.05, the null hypothesis (H0) is accepted, in which the two populations are

equal. Otherwise, the alternative hypothesis is accepted (H1), meaning that the populations’

distributions are not equal, and there are significant statistical differences. The median value

of the samples is used to determine the superiority or inferiority between them, in case of

H1 being accepted. Table 3.4 shows the means, the medians, and standard deviations of the

fitness function, the accuracy, and the number of parameters of DeepGA with both encodings.

Furthermore, the p−value from the Wilcoxon test obtained from the comparison of each

metric is also displayed.

It has been found that DeepGA with the proposed hybrid encoding obtained a better fitness

(0.9671 ± 0.0037, median: 0.9670) and accuracy performance (0.9593 ± 0.0056, median:

0.9588) than using the Wang encoding (fitness: 0.9619 ± 0.0019, median: 0.9619, and

accuracy: 0.9504± 0.0037, median: 0.9504). These results could be explained because of

one or more of the following reasons: (1) the representation power of the proposed encoding

is slightly superior, as the transfer of previous feature maps through skip connections provide

for more information during classification, (2) networks shallower depth are better at this

task, as adding more DenseBlocks implies overfitting the images distribution, (3) simply, the

search space covered by the Wang encoding was limited in terms of accuracy and overall

fitness.

On the other hand, the number of parameters (# Params) resulted equal using both encodings,

which confronts the intuition that was initially presented; a less modular encoding (our

encoding) would be less biased towards larger networks in contrast to a more modular

encoding (Wang encoding), given equal Neuroevolution settings. The experimental results
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TABLE 3.5: Mean and standard deviation (std. dev.) values of specificity and
sensitivity with respect to the three classes (COVID-19, pneumonia and healthy
patients), presented as (M ± S), as well as the median and the 25−th and
75−th percentiles. The p−values of the Wilcoxon Rank Sum Test comparing
both results from both encodings are also provided.

Our Encoding Wang Encoding
Metric M ± S Median P25 P75 Mean ± std. dev Median P25 P75 p-value Wilcoxon

COVID-19
Specificity 0.9615± 0.0074 0.964 0.9578 0.9673 0.9642± 0.0041 0.9644 0.9632 0.9658 0.6632 =

COVID-19
Sensitivity 0.965± 0.0015 0.9686 0.9607 0.9737 0.9558± 0.0096 0.9586 0.9506 0.9619 0.709 =

Pneumonia
Specificity 0.9634± 0.0143 0.968 0.9589 0.9731 0.9626± 0.0057 0.9632 0.9589 0.966 0.1503 =

Pneumonia
Sensitivity 0.9478± 0.0198 0.9529 0.9424 0.9581 0.9518± 0.0064 0.9512 0.9479 0.9562 0.9318 =

Healthy
Specificity 0.9646± 0.0154 0.9667 0.9608 0.9724 0.9627± 0.0052 0.9635 0.9599 0.9658 0.0358 +

Healthy
Sensitivity 0.8951± 0.0206 0.8977 0.8873 0.9086 0.9052± 0.0105 0.9069 0.8989 0.9112 0.0482 -

show that, for this application scenario, both encodings can satisfy the requirement of finding

compact CNNs with competitive performance equally. The Hypothesis 2 is rejected.

In the Hypothesis 1, it is argued that DeepGA is able to find CNNs capable of classifying

lung diseases in CXR images with (a) at least 90% of accuracy, (b) specificity and sensitivity

values within range of the state-of-the-art ([0.8996, 0.996] and [0.8535, 1], respectively), and

(c) a lower number of parameters with respect to the previously used architectures (minimum

value is: 1.164 millions). The obtained results are now statistically analyzed and compared

against the methods shown in Table 2.6.

First, the One-Sample Wilcoxon Rank Sum Test and the Sign Test are utilized to evaluate the

robustness of the obtained samples. These non-parametric tests use the median as the statistic

of reference (Gibbons and Chakraborti 2003). The Wilcoxon Rank Sum Test, unlike the Sign

Test, assumes that the data distribution is symmetric about its median. Both tests are chosen

to provide for more statistical confidence to this study.

The medians of the samples of DeepGA with both encodings are tested to verify if their

distributions are robust around these values. Table 3.6 shows the median values of the

accuracy, number of parameters, specificity, and sensitivity. The last two metrics are averaged

across the three classes. The p−values of the statistical tests are also introduced. It has been
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TABLE 3.6: Statistical tests of the samples of accuracy, number of parameters
(# Params), average specificity across classes, and average sensitivity across
classes. In the evaluator column, each sample is described by its median, its
Wilcoxon Rank Sum Test p−value and its Sign Test p−value.

Metric Our Encoding Wang Encoding Evaluator
0.9588 0.9504 Median

1 0.4049 WilcoxonAccuracy
0.6762 0.0223 Sign
30002 29395.5 Median

1 1 Wilcoxon# Params
0.21884 0.8199 Sign
0.9652 0.9637 Median

1 1 WilcoxonAvg.
Specificity

0.548 0.4801 Sign
0.9395 0.9392 Median

1 1 WilcoxonAvg.
Sensitivity

0.538 0.1544 Sign

demonstrated that the samples’ medians also belong to their arbitrary continuous distributions

(as p−values are larger than the confidence value of 0.05 in all cases except one).

By validating the statistical nature of the accuracy samples, it is now possible to ensure that

the accuracy of DeepGA for CXR image classification of lung diseases is higher than 90%,

both in terms of the median and the mean values. In the related state-of-the-art research,

the averaged specificity lies between the range [0.8996, 0.996] and the averaged sensitivity

lies between the range [0.8535, 1]. With the proposed encoding, the mean±std. dev. of

the averaged specificity and sensitivity values are 0.9632 ± 0.0092 and 0.9353 ± 0.0145

respectively, showing to be inside the range of performance found in the specialized literature.

The same behavior occurs using the Wang encoding, whose averaged specificity and averaged

sensitivity are 0.9632± 0.0027 and 0.9376± 0.0038, respectively.

In Fig. 3.7, the median executions’ confusion matrices of the crossvalidation process with

both encodings are shown. The confusion matrix is a useful visual resource that allows to

analyze the classification performance of an algorithm. Here, a very appealing behavior can

be observed, as most images are correctly classified. In terms of COVID-19, it can be seen

that the CNNs tend to confuse these images with those from other types of pneumonia. On

the other hand, only few images from COVID-19 patients are misclassified as healthy, which

is a highly desired feature due to the spreading factor caused by false negative patients.
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FIGURE 3.7: Confussion matrices of DeepGA with a) the proposed encoding,
and b) the Wang encoding. Both matrices are obtained from 5-fold crossval-
idation for COVID-19 (C), Healthy (H), and Pneumonia (P) patients. Rows
correspond to the true values, whilst columns correspond to the predicted
values.

Until now, the classification performance of the CNNs found by DeepGA has been validated.

The median of the number of parameters have also been tested (as seen in Table 3.6). As the

p−values for both the Wilcoxon and the Sign tests are greater than 0.05, the median number

of parameters can be effectively used as a reliable parameter. The smallest CNN among the

state-of-the-art is the DarkCovidNet (Ozturk et al. 2020), with 1.164 million parameters.

With the proposed encoding, the execution whose fitness is closer to the median value (0.967)

achieved 96% accuracy with only 32107 parameters. Using the Wang encoding, the execution

whose fitness is closer to the median (0.9619) obtained an accuracy of 95.76% and 56261

parameters. These values demonstrate how Neuroevolution can reach high performances with

minor computational costs. In Fig. 3.8, the obtained CNNs from DeepGA are plotted in terms

of their accuracy (%) and their number of parameters (in millions). It is worth noticing that

the x-axis is re-scaled to its log10 form to facilitate the analysis. DeepGA yields to CNNs

with significant performance in terms of accuracy, but with a number of parameters that is

two orders of magnitude below those networks in the state-of-the-art.

With this final results, the Hypothesis 1 is accepted under the single-objective approach.

The final architectures using both encodings were also analyzed. Fig. 3.9 displays the best
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FIGURE 3.8: The performance comparison between the median execution of
DeepGA using the proposed encoding (blue star) and the Wang encoding (red
star), against the CNNs architectures that have been reported in the literature.
Each network is a point composed of the number of parameters in millions
(x-axis in log10 scale) and the accuracy (y-axis, no scaling).

FIGURE 3.9: The best found CNN architecture with the proposed encoding
from a) the execution closest to the fitness median, and b) the execution with
the highest fitness.

CNNs architectures of the median and best executions in terms of fitness, using the proposed

encoding. Interestingly, none of these individuals required any skip connection to achieve their

performance. Furthermore, it is worth noticing that the hyperparameters of both architectures

are similar, which could supply for information about the optimality of this particular problem.
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FIGURE 3.10: The best found CNN architecture with the Wang encoding
from a) the execution closest to the fitness median, and b) the execution with
the highest fitness.

In Fig. 3.10, the best and median execution’s architectures using the Wang encoding are

shown. It is noticeable that both results differ between each other, requiring a different

number of DenseBlocks and fully-connected blocks. Also, the connectivity patterns in the

DenseBlocks are not comparable.

The compactness of the discovered CNNs provides for insights of how impactful EAs can be

in face of the challenging design of these networks for very specific problems. Neuroevolution

can reduce the burdens of designing and applying Deep Learning algorithms to niche problems

while greatly improving the performance and maintaining affordable computational costs.

3.5 Chapter Summary

In this chapter, the image collection and preprocessing procedure have been described, which

made possible the process of classification. The Deep Genetic Algorithm (DeepGA) was

proposed and detailed, as a Neuroevolution framework based on the standard GA for hybrid

encodings.

The research methodology to evaluate the performance of DeepGA using the proposed hybrid

encoding and the Wang encoding have also been presented. It has been found that the

proposed encoding is able to find CNNs with higher classification quality with respect to
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the Wang encoding. However, both encodings can discover neural architectures with the

same complexity (number of parameters). In contrast to the state-of-the-art in CXR images

classification for COVID-19, DeepGA generally equals the performance of the proposed

hand-crafted CNNs. Nonetheless, the discovered architectures highly surpassed the published

approaches in terms of complexity, which demonstrates the potential of Neuroevolution to

transform the process of designing compact convolutional neural networks.

As an output from this chapter, a conference paper was submitted and accepted to the

Workshop of Neuroevolution at Work from the ACM Genetic and Evolutionary Computation

Conference (GECCO) 2021.



CHAPTER 4

Multi-Objective Deep Genetic Algorithm

In this chapter, the multi-objective version of DeepGA is presented, under the name Multi-

Objective Deep Genetic Algorithm (MODeepGA). This framework is developed to explore a

different fitness approach for Neuroevolution of CNNs. This method is explained next, as

well as the utilized methodology to empirically test the advantages of using the proposed

encoding against the Wang encoding in a multi-objective optimization scheme.

4.1 MODeepGA

MODeepGA works under the original evolutionary operators used in DeepGA. However, the

fitness evaluation does not rely on a linear aggregating fitness function, but in the individual

objectives that are taken into account in this work.

As seen in Chapter 2, multi-objective optimization problems are tasks in which a series of

conflicting fitness functions are optimized. In this case, these two objectives are the accuracy

(equivalent to the classification error in minimization) and the number of parameters. A Pareto

Front (PF) is built with the fitness values of the individuals of a population, which is later

used to measure the quality of the search.

In MODeepGA, the population cannot be sorted with respect to any of the fitness functions

individually, but needs to be sorted in terms of non-dominance, using Algorithm 4 (see

Chapter 2). Hence, each individual is always associated with the two fitness values instead

of a single one. Those individuals that are non-dominated by each other, but dominate the

rest of the population are placed inside the first front, and the reminder is sorted again to

76
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form the second front and so on. As in DeepGA, an µ+ λ replacement approach is used; the

population µ and offspring λ are merged together, and the first µ individuals of the sorted set

are chosen to be part of the next generation’s population.

4.2 Methodology

The experiments concerning MODeepGA intend to evaluate Hypothesis 2; the proposed

encoding and the Wang encoding are compared in terms of the quality of the Pareto Fronts,

which is measured with the Hypervolume.

MODeepGA was executed 30 times with each encoding. Each CNN in the population is

trained during 10 epochs through backpropagation, with a learning rate lr = 1× 10−4 and

a batch size of 24 images. As in DeepGA, 70% of the image dataset is used for training,

while the other 30% is used for validation. The classification error on the validation set is

reported as one of the two objective functions, whilst the number of parameters is utilized as

the second objective function. The initialization of the individuals in both encodings follow

the same guidelines as in DeepGA.

The parameter configuration of MODeepGA is similar to that used in the single-objective

DeepGA; a population size N = 20 individuals, a crossover rate CXPB = 0.7, a mutation

rate MUPB = 0.3 and a tournament size tsize = 5. The number of generations, however, has

been reduced to T = 20 because of the nature of Multi-Objective optimization, in which a

number of solutions is always maintained, instead of a single solution. This variety of feasible

solutions allows to decrease the number of evaluations.

To compute the Hypervolume, the Pareto Front of each execution is first normalized, in

order to achieve an accordance of units. The classification error’s range is [0, 1], meanwhile

the range of the number of parameters is (0,∞). Each objective in each Pareto Front is

normalized so that both functions’ range is [0, 1]. Equation (2.3) in Chapter 2 is applied to the

20 solutions of each objective function to normalize the Pareto Front. Once this step has been

performed, the Nadir Point can be easily selected as Pn = (1, 1), as it represents the opposite
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TABLE 4.1: Kolmogorov-Smirnov test results from the samples of Hypervol-
ume using the proposed encoding (our encoding) and the Wang encoding.

Encoding p-value KS Result
Our Encoding 3.18× 10−17 Not Normal

Wang Encoding 3.79× 10−17 Not Normal

TABLE 4.2: Mean and standard deviation (std. dev.) of the Hypervolume,
presented as (M ±S), as well as the median, the 25−th and 75−th percentiles.
The p−value of the Wilcoxon test indicate that the proposed encoding outper-
formed the Wang encoding (+).

Our Encoding Wang Encoding
Metric M ± S Median P25 P75 M ± S Median P25 P75 p-value Wilcoxon

Hypervolume 0.9468± 0.0411 0.958 0.9302 0.9707 0.9084± 0.0608 0.92 0.8827 0.9462 0.0071 +

worst possible point in the Pareto Front, hence, it is dominated by all the other solutions.

Using Pn as the reference point, a deterministic implementation of the Hypervolume metric

computation is deployed using MATLAB (Cao 2021). Furthermore, the metric Spacing is

also computed based on the normalized fronts.

4.3 Results and Discussion

After the 30 executions of MODeepGA with the proposed encoding and the Wang encoding,

two resulting groups of Pareto Fronts were obtained. The Hypervolume and Spacing metrics

are computed for each normalized Pareto Front for each of the 30 executions with each

encoding. The Kolmogorov-Smirnov test is applied to the Hypervolume results of both

samples of 30 values. Table 4.1 shows the mean and standard deviation of the Hypervolume

with the proposed encoding and the Wang encoding, as well as the p−value of the KS test

and the resulting conclusion. It can be observed that none of the samples follow a normal

distribution.

With the knowledge of the non-parametric nature of the samples, the Wilcoxon Rank Sum

Test at 5% was applied to statistically compare the samples of both encodings based on their

mean Hypervolume and their standard deviation. These values, along with the result of the

Wilcoxon Test are presented in Table 4.2.
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TABLE 4.3: Kolmogorov-Smirnov test results from the samples of Spacing
using the proposed encoding (our encoding) and the Wang encoding.

Encoding p-value KS Result
Our Encoding 4.54× 10−7 Not Normal

Wang Encoding 4.54× 10−7 Not Normal

TABLE 4.4: Mean and standard deviation (std. dev.) of the Spacing metric,
presented as (M ±S), as well as the median, the 25−th and 75−th percentiles.
The p−value of the Wilcoxon test indicate that the Wang encoding surpassed
the proposed encoding (-).

Our Encoding Wang Encoding
Metric M ± S Median P25 P75 M ± S Median P25 P75 p-value Wilcoxon
Spacing 0.0517± 0.2817 2.03× 10−8 1.09× 10−9 0.0004 0.0001± 0.0003 2.98× 10−6 3.71× 10−8 7.19× 10−5 4.77× 10−11 -

FIGURE 4.1: The Pareto Front of the best execution of MODeepGA with the
proposed encoding. Also, the best and median executions from DeepGA (red
and blue star, respectively).

The Kolmogorov-Smirnov test at 5% is now applied to the 30 Spacing samples from both en-

codings. The results shown in Table 4.3 demonstrate that the two samples are non parametric.

The Wilcoxon Rank Sum test at 5% is computed using the samples from both encodings

in order to statistically verify significant differences in performance. Table 4.4 shows the

resulting p−value from the test, showing that MODeepGA with the Wang encoding achieves

an overall higher diversity in the final Pareto Fronts.

The best execution of MODeepGA with the proposed encoding obtained a Hypervolume of 1,

and its Pareto Front is illustrated in Fig. 4.1.
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FIGURE 4.2: The Pareto Front of the best execution of MODeepGA with the
Wang encoding. Also, the best and median executions from DeepGA (red and
blue star, respectively).

With the Wang encoding, the best execution of MODeepGA obtained a Hypervolume of

0.994, and its resulting Pareto Front is shown in Fig. 4.2.

The Pareto Front offers a range of solutions with different trade-offs of the objective functions.

In a practical setting, however, a single architecture must be chosen to be deployed. To solve

this issue, a technique of Multi-Criteria Decision Making (MCDM) can be utilized (Chiu,

Yen, and Juan 2016). The main task of MCDM is to design a so-called decision maker able

to choose an option out of a set of candidates by taking different criteria or objectives in

consideration. As a problem that is closely related to Multi-Objective Optimization, MCDM

is here introduced to select one CNN architecture from the final Pareto Fronts.

For this case study, a knee-based decision making approach is utilized. A knee-based solution

has the following characteristics, based on Chiu et al. (2016):

• Geometrically, it is placed in the knee-region of a Pareto Front, i.e., where the front

bends (see Fig. 4.3).

• While moving through the knee region, a knee solution can improve one objective

significantly without degrading the others.
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FIGURE 4.3: An example of the solutions that are in the knee region of a
Pareto Front.

As has been shown by the aforementioned authors, a knee solution can be found by choosing

an individual that minimizes the distance to an ideal point. The ideal point may be defined

by the optimization problem if it is known, or can be proposed similarly as in the case of

computing the Hypervolume. In this thesis, the ideal point corresponds to P = (0, 0) if the

Pareto Fronts are normalized.

For ease of selection by a human user, an MCDM method called Knee and Boundary

Selection is utilized (Jr. and Yen 2021). This technique returns not only the solution closest

to the knee of a Pareto Front, but also two more solutions that have the best advantage in

terms of the two objectives. In this method, the knee solution corresponds to the individual

xknee = arg min
x∈PF

dist(x, P ), where PF is the normalized Pareto Front, and dist corresponds

to the Euclidean distance. The boundary light solution is the individual with the smallest

classification error in the front, i.e., xlight = arg min
x∈PF

f1(x). The boundary heavy solution is the

individual with the smallest number of parameters in the front, i.e., xheavy = arg min
x∈PF

f2(x).

The search for the knee, the boundary light, and the boundary heavy solutions were performed

based on the best execution of MODeepGA with both encodings, based on the Hypervolume.

Table 4.5 shows the objective values of the different architectures from both encodings.

The selected architectures from the proposed encoding are shown in Fig. 4.4. It is worth

noticing that there is not an important difference between the classification error of the knee

and the boundary light solutions. In favor of reducing the number of parameters, a short

percentage of accuracy can be sacrificed if needed (maintaining at least 95%).
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TABLE 4.5: The objective values of the CNN architectures corresponding
to the knee solution, the boundary light solution, and the boundary heavy
solution, obtained by the Multi-Criteria Decision Making system.

Knee Boundary Light Boundary Heavy
Encoding Error No. Params Error No. Params Error No. Params

Ours 0.0459 226479 0.0411 113991 0.1076 13267
Wang 0.0411 131355 0.0411 2970585 0.0870 13139

FIGURE 4.4: The three selected encodings obtained by the Knee and Bound-
ary Selection method from the proposed encoding. a) Knee solution, b)
Boundary Light Solution, and c Boundary Heavy Solution.

FIGURE 4.5: The three selected encodings obtained by the Knee and Bound-
ary Selection method from the Wang encoding. a) Knee solution, b) Boundary
Light Solution, and c Boundary Heavy Solution. Each circle represents a
convolutional layer, whose inner circle corresponds to the number of filters
(growth rate).

The selected architectures from the Wang encoding are presented in Fig. 4.5. In this case, the

knee and boundary light solutions achieved an equal classification error, However, the number

of parameters is considerably smaller in the knee solution, thus its selection is encouraged.
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4.3.1 Further Studies

Although both, DeepGA and MODeepGA have demonstrated to be competitive at the search of

efficient CNN architectures, an important question still arises: Is Multi-Objective Optimization

required to solve this problem?. The rationale behind this questioning is related to the

available computational resources. Evolutionary Multi-Objective optimization is more costly

in algorithmic terms than its Single-Objective analogous. In MODeepGA, this condition is

particularly easy to perceive as the population holds individuals with higher complexity (and,

overall, more complex to train) who still represent a competent trade-off between objectives.

This issue also contributed to the constrain of 20 generations in MODeepGA.

MODeepGA comes with the benefit of having a set of solutions from which a user can

choose. However, it is important to determine if this benefit surpasses the computational

costs hindrance, in contrast to the results obtained with DeepGA. For this section, a series of

experiments were carried out in order to provide evidence that helps to provide a conclusion

to this concern:

(1) Experiment 1: Continuing the best execution until the 50th generation.

(2) Experiment 2: Introducing the best solution of DeepGA into the final population of

MODeepGA.

(3) Experiment 3: Increasing the size of last population of MODeepGA.

Firstly, the Single-Objective solutions of DeepGA were compared with those from MOD-

eepGA. The non-dominance criterion is used to determine if the solutions in the final Pareto

Fronts are better than those from DeepGA. If MODeepGA consistently finds architectures

whose trade-off between accuracy and complexity surpasses those in DeepGA with fewer

generations, then the drawn conclusion would be in favor of Multi-Objective Neuroevolution

for this instance.

The best solution from the best execution of DeepGA in terms of fitness is utilized as

baseline for comparison purposes. In addition, the median solution is also included as it

represents a result that is closer to what would be expected after a random execution. The
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TABLE 4.6: Dominance relations between the best and median executions of
DeepGA with both encodings, with the 600 solutions from the 30 executions
of MODeepGA.

Encoding Execution Dominated Dominator Equivalent
Best 0% 69.66% 30.33%Ours Median 0.66% 5.5% 87.33%
Best 0% 49.16% 50.83%Wang Median 0.16% 3.5% 99%

dominance criterion (see Algorithm 4) compares each of the solutions in the 30 Pareto

Fronts from the executions of MODeepGA with the previously mentioned single-objective

solutions. From a total of 600 multi-objetive solutions, Table 4.6 shows statistical results of

these comparisons. For this and the following tables, the notation consists of the following:

Dominated when the single-objective solution is dominated by a multi-objective solution

(MODeepGA), Dominator when the single-objective solution dominates a multi-objective

solution, and Equivalent when there does not exist dominance between single- and multi-

objective solutions.

It can be seen that most multi-objective solutions are dominated by the best executions of

DeepGA with both encodings (69.66% and 49.16%, respectively). This behavior changes

considerably in terms of the median solution, where most of the multi-objective solutions

achieved an equivalence. This phenomenon occurs because, as expected, the median exe-

cution obtained a fitness value of less quality than the best execution, thus it was easier for

MODeepGA to equal this result. Fig. 4.1 and Fig. 4.2 shows that single-objective solutions

are in a more competitive position than their multi-objective counterparts (see Fig. 2.4 in

Chapter 2), as single-objective solutions outperforms several multi-objective solutions in

terms of at least one of both objective functions, and are equivalent in the other objective

function, which corresponds to the dominance criterion.

4.3.1.1 Experiment 1: evolving beyond 20 generations

The current status of the experimental phase of MODeepGA allowed to explore possible

configurations that could explore the performance of multi-objective optimization for this

problem instance. The first of these configurations consisted in continuing an execution until
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TABLE 4.7: Dominance relations between the best and median executions of
DeepGA with the 20 solutions from MODeepGA after 50 generations.

Execution Dominated Dominator Equivalent
Best 0 (0%) 14 (70%) 6 (30%)

Median 1 (5%) 0 (0%) 19 (95%)

FIGURE 4.6: The Pareto Front obtained from MODeepGA after 50 genera-
tions. Also, the best and median executions from DeepGA (red and blue star,
respectively).

the 50th generation, to equal the exact number of evaluations performed by DeepGA. The best

execution of DeepGA is selected for this experiment, and the resulting dominance relations

are shown in Table 4.7. Only the proposed encoding is employed for this experiment.

As in the previous analysis, the best solution of DeepGA dominates most of the solutions from

MODeepGA. Multi-objective solutions equal the median solution of DeepGA in most cases.

The new Pareto Front from the execution with 50 generations is shown in Fig. 4.6, which

also demonstrates that single-objective solutions appear to be in an overall more competitive

position.

The original Pareto Front from the best execution of MODeepGA was also plotted together

with the new Pareto Front, in order to observe significant changes in the distribution of the

solutions. As seen in Fig. 4.7, the new Pareto Front starts to align horizontally, meanwhile the

diversity of solutions lie in the number of parameters. This unexpected behavior suggests the
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FIGURE 4.7: The Pareto Front from the best execution of MODeepGA with
the original 20 generations (green), and the Pareto Front from the same execu-
tion continued until the 50−th generation (purple).

possibility of performing a single-objective optimization process on the number of parameters

while using the accuracy or classification error as a constraint.

4.3.1.2 Experiment 2: migration of the best DeepGA solution to the MODeepGA

population

The next experiment consisted in exploring an experimental setting that could potentially

provide for better Pareto Fronts. In this case, the best execution of MODeepGA is utilized;

(1) the best solution of DeepGA is introduced to the final population of MODeepGA, (2) the

first 10 individuals from the final population of MODeepGA are kept, and (3) the remaining

9 individuals (to form N = 20) are randomly generated. Through this method, a higher

selection pressure is expected, as a new solution that outperforms all the others has been

introduced to the population. The random initialization would help to ensure diversity during

search. This experiments was conducted using the proposed encoding for 10 more generations.

Table 4.8 presents the dominance relations of this new execution (20 + 10 generations).

Contrary to what was originally expected, this new experiment did not achieve an improvement

in the final Pareto Fronts with respect to the single-objective solutions. An improvement is
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TABLE 4.8: Dominance relations between the best and median executions
of DeepGA with the 20 solutions from MODeepGA after the original 20
generations, and with the new execution with the addition of the best DeepGA
solution (20 + 10 generations).

Version Execution Dominated Dominator Equivalent

20 generations Best 0 (0%) 4 (20%) 16 (80%)
Median 1 (5%) 19 (95%) 0 (0%)

20 + 10 generations Best 0 (0%) 12 (60%) 8 (40%)
Median 8 (40%) 12 (60%) 0 (0%)

FIGURE 4.8: Pareto Front from MODeepGA with the introduction of the best
solution of DeepGA into the population (20 + 10 generations). Also, the best
and median executions from DeepGA (red and blue star, respectively).

perceived, however, with respect to the median execution of DeepGA, where more multi-

objective solutions achieved to dominate it.

The resulting Pareto Front from this experiment appears in Fig. 4.8. The single-objective

solutions have not been surpassed by the Pareto Front yet. It can be also seen that the

best solution of DeepGA is still part of the multi-objective population, implying that an

improvement has not been achieved.

The original Pareto Front and the newly obtained Paret Front are plotted together in Fig. 4.9

to visually analyze the evolution of the optimization process.
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FIGURE 4.9: The Pareto Front from the best execution of MODeepGA with
the original 20 generations (purple), and the Pareto Front from the same
execution continued for 50 more generations with the best solution of DeepGA
added to the population (green).

TABLE 4.9: Spacing and Hypervolume of the original best execution of
MODeepGA (20 generations), and with the addition of the best solution of
DeepGA (20 + 10 generations).

Version Spacing Hypervolume
20 generations 0.001327 1

20 +10 generations 0.000515 0.998

The distribution of the solutions in both fronts in Fig. 4.9 is considerably different. For this

reason, Spacing is employed to compare both sets of solutions in terms of their spread. The

Hypervolume is also computed. These results are shown in Table 4.9.

The difference of the Hypervolume values between experiments is negligible. Nonetheless,

the Spacing metric ranges considerably. In fact, the new experiments outperform the original

execution of MODeepGA by one order of magnitude. This indicates that the addition of the

best single-objective solution favors an increase of diversity, but it is not enough to improve

optimality.
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TABLE 4.10: Dominance relations between the best and median executions
of DeepGA with the 50 individuals of the Pareto Front of the execution with
increased population (N = 50) of MODeepGA (20 + 2 generations).

Version Execution Dominated Dominator Equivalent

20 + 2 generations Best 0 (0%) 7 (14%) 43 (86%)
Median 2 (4%) 44 (88%) 4 (8%)

TABLE 4.11: Dominance relations between the best and median executions
of DeepGA with the 20 individuals of the best execution of MODeepGA (20
generations), and the first 20 individuals of the execution with an increased
population (N = 50) (20 + 2 generations).

Version Execution Dominated Dominator Equivalent

20 generations Best 0 (0%) 4 (20%) 16 (80%)
Median 1 (5%) 19 (95%) 0 (0%)

20 + 2 generations Best 0 (0%) 7 (14%) 43 (86%)
Median 2 (4%) 44 (88%) 4 (8%)

4.3.1.3 Experiment 3: Increasing the population size towards better diversity

Another possible configuration is the increase of the population size, with a way of increasing

diversity, and consequently, improve the optimality of the Pareto Front. A new experiment

was performed based on the best execution of MODeepGA. The final population after 20

generations is increased with 30 more individuals (making a total of N = 50). The execution

is continued for two more generations. As in the previous phases, the dominance relations are

shown in Table 4.10.

The dominance with respect to the single-objective solutions is not encouraging. To fairly

compare these new results to those obtained with the original execution of MODeepGA, only

the first 20 solutions out of 50 are used to calculate the domination relations, as shown in

Table 4.11.

There is no clear difference between both experiments, as the number of multi-objective

solutions dominated by single-objective ones remain mostly unchanged in both encodings.

With the best execution, a very small change can be appreciated. These quantitative results

indicate that increasing the population size does not improve the performance in a small

number of evaluations. It is worth noticing that increasing the number of generations of this
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FIGURE 4.10: Pareto Front from MODeepGA with an increased population
of 50 individuals. Also, the best and median executions from DeepGA (red
and blue star, respectively).

new configuration would increase the number of evaluations by a 375%. In fact, it would be

less expensive to run the original version of MODeepGA for 50 generations instead of 20.

The new Pareto Front is shown in Fig. 4.10. As in previous plots, the best and median

executions of DeepGA occupy a more competitive position with respect to the solutions in

the front.

For a fair visual comparison with the original execution of DeepGA, the first 20 individuals

of this new experiment have been plotted along with the original front in Fig. 4.11. A

considerable number of solutions are the same in both fronts, which further supports that this

approach did not improve the optimality of the final solutions.

Finally, Spacing and Hypervolume are computed to evaluate the new front and to compare

these results with the original execution of MODeepGA. Table 4.12 shows that the variation
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FIGURE 4.11: The Pareto Front from the best execution of MODeepGA
with the original 20 generations (purple), and the Pareto Front from the same
execution continued for 2 more generations with 30 new solutions in the
population (green).

TABLE 4.12: Spacing and Hypervolume of the original best execution of
MODeepGA (20 generations), and with the addition of the best solution of
DeepGA (20 + 2 generations).

Version Spacing Hypervolume
20 generations 0.001327 1

20 + 2 generations 7.59×10−9 0.992

in the Hypervolume values is not considerable. On the other hand, Spacing improves by

several orders of magnitude.

The experiments that have been performed so far demonstrate that it is hard to improve

the distribution of solutions, although the optimality of the Pareto Fronts remains mostly

unchanged in comparison to the original execution of MODeepGA. In theory, utilizing

DeepGA is more promising towards obtaining better trade-offs in terms of both accuracy and

the number of parameters. In practice, however, MODeepGA has the advantage of being less
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computational expensive, with only 220 evaluations, whilst DeepGA requires 520 evaluations.

Competitive solutions can still be achieved through MODeepGA.

The variation of the classification error in MODeepGA is in the range [0.0412, 0.3543] with

the proposed encoding, and in the range [0.0412, 0.0907] with the Wang encoding. The

number of parameters variation with the proposed encoding is in the interval [0.0132, 30.25]

millions, whilst with the Wang encoding is in the interval [0.0131, 2.97] millions. The Pareto

Front from 50 generations of MODeepGA (Fig. 4.7) also shows that the variation of the

classification error across solutions is small compared to that of the number of parameters.

With this information, it is possible to establish this instance as a constrained optimization

problem, as stated in Eq. (4.1b):

min
cnn

NP (cnn) (4.1a)

subject to error(cnn) ≤ 0.05, (4.1b)

where cnn is an arbitrary CNN architecture, NP is the objective function of the number of

parameters, and error is the classification error as a constraint function. An error of 0.05

corresponds to an accuracy of 95%, which would be a competitive performance that could be

of great help in the fight against COVID-19.

4.4 Chapter Summary

In this chapter, the Multi-Objective version of DeepGA has been introduced and discussed

(MODeepGA). A series of 60 experiments, similar to those in the previous chapter, have

been carried out in order to assess the advantages of using the proposed encoding or the

Wang encoding. Multi-objective evaluation metrics, such as Hypervolume and Spacing,

have been employed to measure the quality of the solutions. Furthermore, a Multi-Criteria

Decision Making approach has been adopted to choose specific architectures from the set of
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Pareto optimal solutions. MODeepGA has also been applied to the CXR image classification

problem in search of lung diseases.

The experimental results, along with statistical tests, demonstrate that the proposed encoding

helps producing a better Hypervolume performance in the final Pareto Fronts than the Wang

encoding. In terms of Spacing, on the other hand, the Wang encoding discovered Pareto

Fronts with a better distribution. In comparison with DeepGA, the best solution from the 30

executions of MODeepGA did not outperform the best single-objective solution. For this

reason, three additional experiments were executed in order to verify how useful is to utilize

Multi-Objective optimization to this particular problem instance. It has been empirically

found that there is no competitive advantage of MODeepGA over DeepGA (when the total

number of evaluations is the same), but in practice, it can be an appealing approach as

fewer evaluations were required. Moreover, this problem can be formalized as a constrained

optimization problem.

Part of the results obtained in this chapter were included into the conference paper at the

Workshop of Neuroevolution at Work of the ACM Genetic and Evolutionary Computation

Conference (GECCO) 2021. The further studies that were included in this chapter were

performed under the supervision of Dr. Carlos Artemio Coello Coello, during a six-weeks

research stay at the Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN).



CHAPTER 5

Conclusions

In this thesis, the automatic design of Convolutional Neural Networks architectures has been

explored by means of Evolutionary Computation. As studied and reviewed in Chapter 2, Evo-

lutionary and Swarm Intelligence algorithms are feasible methods to perform the architecture

search of CNNs through optimization.

The encoding, which is the computational representation of available solutions in the search

space, is of general interest in the field of Evolutionary Computation. Particularly, the design

of encodings plays a very important role in the development of bio-inspired algorithms. This

condition still holds for Neuroevolution, in which neural encodings determine not only the

size of the search space, but also the nature of the potential architectures to be discovered. In

spite of the importance of this aspect, the study of neural encodings has received almost no

attention from the community, even though its meaningfulness has been clearly stated.

In this study, a specific type of neural encoding, called hybrid encodings, has been analyzed.

Hybrid encodings combine elements from other encoding families, aiming to distribute the

representation of CNNs among different sub-structures, and thus improving the search. Hy-

brid encodings have emerged in the recent literature on Neuroevolution, but little experimental

evidence exists on their advantages and disadvantages. One notably important characteristic

is the implicit complexity that certain encodings might have. This concern is important as: (a)

some encodings might entail larger and more complex search spaces, which could hamper

the performance of the search, (b) some encodings could be naturally biased towards neural

architectures that are more costly than others, in terms of number of trainable parameters. Al-

though Multi-Objective Neuroevolution has been tailored to find trade-offs between accuracy

94
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and complexity (in image classification), it is still not clear how certain encodings benefit or

affect the search.

To start with the analysis of neural encodings, a Neuroevolution framework, namely, DeepGA,

has been proposed, which includes the following characteristics: (1) it is based on the Genetic

Algorithm, and does not contain special components that could obscure the impact of the

encoding, (2) it is able to utilize two different hybrid encodings based on blocks at the

first level, and binary strings at the second level, and (3) it is adaptable to single-objective

optimization with a linear aggregating function based on the accuracy and the number of

parameters, and to multi-objective optimization, using both objectives simultaneously. As it

has been mentioned, the main interest has been placed on the encodings for CNNs.

The proposed encoding consists on a less modular version of the so-called Wang encoding.

The Wang encoding uses DenseBlocks, which are modules that contain several convolutional

layers, in which their connectivity is determined by a binary string. The binary strings dictate

how to perform the skip connections required to build a DenseNet-like architecture. The

proposed encoding is similar in that a binary string represents the same connectivity patterns.

However, simple blocks consisting on individual convolutional layers are used. The main

rationale of this decision is that using DenseBlocks, which carry more layers and thus more

parameters, biases the search towards more complex architectures.

The classification of lung conditions in chest X-ray images has been utilized as a case study to

evaluate the impact of both encodings. As the application of CNNs becomes more pervasive in

different settings, such as hospitals, designing more efficient and less costly models becomes

more important. In view of the unlikely availability of high-performance computing hardware,

e.g., GPUs, in hospitals and other medical backgrounds, more compact CNNs would be of

an important benefit. Although several approaches to classify lung conditions, including

COVID-19, have been published, these models rely on an excessive number of parameters.

Based on a series of experiments based on single- and multi-objective optimization, it has

been found that, for this problem instance, both encodings yield similar numerical results, yet

with statistically significant differences. In single-objective DeepGA, the proposed encoding
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achieved a higher fitness function, which is due to a better accuracy. However, in terms

of number of parameters, there was not a significant difference between encodings. In

multi-objective DeepGA, the comparison was based on two specific performance measures;

Hypervolume and Spacing. In terms of Hypervolume, the proposed encoding obtained a better

position in the optimality of the Pareto Fronts (0.9468 ± 0.0411 against 0.9084 ± 0.0608,

where a higher value corresponds to a better optimality), whilst in terms of Spacing, a better

distribution was obtained with the Wang encoding (0.0517± 0.2817 against 0.0001± 0.0003,

where a smaller value corresponds to a better diversity).

The multi-objective version of DeepGA was further explored in order to better understand

how the architecture search becomes more competitive when more than one objective function

is introduced. After a series of experiments, it was determined that this problem does not

improve with multi-objective optimization. Moreover, it has been found that a possible

problem statement can be a constrained optimization problem, in which the number of

parameters becomes the main objective, and the accuracy is used as a quality constraint. Due

to the no free lunch theorems, it is expected that the obtained results of this thesis extrapolate

differently to other application problems. For this reason, further experiments are required

and encouraged to extend the scope of DeepGA and to better understand hybrid encodings.

Future Work

As a future outlook of this research, more experiments as well a new proposals are encouraged.

In the first place, DeepGA and MODeepGA are to be applied using benchmark datasets such

as CIFAR-10, CIFAR-100, and Fashion-MNIST, and MNIST. The efficiency of DeepGA in a

niche problem scenario has been demonstrated, thus, extending these results to larger-scale

problems is the following step.

As mentioned before, the multi-objective version of DeepGA did not show a clear advantage

over the single-objective version. Some possible additions to the framework are encouraged

in order to better exploit the capabilities of Multi-Objective Optimization. First, an improved
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sorting mechanism is to be included. In the Nondominated Sorting Genetic Algorithm (NSGA-

II) (Deb et al. 2002), the population is sorted not only in terms of dominance, but also with

respect to diversity. This mechanisms provides the means to ensure that the solutions are

sufficiently apart from each other. Introducing this approach, would in essence transform

DeepGA into an instance of NSGA-II for Neuroevolution of CNNs.

Secondly, a third objective function can be added, which could drive the Pareto Fronts towards

better regions of the function space. To this end, it is also required to ask which other aspect

of a CNN can be optimized?. The accuracy and the complexity of the networks have already

been considered. Some other authors include objective functions such as the inference time

or the number of floating point operations. Unfortunately, these objectives are closely related

to the number of parameters of the CNNs. Another highly important aspect of CNNs has not

been explored before; Explainability.

Explainability is a young field within Machine Learning, which deals with designing mecha-

nisms through which the inference of Neural Networks can be understood by humans (Tjoa

and Guan 2020). Defining novel ways in which the Explainability of a CNN could be quanti-

tatively measured is a next step of this research. Furthermore, if Explainability emerges from

certain architectures, it is hypothesized that it could also emerge from evolution. To the best

of the author’s knowledge, the only work of Neuroevolution of CNNs that has slightly dealt

with Explainability is (Kobayashi and Nagao 2020). However, in that work Explainability was

not introduced as an objective function, nor the framework was Multi-Objective Optimization.

This path is an open door towards what could be very important innovations.

In the third place, it is expected that this thesis motivates the further study of other neural

encodings, including different configurations of hybrid encodings. As no other formal study

that evaluates the impact of encodings exists, further experiments would provide a very

important insight to the field of Neuroevolution. Moreover, the design of novel out of

the ordinary encodings is highly encouraged. Some interesting questions about encodings

still remain; How does modularity emerges more easily from certain encodings? Could

this emergence be controlled? What are the foundational relationships withing encodings?

Are different encodings instances from one generalized representation for CNNs? It has
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been discussed by Zador (2019) how the genome of mammals has a representation power

fairly small in comparison to the number of neural wiring connections it encodes. Thus,

more research in the field of Indirect Encodings is also encouraged in order to discover

computational methods able to encode larger CNNs with less resources.

The encoding is the first and most important element in the design of an Evolutionary

Algorithm. The evolution of computational brains is not the exception. Thus, there are hopes

that the study on neural encodings bring important discoveries for years to come, not only in

Neuroevolution, but also in the field of Deep Learning.
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