
Evolution of Generative Adversarial
Networks for the Synthesis of Biomedical

Images

JUAN ANTONIO RODRÍGUEZ DE LA CRUZ

Biotechnology Engineer

Director: Dr. Héctor Gabriel Acosta Mesa
Co-Director: Dr. Efrén Mezura Montes

A thesis submitted in fulfilment of
the requirements for the degree of
Master in Artificial Intelligence

Artificial Intelligence Research Institute
University of Veracruz

Xalapa-Enríquez, Veracruz, México

June 2021

Abstract

The use of biomedical images for the training of various Deep Learning (DL) systems

oriented to health has reported a competitive performance. However, DL needs a large num-

ber of images for a correct generalization and, particularly in the case of biomedical images,

these can be scarce. Generative Adversarial Networks (GANs) as Data Augmenting tools

have reaped significant results to improve performance in tasks that involve the use of this

kind of images. However, the architectural design of these generative models in the biomed-

ical image area has been usually relegated to the expertise of researchers. Moreover, GANs

are affected by training instability that may lead to poor quality results. One solution to these

problems is neuroevolution, the use of evolutionary computation to create neural networks.

This thesis presents two versions of a neuroevolution algorithm based on Particle Swarm Op-

timization for the design and training of GANs for the generation of biomedical Chest X-Ray

(CXR) images. The proposed approach allows having a swarm of GANs topologies, where

each one of them grows progressively while being trained at the same time. The fitness value

is based on the Frechet Inception Distance (FID), a metric designed to measure the similarity

in quality and diversity between sets of real and synthetic images. The proposed algorithm

is able to obtain better FID results compared to handcrafted GANs for the synthesis of CXR

images. It also allows to improve classification tasks through the use of synthetic images.

ii

Acknowledgements

To the Mexican National Council of Science and Technology (CONACyT) for support-

ing me, with CVU number 1001447, through a scholarship to pursue postgraduate studies in

the master’s degree in Artificial Intelligence.

To the University of Veracruz (UV).

To the Artificial Intelligence Research Institute (IIIA).

To the Research Group on Computer Vision, Neural Networks, Evolutionary Computa-

tion and their Applications (COVNNEC-App) of which I have the honor to be a part.

To the UNAM-CViCom-COVID-19 system and the proyect PAPIIT IV100420 for sup-

porting with the experimentation carried out.

To Ph.D. Héctor Gabriel Acosta Mesa and Ph.D. Efrén Mezura Montes for their support

in conducting this research.

To Ph.D. Fernando Arámbula Cosío for their support in the research stay at IIMAS-

UNAM.

To my family.

To Xitlali.

iii

Contents

Abstract ii

Acknowledgements iii

Contents iv

List of Figures ix

List of Tables xiii

Chapter 1 Introduction 1

1.1 Overview . 1

1.1.1 Deep Learning and Biomedical Imaging . 1

1.1.2 Data Augmentation . 2

1.1.3 Generative Adversarial Networks . 3

1.1.4 Evolutionary Computing and GANs . 4

1.1.5 Case Study: Chest X-ray Images. 4

1.2 Problem Definition . 5

1.3 Research Proposal . 6

1.4 Justification . 6

1.5 Hypothesis . 8

1.6 Overall Objective . 8

1.7 Specific Objectives . 8

1.8 Contributions. 9

1.9 Thesis Content . 10

Chapter 2 Theoretical Framework 11

2.1 Artificial Neural Networks . 11
iv

CONTENTS v

2.1.1 Perceptron, Multi-Layer Perceptrons and Deep Learning. 11

2.1.2 Activation Functions . 13

2.1.3 Loss Functions . 18

2.2 Convolutional Neural Networks . 20

2.2.1 Convolutional Layer . 21

2.2.1 Filters . 22

2.2.2 Convolution Operation . 23

2.2.3 Stride . 24

2.2.4 Padding . 25

2.2.5 Output Size . 25

2.2.2 Pooling Layer . 26

2.2.3 Activation Layers . 27

2.2.4 Fully Connected Layer . 27

2.2.5 Batch Normalization Layer . 28

2.2.6 Transposed Convolutional Layer . 29

2.3 Generative Adversarial Networks . 31

2.3.1 GANs Structure . 31

2.3.2 GANs Training . 32

2.3.3 GANs Shortcomings . 34

2.4 Architectures and Implementations to Improve GANs . 35

2.4.1 Deep Convolutional Generative Adversarial Network. 35

2.4.2 Conditional GANs . 37

2.4.1 cDCGANs . 38

2.4.3 Wasserstein-GAN . 40

2.4.4 Weight and Spectral Normalization . 41

2.5 Fréchet Inception Distance . 42

2.6 Evolutionary Computing . 43

2.6.1 Swarm Intelligence . 45

2.6.2 Particle Swarm Optimization . 47

2.6.3 Neuroevolution . 49

vi CONTENTS

2.7 Biomedical Imaging and Data Augmentation . 50

2.8 Chest X-ray Images . 52

2.9 Chapter Summary . 54

Chapter 3 Literature Review 55

3.1 Progressive Augmentation of GANs . 55

3.1.1 Pro-GAN . 56

3.2 GANs Neuroevolution . 58

3.3 CXR Synthesis with GANs . 61

3.4 Chapter Summary . 63

Chapter 4 Proposed Algorithm 64

4.1 DCGAN-PSO . 64

4.1.1 Base Works . 65

4.1.2 Pseudocode of DCGAN-PSO . 66

4.1.3 Encoding-Scheme . 66

4.1.4 Difference Between Particles . 68

4.1.5 Velocity Operator . 70

4.1.6 Position Operator . 71

4.1.7 Fitness Function . 71

4.1.8 Progressive Growth . 72

4.1.9 Swarm Initialization . 73

4.2 cDCGAN-PSO . 75

4.2.1 cDCGAN-PSO Fitness Function . 75

4.2.2 Pseudocode of cDGAN-PSO . 75

4.3 Chapter Summary . 77

Chapter 5 Experiments and Results 78

5.1 Methodology . 78

5.2 CXR Images Datasets . 81

5.3 Technical Implementation Details . 81

5.3.1 DCGAN Training details . 81

CONTENTS vii

5.3.2 Amount of Data . 83

5.3.3 Parameter Selection . 83

5.4 Experimentation . 83

5.4.1 Algorithm Executions . 85

5.4.1 DCGAN-PSO . 85

5.4.2 cDCGAN-PSO . 85

5.4.2 Fitness Evolution . 85

5.4.3 Qualitative Evaluation . 86

5.4.4 FID Evaluation . 86

5.4.5 COVID-19 CXR Synthesis Comparison. 86

5.4.6 Classification Performance . 87

5.4.7 CViCom COVID-19 Classification Performance . 90

5.4.8 Two-Dimensional Visualizations . 91

5.5 Results and Discussion . 92

5.5.1 Fitness Evolution . 92

5.5.2 Qualitative Evaluation . 97

5.5.3 FID Evaluation Comparison . 100

5.5.4 COVID-19 CXR Synthesis Comparison. 101

5.5.5 Classification Performance . 102

5.5.6 CViCom COVID-19 Classification Performance . 104

5.5.7 Two-Dimensional Visualizations . 106

5.6 Hypothesis Validation . 111

5.7 Chapter Summary . 113

Chapter 6 Conclusion and Future Work 114

Bibliography 116

Appendices 129

1 Vanilla DCGAN vs. WGAN vs. Spectral Normalization Experimentation 131

2 Thesis Activities Schedule . 133

3 Congress on Evolutionary Computing 2021 Paper . 133

viii CONTENTS

4 17th International Symposium on Medical Information Processing and Analysis

(SIPAIM) Paper . 142

List of Figures

2.1 Neural Network. Left: Perceptron architecture. Right: Multi-Layer Perceptrons

architecture. Inspired by (Iba and Noman 2020). 12

2.2 Identity function. 14

2.3 Sigmoid function. 14

2.4 Tanh function. 16

2.5 ReLU function. 17

2.6 Leaky ReLU function with a slope (α) of 0.01. 18

2.7 Architecture of a basic CNN. A CNN is a concatenation of different types of

layers in charge of learning high-level characteristics to carry out tasks such as

classification. Inspired by (Human 2020). 21

2.8 Example of a filter 2x2. 22

2.9 Dimensions in convolution. The convolution between an input layer of size

32×32×3 and a filter of size 5×5×3 produces an output layer with spatial

dimensions 28×28. The depth of the resulting output depends on the number of

distinct filters and not on the dimensions of the input layer or filter. Inspired by

(Aggarwal and C 2018). 24

2.10 Convolution operation example. Inspired by (Patterson and Gibson 2017). 24

2.11 Convolution with stride values of 1 and 2. 25

2.12 Example of zero-padding. The padding value is 2 i.e. two rows or columns are

added to each side of the feature map. Inspired by (Aggarwal and C 2018). 26

2.13 Max-pooling and Average-pooling. 27

2.14 Representation of Batch Normalization. The different distributions of values

(xi) for each sample in a layer (Wx + b) are transformed into normalized and

scaled signals (yi) with BN to be introduced to an activation layer (f). Inspired by

(Aggarwal and C 2018). 29

ix

x LIST OF FIGURES

2.15 Example of the transposed convolution operation. The convolution operation

is applied between a 3x3 filter (shaded grid) and a feature-map (blue grid) with 2

zero-borders (red grid) for each side, for upsampling and to get a new feature map

larger (green grid). Inspired by (Dumoulin and Visin 2016). 30

2.16 Two ways to compute the transposed convolution. (a) Perform standard

convolution on input volume with zero-borders added. (b) Multiply each filter

value by each of the input volume values and add those that overlap. 31

2.17 Vanilla GAN training. 33

2.18 Example of Mode Collapse. Obtained from (Costa et al. 2020b). 35

2.19 Example of Vanishing Gradient. Obtained from (Costa et al. 2020b). 35

2.20 General architecture of a DCGAN generator. As can be seen when processing a

random noise input with a series of deconvolutional layers, new and larger feature

maps are generated, resulting in the synthesis of an RGB image (3 channels) with

a resolution of 64x64 pixels. Obtained from the original DCGANs paper (Radford

et al. 2015). 36

2.21 General structure of a cGAN. The green arrow represents the concatenation of

the y label to the GAN’s inputs. 38

2.22 Generator input in cDCGAN. The image class (dog breed) that needs to be

generated is represented by a one-hot vector that is concatenated to the noise

vector (latent vector). Inspired by (Zhou 2020). 39

2.23 Discriminator input in cDCGAN. The image class (dog breed) is represented by

a series of one-hot matrices that are concatenated to the input image. Inspired by

(Zhou 2020). 39

2.24 WGAN and Vanilla GAN gradients. Obtained from the original WGAN paper

(Arjovsky et al. 2017). 41

2.25 FID evaluations with different disturbances. Left to right, top to bottom:

Gaussian noise, Gaussian blur, swirled faces, salt and pepper noise. Obtained

from the original FID paper (Heusel et al. 2017). 43

2.26 Example of a PSO 2D particle update mechanism. 49

LIST OF FIGURES xi

2.27 Example of classic DA techniques in a brain MRI. Obtained from (Nalepa et al.

2019). 52

2.28 Example of chest X-ray image from a patient with COVID-19 pneumonia.

Obtained from (Chowdhury et al. 2020). 53

3.1 Progressive Growing of GANs. Inspired by (Karras et al. 2017) 58

4.1 Particle encoding-decoding. 69

4.2 Measurement of differences between particles. (a): P1 has more layers than P2.

(b): P1 has fewer layers than P2. Inspired by (Junior and Yen 2019). 70

4.3 Example of velocity and position operators. (a): Velocity computation of a

particle. (b): Particle updated using their velocity. Inspired by (Junior and Yen

2019). 72

4.4 Progressive growing of DCGAN particle. 74

5.1 Methodology diagram. 80

5.2 Sample image processing. The images belong to CXR of pneumonia generated

by COVID-19. The left column shows original images from public image datasets

while the right column shows the same images after processing. 82

5.3 CNN architecture for classification. (a) Final layer used for binary classification.

(b) Final layer used for multiclass classification. The red text on the layers

indicates the activation function used. 88

5.4 DCGAN-PSO gBest FID evolution. 94

5.5 cDCGAN-PSO gBest FID evolution. COVID-19, healthy, and pneumonia

classes (6 runs). 95

5.6 cDCGAN-PSO gBest FID evolution of each class (6 runs). 96

5.7 Convergence plots over 70 generations of the median runs of DCGAN-PSO

and cDCGAN-PSO. 96

5.8 Best found GAN architectures. (a) The run with the best FID evluation for

DCGAN-PSO. (b) The run with the closest FID to the FID evaluation median for

DCGAN-PSO. (c) The run with the best FID evluation for cDCGAN-PSO. (d)

The run with the closest FID to the FID evaluation median for cDCGAN-PSO. 97

xii LIST OF FIGURES

5.9 Sample of synthesized COVID-19 CXR images from DCGAN-PSO in

256x256 pixels. 99

5.10 Sample of synthesized CXR images from cDCGAN-PSO in 256x256 pixels.

Rows from top to bottom: COVID-19, pneumonia, and healthy classes. 99

5.11 t-SNE comparison of real and synthetic CXR images from DCGAN-PSO.

Green for real images and red for synthetic ones. 108

5.12 t-SNE comparison of real and synthetic CXR images from cDCGAN-PSO.

Green for real images and red for synthetic ones. 109

5.13 PCA comparison of real and synthetic CXR images from DCGAN-PSO.

Green for real images and red for synthetic ones. 110

5.14 PCA comparison of real and synthetic CXR images from cDCGAN-PSO.

Green for real images and red for synthetic ones. 111

.1 Synthetic images obtained from the same DCGAN architecture trained with

the three variants with 1000 epochs. From left to right: Vanilla DCGAN,

WGAN-GP and SN-DCGAN. 132

List of Tables

3.1 GANs Progressive Augmentation literature review summary. 57

3.2 Biomedical image synthesis using Pro-GAN literature review summary. 58

3.3 GANs neuroevolution literature review summary. 60

3.4 CXR synthesis with GANs literature review summary. 62

4.1 Different types of layers used with their equivalents according to the GAN module.

The first four columns represent the pair of equivalent layers used in the generator

and discriminator, respectively, with the definition of the activity they perform. The

last column shows the hyperparameters that define both layers. 69

5.1 Parameter values of DCGAN-PSO, cDCGAN-PSO, and CNN used in the

experiments. 84

5.2 Results and comparison of FID evaluation values of both version of the algorithm.

(=) means that the two sets of data compared have the same performance based on

the Wilcoxon rank-sum test. 100

5.3 Results and comparison of FID evaluation values. (=) means that the algorithm

version in the column has the same performance that the compared approach

in the corresponding row. (+) means that the algorithm version in the column

outperformed the compared approach in the corresponding row. In red the best

values are remarked. 102

5.4 Results of binary classification with synthesized images from DCGAN-PSO. In

red the best value obtained. (-) means that the dataset used is worse than the other

dataset compared, (+) means the opposite. 103
xiii

xiv LIST OF TABLES

5.5 Multiclass classification results with synthesized images from cDCGAN-PSO. In

red the best values obtained. (-) means that the dataset used is worse than the other

dataset compared, (+) means the opposite. 104

5.6 Classification results using CViCom COVID-19 system. (-) means that Dataset 2

used is worse than Dataset 1, (+) means the opposite. (=) means the both datasets

have the same performance. 106

.1 FID results (mean ± std.dev.) of the three DCGAN variants. Two different

architectures were trained for 200 epochs and 5 times with each variant. 132

.2 Time results in minutes for 3 runs of each variant for 1000 epochs (mean±std.dev.).132

.3 Schedule of activities. 133

CHAPTER 1

Introduction

1.1 Overview

1.1.1 Deep Learning and Biomedical Imaging

In recent decades, the emergence and rise of machine learning (ML) implementations in the

field of medicine, for purposes of diagnosis, processing of biological data and support in the

work of medical specialists, has allowed optimizing the waiting times and accuracy rates for

the detection of various diseases and disorders (Shukla et al. 2020). Among the main areas

with countless approaches and proposed algorithms there is Computer Vision (CV), whose

models can be used in biomedical imaging for applications ranging from segmentation of

areas of interest, to classification for diagnosis purposes. The patient’s information obtained

from these images, improve the medical efforts for healthcare. Among these models, those

based on Deep Learning (DL) stand out, which in recent years have shown significant im-

provements in tasks such as the aforementioned (Litjens et al. 2017, Bakator and Radosav

2018, Mohapatra et al. 2021) derived from the properties of this type of computing, being

robust and capable of developing highly complex hypotheses.

However, an inherent characteristic of DL models, not only in their application in the field

of computer vision, it is the need for a vast and diverse amount of training data, in order to

perform an adequate generalization and avoid overfitting which is common is these complex

models. Additionally, in the area of supervised machine learning, datasets with a high im-

balance of instances between the various classes could result in models with high biases and

low performances (Buda et al. 2018); this is even more present when it comes to biomedical
1

2 1 INTRODUCTION

images. This kind of data is scarce due to issues such as the privacy of patients, test’s high

costs, or even the patient’s exposure to radiation (Guibas et al. 2017). Furthermore, the small

available datasets have a marked imbalance of classes product of the procurement environ-

ment, since positive cases of diseases or disorders in patients are more common than healthy

ones.

1.1.2 Data Augmentation

Data Augmentation (DA) is a set of techniques that artificially expand the size of a data-

set for training ML models (Abdollahi et al. 2020). In recent years this concept has been

focused on expanding images datasets for applications in DL models for computer vision

tasks, improving the generalization ability of these models in the most difficult challenges.

These techniques, which modify the images inside the original training set are applied under

the assumption that more information can be extracted from the original dataset through aug-

mentation procedures. These augmentations artificially enlarge the training dataset size by

data warping or oversampling (Shorten and Khoshgoftaar 2019). The previously mentioned

adversities in medical imaging have been overcome by DA approaches, demonstrating the

improvement in DL models performance through this set of tools (Perez and Wang 2017).

However, these classic techniques have been limited in improving models performance. This

is because these approaches only edit original images with various angles, sizes, and filters.

For this reason the efforts of the last decade have turned around developing more and better

techniques to support model training with small datasets and unbalanced classes (Buda et al.

2018). One of the main branches of research has been the use of generative models for the

synthesis of images that replicate the diversity and quality of the original sets and thereby

enrich the amount of available data; one of these DL-based models with the greatest pop-

ularity and prestige in recent years are the Generative Adversarial Networks (GANs) (Shin

et al. 2018).

1.1 OVERVIEW 3

1.1.3 Generative Adversarial Networks

The GANs family has its origin in (Goodfellow et al. 2014) and have demonstrated to be

useful as generative models for various computer vision and digital imaging tasks (Pan et

al. 2019). Its operation consists of two image processing models, generally Convolutional

Neural Networks (CNN); one is in charge of generating images that are highly similar to

the set of real images it was trained with, known as Generator; the second model, named

Discriminator, performs the function of differentiating between the images that belong to

the original set and those artificially created by the Generator. These models with opposing

goals face each other during several training cycles, forcing both models towards continuous

improvement and adaptation; the generator improves the quality of its creations and the dis-

criminator improves its classification mechanisms (similar to reinforcement learning). At the

end of the critical-creation cycles, the generator is ready to synthesize images that are highly

similar to the real set (Huang et al. 2018). These new images are intended to enrich sets that

have few instances or with an unbalance of classes, with the purpose to help improving the

performance of other DL models and their applications.

Although there is no general metric to quantify the quality of the results of the GANs, the

Fréchet Inception Score (FID) has been used in recent years as state-of-the-art metric to

evaluate the similarity between the images of the real set and the synthetic images through

the similarity of the features, extracted by a pre-trained CNN, of both sets of images (Lucic

et al. 2018).

Despite the remarkable performances obtained by the GANs in the field of biomedical ima-

ging (Yi et al. 2019) and many other CV areas (Wang et al. 2019), they suffer from their own

problems that affect the training stability. These issues manifest very frequently and repres-

ent a great challenge in obtaining useful generators for various areas, leading to a reduction

in quality and diversity of the generated images (Neyshabur et al. 2017). These common

problems are:

4 1 INTRODUCTION

• Mode Collapse: The situation in which the generator can only synthesize a small

subset of images of the complete distribution since the training did not allow to

generalize the richness of variants of the original images.

• Vanishing Gradient: Originated when the discriminator or the generator becomes

powerful enough to cause an irreversible imbalance in training and by not using

adequate cost functions that enable obtaining adequate learning gradients. This

prevents the opposite network to improve its performances, causing a stalemate.

Therefore, in recent years, research has focused on solving these difficulties. Some of the ap-

proaches used to improve training stability have been the improvement of GAN architectures

(Radford et al. 2015) or the use of alternative cost functions to avoid training imbalance prob-

lems (Arjovsky et al. 2017, Mao et al. 2017, Miyato et al. 2018). Moreover, Evolutionary

Computing techniques have had a special growth in this field focused on training instability

and the design and automatic training of GANs (Costa et al. 2020b).

1.1.4 Evolutionary Computing and GANs

The Evolutionary Computing (EC) bases its operation on the generation of a population

of solutions in an environment that is constantly evaluated to drive potential solutions to-

wards constant adaptation to their environment and continuous improvement (Eiben and

Smith 2015). The use of these bio-inspired methods for the design and automatic training of

artificial neural networks is known as neuroevolution. Evolutionary computing and neuroe-

volution techniques have been proposed in order to solve the training drawbacks for GANs

(Costa et al. 2020b). These methods are based on the manipulation of populations of GANs

that will be evolved, to choose those networks that are better at handling or avoiding common

training problems.

1.1.5 Case Study: Chest X-ray Images.

Chest X-rays are a type of biomedical images with multiple uses in the medical area. Many of

these applications have used Deep Learning. DL-based computer vision models are used to

1.2 PROBLEM DEFINITION 5

detect the attributes of these diseases and design appropriate models to support the biomed-

ical area. Its most prominent applications are the diagnosis of respiratory or heart diseases, or

the segmentation of areas of interest (Rajpurkar et al. 2017, Gordienko et al. 2018, Stirenko

et al. 2018, Baltruschat et al. 2019, Bhandary et al. 2020, Jain et al. 2021, Ismael and Şengür

2021). For this reason, having quality and diverse imaging data sets of these diseases would

improve the performance of DL-based models.

Inspired by the numerous successes of the evolutionary computing in neuroevolution on dif-

ferent areas of DL (Stanley et al. 2019) and specially in the recent efforts focused on GANs

as well as the proven utility of GANs in increasing performance in applications in the bio-

medical imaging area (Shin et al. 2018, Sorin et al. 2020,Kazeminia et al. 2020), this work

presents two designed versions of a neuroevolution algorithm based on Swarm Intelligence,

a field of EC hitherto unexplored in the neuroevolution of GANs to evolve this type of net-

works that allow to synthesize chest X-ray images of different pathologies, as a case study of

biomedical imaging. These algorithms allows to design and train GANs architectures auto-

matically, aiding to prevent training instability problems to synthesize biomedical images.

1.2 Problem Definition

The design of Generative Adversarial Networks for the synthesis of data similar to real sets

that increase the available amount of data is an research problem that requires recursive

tuning and search by deep learning experts. Also, the common training instability problems

that affect this kind of models could reduce the final quality of the new data.

That is the reason why it is necessary to improve the design and training mechanisms to

obtain GANs that effectively increase the set of available data for various applications, in-

cluding the amount of biomedical images for use in DL medical systems.

6 1 INTRODUCTION

1.3 Research Proposal

The proposal of the present thesis is to design a neuroevolution algorithm to automatically

design GANs architectures and also train them effectively to generate chest X-ray images.

The work will cover the following:

• Search algorithm: Employing, to the best of the author’s knowledge for the first

time a Swarm Intelligence algorithm for architecture search and training of GANs.

• Biomedical imaging: Applying evolved GANs models in biomedical images, to

the best of the author’s knowledge, for the first time, in order to support the growth

of available datasets.

• Low data regime: Using a set of images with few instances (compared to large

benchmark datasets previously used in GANs neuroevolution) that reflects the real

conditions in which the needs of data augmentation are found.

1.4 Justification

The artificial augmentation of biomedical images is a field in full swing and exploration,

the use of the images obtained through this Data Augmentation approach has allowed the

improvement in the performance of multiple Deep Learning models and also helped the

biomedical field in various activities of diagnosis and prevention e.g. CNN classification.

Within this field, the use of Generative Adversarial Networks (GANs) as a generative model

has allowed to increase the performances in DL systems that use their synthetic images to

increase or balance datasets. However, GANs have problems inherent to their adversarial

nature, often obtaining results that do not meet the necessary quality and diversity require-

ments that resemble actual image distributions. Furthermore, the design of this type of net-

work is not standardized as it is based on empirical tests and on the experience of researchers,

thus obtaining networks that generally cannot be exported to other domains or purposes.

1.4 JUSTIFICATION 7

Such problems have been partially overcome due to the implementation of evolutionary com-

puting approaches in the design and training of GANs, allowing the obtaining of high-quality

results. In addition, within this already small set of algorithms, few are responsible for the

automatic design of the GANs topology, an approach that would save time and resources

in empirical design tests and thus adapt to the type of images that they need to be synthes-

ized. Within these previous algorithms, an unexplored field has been Swarm Intelligence,

a branch of evolutionary computation, which provides algorithms with rapid convergence

in the search for solutions, a feature that can help reduce search times, of great importance

taking into account the high resources necessary to train potential solution networks.

Besides, there is a large gap between the previously mentioned neuroevolution approaches,

none of which focuses on the generation of biomedical images, a field which would benefit

from the automation of the design of GANs architectures and greater stability of the training

that allows obtaining better qualities of results for the various uses of these images. Among

the different branches of biomedical imaging, one type of image that is important, but which

has few implementations for its synthesis, is chest X-ray (CXR) images. These have cur-

rently gained relevance due to the recent respiratory disease COVID-19 situation in which

this type of images is used for diagnostic purposes using DL-based models but there are

previous studies focused on other types of pulmonary and cardiac pathologies.

Due to the above, this thesis presents the use of CXR images as a case study, since in recent

months the public datasets of CXR images of pneumonia by COVID-19 have increased,

which enriches the quantity and diversity of this type of already existing images of healthy

patients or with pneumonia. This provides for an appropriate real case to design and test

a neuroevolution algorithm in the field of biomedical imaging that allows designing GANs

architectures and at the same time allows an effective training through its progressive growth.

This way, the instability training problems of these networks can be avoided or reduced, thus

obtaining synthetic images with the same richness in quality and diversity as the real set.

8 1 INTRODUCTION

1.5 Hypothesis

The Generative Adversarial Networks obtained by means of the designed neuroevolution

algorithm will be able to:

• Hypothesis 1: Generate chest X-ray images with high similarity to the set of real

images (measured by FID), preserving the quality and diversity of that, what would

be an indicator of the avoidance or reduction of training instability problems.

• Hypothesis 2: Obtain better FID results than handcrafted GANs for the synthesis

of CXR images of pneumonia by COVID-19.

• Hypothesis 3: Improve the classification, in terms of accuracy, of CXR images in

CNN, with respect to unbalanced sets, using artificially balanced sets using syn-

thetic images obtained from evolved GANs.

1.6 Overall Objective

To develop an neuroevolution algorithm based on Swarm Intelligence that allows the design

and training of Generative Adversarial Networks (GANs) architectures for the synthesis of

chest X-ray images with high similarity in quality and diversity than the real sets.

1.7 Specific Objectives

(1) To process chest X-ray images obtained from various public image datasets, in order

to obtain images with high contrast and good resolution.

(2) To design a Swarm Intelligence (SI) algorithm that automatically designs the ar-

chitecture of the GAN that will be used for the synthesis of biomedical images. In

addition, through the same algorithm, the GANs will be trained at the same time

and instability problems in training will be avoided or reduced.

(3) To generate and train various GANs using the designed SI algorithm and to record

information from the performed experiments.

1.8 CONTRIBUTIONS 9

(4) To synthesize sets of images using the generators obtained with the designed al-

gorithm and using the information collected from the experiments to corroborate

the correct functioning and convergence of the algorithm.

(5) To evaluate the similarity of the synthesized images with the set of real images

using quantitative and qualitative tests of the quality and diversity of the generated

images.

(6) To compare the quality of the synthetic images obtained through the evolution of

GANs with respect to the state-of-the-art works for synthesis of CXR images using

handcrafted GANs.

(7) To evaluate the improvement in the classification task with Convolutional Neural

Networks using the synthesized images to artificially balance the CXR image sets

and thereby demonstrate the usefulness of the synthetic data generated.

1.8 Contributions

The contributions of the present thesis are:

• Designing for the first time, to the best of the author’s knowledge, a Swarm Intelli-

gence algorithm for the architecture design and training of GANs. Previous works

of GANs neuroevolution do not use this approach.

• Using for the first time, to the best of the author’s knowledge, a neuroevolution

algorithm for GANs in the field of biomedical images.

• Use for the first time, to the best of the author’s knowledge, an evolutionary pro-

gressive growth approach to GANs. Additionally, to being also the first time, to the

best of the author’s knowledge, of the use of progressive growth in the synthesis of

CXR images.

• Using a low amount of data (compared to large benchmark datasets previously used

in GANs neuroevolution) that represents the characteristic of dealing with limited

biomedical imaging.

10 1 INTRODUCTION

1.9 Thesis Content

The rest of the parts contained in the thesis are organized as follows:

Chapter 2 contains the theoretical framework of the main topics of the thesis, such as GANs,

Evolutionary Computing and Biomedical Imaging.

Chapter 3 presents a review of the literature in the fields of progressive augmentation of

GANs, neuroevolution of GANs and synthesis of CXR images using GANs.

Chapter 4 details the parts and operation of the proposed neuroevolution algorithm.

Chapter 5 shows the methodology of implementation and experimentation of the proposed

algorithm, as well as the results of these experiments and their respective discussion.

Chapter 6 presents the conclusions reached, the limitations of the work and future guidelines

for its improvement.

CHAPTER 2

Theoretical Framework

This chapter presents the theoretical foundations of this thesis. Three main topics are ad-

dressed: Generative Adversarial Networks, Evolutionary Computing and Biomedical Ima-

ging.

2.1 Artificial Neural Networks

Neural Networks (NN) also named Artificial Neural Networks, are Machine Learning (ML)

models that mimic the working principles of the human brain. NN consist of many simple

information processing units called neurons.

2.1.1 Perceptron, Multi-Layer Perceptrons and Deep Learning.

A neuron, also called Perceptron, is the simplest NN, development in 1958 by Frank Rosen-

blatt (1958) using the ideas introduced by McCulloch and Pitts in (1943). The neuron, Nj,

receives n input signals (xi; i=1,...,n), through input connections, as the dendrites in biolo-

gical neurons. Each connection has a weight wij to modulate the corresponding input xi. The

weighted sum of the inputs added with a bias term bj (used to control the net input to the

activation function) is mapped via an activation function ϕ(·) to generate the output yj of the

neuron, this is represented mathematically as follows:

yj = ϕ(zj) = ϕ(
n∑
i=1

xiwij + bj) (2.1)

A visual representation of the Perceptron is found on the left in Figure 2.1.
11

12 2 THEORETICAL FRAMEWORK

A Multi-Layer Perceptron (MLP), also known as Multilayer Neural Network (MNN), is a

set of neurons organized into layers. Each layer has one or more neurons. The leftmost and

rightmost layer of the network are called the input layer and the output layer, respectively,

and the intermediate layers are called the hidden layers. The later ones receive their name

because the computations performed are not visible to the user. The neurons in the input

layer do not perform any processing on the received data, they just pass it to the next layer

as inputs. This new layer processes the inputs and generate the outputs and then passes them

to the next layer of neurons to repeat the process. The architecture of MLPs is called feed-

forward networks, because successive layers feed into one another in the forward direction

from input to output. The feed-forward architecture assumes that all neurons in one layer are

connected to those of the next layer (Aggarwal and C 2018). A MLP with one input layer,

one hidden layer and one output layer is shown to the right of Figure 2.1.

FIGURE 2.1. Neural Network. Left: Perceptron architecture. Right: Multi-
Layer Perceptrons architecture. Inspired by (Iba and Noman 2020).

In the last decade, the progress and use of MNNs in different research areas has generated

the trend in ML called Deep Learning (DL). The central idea of deep learning lies in ex-

ploiting many non-linear layers of information processing for useful feature extraction and

transformation for supervised or unsupervised learning. A Deep Neural Network, also called

DNN or only NN, can utilize hundreds even thousands of layers those collectively learn a

2.1 ARTIFICIAL NEURAL NETWORKS 13

hierarchy of representations. There is no strict division between shallow and deep NN based

on the number of layers. However, any architecture with more than two or three layers can

be considered as deep (Noman 2020).

2.1.2 Activation Functions

The activation functions ϕ(·) limits the output range of a neuron and a non-linear function

is required to exhibit complex behaviour. Activation functions are scalar-to-scalar function.

When a neuron passes on a nonzero output to another neuron, it is said to be activated.

Some of the most used activation functions will be described below.

Identity function: The most basic activation function is the identity or linear function, it

means that the function outputs the unchanged signal:

ϕ(υ) = υ (2.2)

This function does not provide non-linearity and is often used in the input layer and the out-

put layer when the target is a real value (Aggarwal and C 2018). The graphical representation

of this function is seen in Figure 2.2.

Sigmoid function: The Sigmoid activation, also called logistic function, outputs a value in

the range (0,1), which is helpful in performing computations that should be interpreted as

probabilities:

ϕ(υ) =
1

1 + e−υ
(2.3)

Furthermore, it is also helpful for creating loss functions derived from maximum-likelihood

models (Aggarwal and C 2018). The graphical representation of this function is seen in

Figure 2.3.

14 2 THEORETICAL FRAMEWORK

FIGURE 2.2. Identity function.

FIGURE 2.3. Sigmoid function.

Softmax function: Is a generalization of the sigmoid function inasmuch as it can be ap-

plied to continuous data (rather than binary classification) and can contain multiple decision

2.1 ARTIFICIAL NEURAL NETWORKS 15

boundaries. It is used to represent a probability distribution over a discrete variable with k

possible classes (Goodfellow et al. 2016). It is defined as:

ϕ(υ)i =
eυi∑k
j=1 e

υj
∀i ∈ {1, ..., k} (2.4)

where υ = [υ1, ..., υk] represents the k outputs of the neurons of a given layer. The k values

obtained from softmax represent the probabilities of every k class to predict. The sum of this

values is equal to one because they represent a multi-class probability distribution.

Tanh function: Tanh means Hyperbolic Tangent. This activation function has a shape sim-

ilar to the sigmoid function except that it is vertically re-scaled in a range [-1,1]:

ϕ(υ) =
e2υ − 1

e2υ + 1
(2.5)

The tanh function is preferable to the sigmoid when the outputs of the computations are

desired to be both positive and negative. Furthermore, its mean-centering and larger gradient

with respect to the sigmoid function leads to an easier training. (Aggarwal and C 2018). The

graphical representation of this function is seen in Figure 2.4.

16 2 THEORETICAL FRAMEWORK

FIGURE 2.4. Tanh function.

Rectified Linear Unit: Also called ReLU, this activation function allows to avoid saturation

problems of the sigmoid and tanh functions. This means that large values snap to 1.0 and

small values snap to -1 or 0 for tanh and sigmoid respectively. Further, the functions are only

really sensitive to changes around their mid-point of their input, such as 0.5 for sigmoid and

0.0 for tanh. Because ReLU is nearly linear, they preserve many of the properties that make

linear models generalize well and easy to optimize with gradient-based methods (Goodfellow

et al. 2016). Its formula is the following:

ϕ(υ) = max {υ, 0} (2.6)

The graphical representation of this function is seen in Figure 2.5.

2.1 ARTIFICIAL NEURAL NETWORKS 17

FIGURE 2.5. ReLU function.

Leaky ReLU: This function is ReLU function with a small slope of negative values instead

of altogether zero:

ϕ(υ) =

 α× (υ), if υ < 0

υ, if υ ≥ 0

 (2.7)

Where α is called slope which is originally 0.01. This function attempts to minimize one’s

sensitivity to the dying ReLU problem. This problem is caused because ReLU is not con-

tinuously differentiable when υ = 0. Also, ReLU sets all values smaller that zero to zero

and hence neurons arriving at large negative values cannot recover from being stuck at 0.

The neuron effectively dies and hence the problem is known as the dying ReLU problem.

With the slope of Leaky ReLU the outputs are slightly descending. The thesis is that these

small numbers reduce the death of ReLU activated neurons (Goodfellow et al. 2016). The

graphical representation of this function is seen in Figure 2.6.

18 2 THEORETICAL FRAMEWORK

FIGURE 2.6. Leaky ReLU function with a slope (α) of 0.01.

In the Perceptron, the original activation function used was the sigmoid function because it

is a binary classifier. Later, with the use of MLPs, each layer of neurons could use the same

or a different activation function according to the needs of the task. The use of non-linear

activations plays a fundamental role in increasing the modeling power of the network. If

a network used only linear activations, it would not provide better modeling power than a

single-layer linear network (Aggarwal and C 2018).

2.1.3 Loss Functions

Loss functions, also named cost functions or error functions, quantify how close a given NN

is to the ideal output in its training (Patterson and Gibson 2017). They are metrics based

on the observed error in the NN’s predictions. The choice of the loss function is critical in

defining the outputs in a way that it is sensitive to the application at hand.

In a dataset from a supervised learning problem, N obtained samples could be represented as

the tuple (X,Y). Where X represents feature variables and Y represents the observed value

or class to predict. Let Ŷ be the output value of the network, also called prediction. The

2.1 ARTIFICIAL NEURAL NETWORKS 19

notation hW,b(·) denotes the NN as a function that depends of the weights (W) and bias (b)

of the network. Thus:

hW,b(Xi) = Ŷi (2.8)

represents the transformation of the feature values of the ith sample to a prediction value

through the NN.

The loss function is represented as L(W, b) emphasizing that the cost or error of a network’s

predicted values depends exclusively on its weights and biases.

One of the principal approaches of loss functions is for classification tasks. One of the most

used loss function for classification is Negative log-likelihood loss.

Maximum Likelihood Estimation is a way to finding the best possible parameters which

make the observed data most probable. In classification problems, it seeks to maximize the

probability of correctly predicting the class. In binary classification it is described by the

next equation:

P (Yi|Xi;W, b) = (hW,b(Xi))
Yi × (1− hW,b(Xi))

1−Yi (2.9)

The previous equation could be rewritten as:

P (Yi|Xi;W, b) =
N∏
i=1

(Ŷ)Yi × (1− Ŷ)1−Yi (2.10)

When working with multiplication of probabilities it is useful to use its logarithm. This has

the purpose of converting the multiplication into a sum of probabilities. Also, the monotonic

growth of the logarithm is a property of interest when using probabilities. Thus, minim-

izing the negative log-likelihood is equivalent to maximizing the probability. That is why

20 2 THEORETICAL FRAMEWORK

applying the logarithm to equation (2.10) obtains the next loss function called Negative Log-

Likelihood loss (Goodfellow et al. 2016):

L(W, b) = −
N∑
i=1

Yi × log(Ŷi) + (1− Yi)× log(1− Ŷi) (2.11)

The Cross-Entropy is one of the main cost functions used for supervised learning (Goodfel-

low et al. 2016). It is used for multiclass classification. This is represented by the following

equation:

L(W, b) = −
N∑
n=1

C∑
c=1

Ync × log(Ŷnc) (2.12)

where C represent the classes of the supervised problem, Ync represent the groundtruth for

the c class of the n input and Ŷnc represent the prediction of the same input. In binary

classification, where C = 2, the Cross-Entropy can also be represented as in Equation 2.11.

Minimizing this cost functions allows to apply the method known as Gradient Descent to

train the NN using Backpropagation with the purpose of finding the optimal parameters that

allow reducing the error rate of the network predictions as much as possible (Khan et al.

2018).

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs/ConvNets) are one of the most widely used NN ar-

chitectures with many Computer Vision (CV) applications. Some of the applications areas

include image classification and segmentation, object detection, video processing, even being

used beyond CV, in tasks like natural language processing and speech recognition (Aloysius

and Geetha 2017). The attractive feature of a CNN is its ability to exploit spatial or temporal

correlation in data. The biological inspiration for CNN is the visual cortex in animals (Hubel

and Wiesel 1959).

The CNN is a feedforward multilayered hierarchical network very similar to classic NN,

being the main difference that a hidden neuron is only connected to a subset of neurons in

2.2 CONVOLUTIONAL NEURAL NETWORKS 21

the previous layer. This characteristic allows to learn relevant features implicitly. The deep

architecture of the model results in hierarchical feature extraction (Khan et al. 2020).

CNNs are a useful class of models for image classification tasks. The CNN learns to map

a given image to its corresponding category by detecting a number of abstract feature rep-

resentations, ranging from simpler to more complex ones. These discriminatory features are

then used within the network to make the correct prediction of an input image (Khan et al.

2018).

The topology of a CNN is divided into multiple learning stages composed of a combination

of the convolutional layers, non-linear processing units, and subsampling layers (Khan et al.

2020). The figure 2.7 represent the general architecture of a CNN. The different types of

layers that compose a CNN will be explored next.

FIGURE 2.7. Architecture of a basic CNN. A CNN is a concatenation of
different types of layers in charge of learning high-level characteristics to
carry out tasks such as classification. Inspired by (Human 2020).

2.2.1 Convolutional Layer

The convolutional layer is the core building block of a Convolutional Network that does most

of the computational heavy lifting. It comprises a set of filters which are convolved with a

given input to generate an output feature map. This layers are essentially feature-extractors

(Noman 2020).

22 2 THEORETICAL FRAMEWORK

2.2.1 Filters

Each filter, also called kernel, in a convolutional layer is a grid of discrete numbers, which

are called the weights. Similar to conventional neurons in NN, these weights are trained

to learn features that allow to fulfill the required activity. The main difference from NN is

that these neurons are connected only to a small region of neurons in the layer before them.

The convolutional kernel works by dividing the image into small pieces, commonly know as

receptive fields. The division of an image into small blocks helps in extracting feature motifs

that hierarchically build more complex features.

The kernel structure has height and width and commonly has square-shape (height = width).

For example, Figure 2.8 shows a kernel of height two and width two.

FIGURE 2.8. Example of a filter 2x2.

Also, kernels have a third dimension called depth, not to be confused with the depth of the

network. This dimension refers to the number of channels in each layer of the CNN, such

as the number of primary color channels (e.g. red, green, and blue in RGB images) in the

input image or the number of feature maps in the hidden layers (Aggarwal and C 2018).

Each filter has its own weights to train and each one will generate a different feature map.

When applying the filters to the image or to the previous feature maps, the new maps will be

smaller than or equal to the previous ones with respect to height and width, but the number of

new feature maps, depth, is not limited (Khan et al. 2018). Each filter applies the convolution

operation over the previous feature maps.

2.2 CONVOLUTIONAL NEURAL NETWORKS 23

2.2.2 Convolution Operation

The convolution operation places the filter at each possible position in the image (or hidden

layer) so that the filter fully overlaps with the image, and performs a dot product between

the filter and the matching spacial region of the input volume (Aggarwal and C 2018). The

convolution operation is defined as:

h
(q+1)
ijp = (

Fq∑
r=1

Fq∑
s=1

dq∑
k=1

w
(p,q)
rsk h

(q)
i+r−1,j+s−1,k) + b(p,q) (2.13)

∀i ∈ {1, ..., Lq − Fq + 1} ∀j ∈ {1, ..., Bq − Fq + 1} ∀p ∈ {1, ..., dq+1}

where:

• h(q) represents the feature map of the qth layer.

• Fq is the height and width of the filter. Remember that height = width is common.

• dq is the number of channels of the filter and also the number of feature maps in

the input volume. Recall that the depth of the filter is conditional on the number of

feature maps of the previous layer.

• wp,q represents the weight value of the pth kernel in the qth layer.

• Lq and Bq refer to the height (or length) and width (or breadth) of the input volume,

respectively.

• b(p,q) refers to the bias of the pth kernel in the qth layer.

• Lq − Fq + 1 and Bq − Fq + 1 represent the new dimensions (length and breadth)

of the feature map of the q+1 layer. The dimensions after applying the convolution

are exemplified in the figure 2.9.

As an example of the convolution operation Figure 2.10 shows the convolution of a 3x3 filter

over a 2D grid.

Besides of the height, width and depth of the filters in a convolutional layer, the stride and

padding parameters are also required to define the convolutional layer.

24 2 THEORETICAL FRAMEWORK

FIGURE 2.9. Dimensions in convolution. The convolution between an input
layer of size 32×32×3 and a filter of size 5×5×3 produces an output layer with
spatial dimensions 28×28. The depth of the resulting output depends on the
number of distinct filters and not on the dimensions of the input layer or filter.
Inspired by (Aggarwal and C 2018).

FIGURE 2.10. Convolution operation example. Inspired by (Patterson and
Gibson 2017).

2.2.3 Stride

In the above description of convolution, in order to calculate each value of the output feature

map, the filter takes a step of 1 along the horizontal or vertical position i.e. along the column

or the row of the input, respectively. This step is termed as the stride of the convolution

filter, which can be set to a different (other than 1) value if is required (Khan et al. 2018).

2.2 CONVOLUTIONAL NEURAL NETWORKS 25

Stride configures how far to slide the filter to create the feature map. This parameter can

have a slip value by the length and other by the breadth of the input volume, but commonly

the same value is used for both dimensions. Without using padding the convolution causes

a reduction in the previous dimensions that is known as the sub-sampling operation. Figure

2.11 shows an example of the convolution with stride values of one and two.

FIGURE 2.11. Convolution with stride values of 1 and 2.

2.2.4 Padding

One observation is that the convolution operation reduces the size of the q+1th layer in

comparison with the size of the qth layer. This type of size reduction is not desirable in

general, because it tends to lose some information along the borders of the image (or of the

feature map, in the case of hidden layers). This problem can be solved by using padding

(Aggarwal and C 2018). Padding controls the spatial size of output volume by adding rows

and columns of "pixels" to the input feature map. Commonly, this new values are zeros, in

which case it is called Zero-padding. Zero-padding is represented in Figure 2.12.

2.2.5 Output Size

The dimensions of the output volume, after the application of the convolution, can be calcu-

lated with the following formulas:

L(q+1) =

⌊
Lq − Fq + stride+ 2× padding

stride

⌋
(2.14)

26 2 THEORETICAL FRAMEWORK

FIGURE 2.12. Example of zero-padding. The padding value is 2 i.e. two
rows or columns are added to each side of the feature map. Inspired by (Ag-
garwal and C 2018).

B(q+1) =

⌊
Bq − Fq + stride+ 2× padding

stride

⌋
(2.15)

Recall that Lq and Bq are the length and breadth of the input volume, respectively. The

symbol b·c represents the floor function. As an example, an image in gray scale (1 channel

input) of 64x64 pixels when a filter of 3x3 is applied with a stride of 2 and padding of 1

(represents one column or row of zeros added by every edge) will have output dimensions of

32x32 on each feature map.

2.2.2 Pooling Layer

Pooling layers are commonly inserted between successive convolutional layers. The use

of convolutional layers with pooling layers is done to progressively reduce the spatial size

of the data representation and to help controlling overfitting. The pooling layer operates

independently on every depth slice of the input (Patterson and Gibson 2017).

Pooling or down-sampling is an interesting local operation. It sums up similar information in

the neighborhood of the receptive field and outputs the dominant response within this local

2.2 CONVOLUTIONAL NEURAL NETWORKS 27

region (Khan et al. 2020). The most common setup for a pooling layer is to apply 2×2 filters

with a stride of 2. This will downsample each depth slice in the input volume by a factor of

two on the length and breadth but they keep the number of channels, unlike convolutional

filters.

The two principal pooling layers used in CNNs are Max-pooling and Average-pooling. Max-

pooling takes the maximum value of the filter’s receptive field. Meanwhile, Average-pooling

takes the mean of the values (Goodfellow et al. 2016). The performance of these layers is

shown in Figure 2.13.

FIGURE 2.13. Max-pooling and Average-pooling.

2.2.3 Activation Layers

Activation layers insert non-linearity to the feature maps obtained by convolutional layers.

They apply a vast collection of activation functions, such as those described in Section 2.1.2.

2.2.4 Fully Connected Layer

Fully connected layers correspond essentially to Multi-Layer Perceptrons previously de-

scribed in Section 2.1.1. Each neuron in a fully connected layer is densely connected to

28 2 THEORETICAL FRAMEWORK

all the units of the previous layer. This layers takes the high-level features extracted by the

set of convolutional, activation and pooling layers of the CNN and generate the prediction

value, Ŷ . This layers are commonly used at the end of CNN to perform tasks such as classi-

fication (Patterson and Gibson 2017).

2.2.5 Batch Normalization Layer

Batch normalization (BN) is used to address the issues related to the internal covariance

shift within feature-maps. The internal covariance shift is a change in the distribution of

hidden layers values, which slows down the convergence and requires careful initialization

of parameters. Furthermore, it smoothens the flow of gradient and acts as a regulating factor,

which thus helps to improve the generalization of the network (Khan et al. 2020). Batch

normalization is represented as:

x̂i =
xi − µB√
σ2
B + ε

(2.16)

where:

• xi represents the feature map of the ith layer.

• x̂i is the normalized feature-map.

• µB and σ2
B depict mean and variance of the feature map for a mini-batch of samples,

respectively.

• ε is a small constant to avoid division by zero for numerical stability.

Batch normalization unifies the distribution of feature-map values by setting them to zero

mean and unit variance. Later, the normalized feature-map is scaled using the parameters β

and γ to avoid constrains in the representation power of convolutional layers (Aggarwal and

C 2018). This operation is represented as:

yi = γ × x̂i + β (2.17)

2.2 CONVOLUTIONAL NEURAL NETWORKS 29

where yi represents the pre-activation feature-map. The Figure 2.14 shows a representation

of BN.

Batch normalization is implemented as a layer and is usually used after a convolutional layer.

FIGURE 2.14. Representation of Batch Normalization. The different dis-
tributions of values (xi) for each sample in a layer (Wx + b) are transformed
into normalized and scaled signals (yi) with BN to be introduced to an activ-
ation layer (f). Inspired by (Aggarwal and C 2018).

2.2.6 Transposed Convolutional Layer

Also called fractionally strided convolutions. This kind of layers are very similar to convo-

lutional layer in aspects such as the use of filters, stride and padding. The main difference is

that while convolutional layers create feature-maps from the pixel values of a image, trans-

posed convolutional layers maps features to pixels when modeling images, which is the op-

posite of what a normal convolutional layer does (Patterson and Gibson 2017). This layer is

usually carried out for upsampling i.e. to generate an output feature map which has a spatial

dimension greater than that of the input feature map. This aspect of transposed convolutional

layers is what enables to generate images as output from neural networks. This layer is also

known as deconvolution layer, although it performs a different process than deconvolution

(Khan et al. 2018).

30 2 THEORETICAL FRAMEWORK

The process that this layer applies to upsample a feature-map is the convolution operation

with a filter over the input size that have borders with zero values added. This zero-borders

have the function of making the receptive field of the filter larger and therefore obtaining a

feature-map with a larger length and width than the input volume. The output size (O(q+1))

of the q+1th layer where length = width (O(q)) with a size filter Fq is calculated with the next

formula:

O(q+1) = (O(q) − 1)× stride+ Fq − 2× padding (2.18)

For example, an input volume with O(q) of 2, a kernel size of 3, stride of 1 and padding of 0

will have an output size (O(q+1)) of 4. The Figure 2.15 shows this example.

FIGURE 2.15. Example of the transposed convolution operation. The
convolution operation is applied between a 3x3 filter (shaded grid) and a
feature-map (blue grid) with 2 zero-borders (red grid) for each side, for up-
sampling and to get a new feature map larger (green grid). Inspired by (Du-
moulin and Visin 2016).

The Figure 2.16 shows two ways of understanding the computation of the transposed convo-

lution using the previous example.

The transposed convolutional layer is not used in a conventional CNN but is a fundamental

component of deconvolutional networks that are used in the Deep Convolutional Generative

Adversarial Networks which will be addressed later.

2.3 GENERATIVE ADVERSARIAL NETWORKS 31

FIGURE 2.16. Two ways to compute the transposed convolution. (a) Per-
form standard convolution on input volume with zero-borders added. (b)
Multiply each filter value by each of the input volume values and add those
that overlap.

2.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are deep learning models that date back to 2014

(Goodfellow et al. 2014). These models belong to the set of generative models, a branch

of unsupervised learning algorithms in charge of mapping how the data was generated. The

GANs models are trained with the goal of generating synthetic data similar to some set

of real data. Its operation consists of two types of neural networks, which are faced by

having opposite objectives between them (hence the term adversarial). This confrontational

training, similar to reinforcement learning, allows inherent learning by a network to generate

data similar to those belonging to a real distribution.

2.3.1 GANs Structure

The two networks that compose a GAN are the following:

• Generator (G): This network is in charge of generating data that are highly similar

to the real set with which it was trained. It takes a vector of random noise values

(z) taken from a simple prior distribution (pz) as input and process it through their

32 2 THEORETICAL FRAMEWORK

inner values in the network until output data (G(z)) is obtained such that this new

data is very similar to the same complex distribution of the original set.

• Discriminator (D): This model has the goal of classifying between the real samples

(x ∼ pdata(x)) i.e. data that belong to the original set, and the generated samples

(G(z) ∼ pg(G(z))) i.e. those created artificially by the generator. Their input is

the data, either real or fake, and their output is classification probabilities for both

classes through the logistic function.

This general structure is called Vanilla GAN since it represents the base version from which

more sophisticated architectures started but which continue to respect the two fundamental

blocks of the GANs. A visual representation of this base structure is seen in Figure 2.17.

2.3.2 GANs Training

The training of a GAN is described as a zero-sum game (also called minimax) between two

players with opposite objectives; these are the Generator and the Discriminator. Taking a

vector of random noise sampled from prior distributions, e.g. normal or uniform, (z ∼ pz(z))

as input, called latent vector, the generator outputs samples from a more complex distribution

(G(z)) whose goal is to be equal to the distribution of the real dataset. Meanwhile the

discriminator has the task of distinguishing between the real samples(x ∼ pdata(x)) and the

generated samples (G(z) ∼ pg(G(z))). In the case of real data the goal of the discriminator

output (D(·)) is to be near to 1. In the fake data scenario, the discriminator output’s goal is

to be close to 0 meanwhile the generator will try to make near to 1 i.e. fool the discriminator

to classify his creations as real.

The training cost function of GANs, also called Minimax loss, is reflected by the following

equation:

min
G

max
D

E
x∼pdata

[log(D(x))] + E
z∼pz

[log(1—D(G(z)))] (2.19)

2.3 GENERATIVE ADVERSARIAL NETWORKS 33

The previous formula derives from the cross-entropy between the real and generated distri-

butions (Goodfellow et al. 2014).

The networks are trained simultaneously, encouraging both models towards continuous im-

provement and adaptation. For every iteration a gradient step with backpropagation is made

to reduce the cost function of each network, optimizing their internal weights. The generator

optimization is treated as optimizing the Jensen–Shannon divergence, which measures how

the probability distribution G(z) (estimated distribution) diverges from the expected prob-

ability distribution pdata (the real-life distribution). The training process is repeated for a

number of training iterations until the generator converges to make synthetic data indistin-

guishable from the real set of data i.e. D(·) equal to 0.5 for any sample, real or not, although

this theoretical ideal is almost never fulfilled and the iterations stop when the quality of the

creations is the required one, decided either by means of a measurement or the criteria of

the practitioner who implements them. The representation of this training process is in the

Figure 2.17.

FIGURE 2.17. Vanilla GAN training.

GANs have been used in many different tasks and fields, the most prolific being the synthesis

of images, their area of birth (Wang et al. 2019, Wang et al. 2020). However, the great

influence of GANs as a generative model of the state-of-the-art has allowed their migration

to other tasks such as neural style transfer, music synthesis and drug discovery, to name a few

examples; the following references offer a detailed overview of the GANs application areas

34 2 THEORETICAL FRAMEWORK

(including the above) as well as their development over the years (Alqahtani et al. 2019, Gui

et al. 2020).

2.3.3 GANs Shortcomings

GANs training is complicated because there must be a balance between the skills of the

generator and the discriminator. If there is a supremacy from one of the networks, training

instability problems may arise. These issues are (Costa et al. 2020b):

• Mode Collapse: The situation in which the generator can only synthesize a small

subset of data of the complete distribution since the training did not allow to gen-

eralize the richness of variants of the original distribution. As seen in Figure 2.18

on the left, training with the MNIST dataset, which consists of images of handwrit-

ten numbers from 0 to 9, failed to capture the diversity of the set, collapsing in the

generation of only two types of digits. While on the right of the same figure the

generator created an overlapping combination of digits.

• Vanishing Gradient: Originated when the discriminator or the generator becomes

powerful enough to cause an irreversible imbalance in training and by not using

adequate cost functions that allow obtaining adequate learning gradients that make

possible to the opposite network to improve its performances, thus causing a stale-

mate. As exemplified in Figure 2.19, when the discriminator is able to easily detect

between the real and synthetic samples i.e. its loss approaches zero, an stagnation

in the gradients feedback to the generator is produces, thereby avoiding an improve-

ment in the learning of the generator.

Due to the aforementioned issues it is important to have the correct hyperparameters, archi-

tectures and training procedure to obtain an useful generator.

2.4 ARCHITECTURES AND IMPLEMENTATIONS TO IMPROVE GANS 35

FIGURE 2.18. Example of Mode Collapse. Obtained from (Costa et al. 2020b).

FIGURE 2.19. Example of Vanishing Gradient. Obtained from (Costa et
al. 2020b).

2.4 Architectures and Implementations to Improve GANs

Some of the most outstanding advances in favor of improving the stability of the GANs and

that are relevant in the development of this project will be explained below.

2.4.1 Deep Convolutional Generative Adversarial Network

The Deep Convolutional Generative Adversarial Networks (DCGAN) were designed in (Rad-

ford et al. 2015) and is oriented to be used in images. This class of GAN was developed fo-

cusing on improving training stability compared to the original GAN model (Vanilla GAN)

36 2 THEORETICAL FRAMEWORK

that used Multi-Layer Perceptrons for both generator and discriminator. The training pro-

cess is the same as in the original GAN model but in DCGAN, both the generator and the

discriminator are inspired by the CNN architecture.

For the discriminator, a conventional CNN is used (see figure 2.7). This is because the

classifying task of the discriminator is not different from the classic classifying tasks for

which CNNs are commonly used. Meanwhile, for the generator, a deconvolutional network

is required. This kind of network is similar to standar CNN with the main difference that

being a generative model, it is responsible for obtaining images from high-level features

provided by random noise. The deconvolutional network used deconvolutional layers (see

Section 2.2.6), instead of convolutional layers like a CNN. In addition, since its purpose is

to expand the feature maps (upsampling) and not reducing them (downsampling) as in CNN,

the pooling layers are not used in its architecture. Figure 2.20 shows the general architecture

of a DCGAN generator.

FIGURE 2.20. General architecture of a DCGAN generator. As can be
seen when processing a random noise input with a series of deconvolutional
layers, new and larger feature maps are generated, resulting in the synthesis
of an RGB image (3 channels) with a resolution of 64x64 pixels. Obtained
from the original DCGANs paper (Radford et al. 2015).

Another difference with respect to CNNs is in the activation layers. Commonly in CNNs,

ReLU is used as activation function in every convolutional layer and sigmoid or softmax

functions are used after the fully connected layer that perform classification. In a DCGAN,

2.4 ARCHITECTURES AND IMPLEMENTATIONS TO IMPROVE GANS 37

generator layers use ReLU as well, but in the final layer the Tanh function is used since the

images used for the training are normalized in a range of [-1,1], the same that this function

grants. While for the discriminator LeakyReLU activation is used in all the layers except

in the last one which uses sigmoid function to obtain a binomial probability to perform the

classification between fake and real images.

Since its creation, DCGAN has become a base model for the synthesis of images in multiple

works of the state-of-the-art. Due to its superior specialized imaging capabilities and better

training stability, it helps to reduce problems such as mode collapse, although it does not

completely solve common GANs issues (Khan et al. 2018).

2.4.2 Conditional GANs

Conditional Generative Adversarial Networks (cGAN), created in (Mirza and Osindero 2014),

is a extension of the original Vanilla GAN.

In the Vanilla GAN, if the training set contained multiple data classes, its generation by

depending on the latent vector that comes from random values, generated new data of a

random class from among those existing in the real set, so it was left out from the user

control the generated data class.

In cGAN, this class of GAN is conditioned using prior information to generate distinct class

of data. This is achieved by adding the label y, which represents the class of the data, to

the input of both the generator and the discriminator. Through this addition to the original

model, it is possible to control the class of data generated, as well as to make a more punctual

discrimination of a particular class. The cost function of this model is the same as that of the

Vanilla GAN (see equation 2.19) with the addition of the class labels (y), as observed in the

following equation:

min
G

max
D

E
x∼pdata

[log(D(x|y))] + E
z∼pz

[log(1—D(G(z|y)))] (2.20)

38 2 THEORETICAL FRAMEWORK

In the generator, the prior input noise pz(z) and y are combined in a joint hidden represent-

ation. While in the discriminator both types of inputs, x and G(z), are also combined with

their respective y label. The Figure 2.21 represents the structure of a simple cGAN.

FIGURE 2.21. General structure of a cGAN. The green arrow represents
the concatenation of the y label to the GAN’s inputs.

2.4.1 cDCGANs

By joining the cGANs and the DCGANs, a model capable of controlling the class of the

images generated is obtained.

The structure of the cDCGANs respects the original of the DCGANs (see Figure 2.20). The

mechanisms to add the class label to the different inputs of the networks are the following:

• Generator: A one-hot vector is concatenated to the latent vector. The one-hot

vector is a binary vector, that has as many positions as the number of classes. All

positions contain zeros except for the position of the number that indicates the class

to be encoded, which contains a one. This input is represented in the Figure 2.22.

• Discriminator: As many new channels, of the same length and breadth of the im-

age, as the number of existing classes are concatenated to the input images. These

new channels (matrices) are filled with zeros except for the channel that represents

2.4 ARCHITECTURES AND IMPLEMENTATIONS TO IMPROVE GANS 39

the number of the class to be encoded, which is filled with ones. This input is shown

in the Figure 2.23.

FIGURE 2.22. Generator input in cDCGAN. The image class (dog breed)
that needs to be generated is represented by a one-hot vector that is concaten-
ated to the noise vector (latent vector). Inspired by (Zhou 2020).

FIGURE 2.23. Discriminator input in cDCGAN. The image class (dog
breed) is represented by a series of one-hot matrices that are concatenated
to the input image. Inspired by (Zhou 2020).

40 2 THEORETICAL FRAMEWORK

2.4.3 Wasserstein-GAN

Wasserstein-GAN (or also called WGAN) is an extension of the Vanilla GAN, developed in

(Arjovsky et al. 2017), that seeks an alternate way of training the generator model to better

approximate the distribution of data observed in a given training dataset.

Instead of using a discriminator to classify or predict the probability of generated images as

being real or fake, the WGAN replaces the discriminator model with a critic that scores the

realness or fakeness of a given image.

This change is due to the fact that the cost function used in Vanilla GAN may have a van-

ishing gradient when saturated at the extremes of the discriminator classification i.e. when

the discriminator is so good that it detects both sample cases almost perfectly. Therefore, a

new cost function is used which turns the discriminator into a critic (as it is called in this

model), which gives realism scores to the images obtained by the generator. This allows that

regardless of the quality of the generator’s creations, it always receives adequate feedback.

The Figure 2.24, taken from the original article, shows the differences between the gradients

obtained by the discriminator of the original GAN and the critic of the WGAN when learning

to differentiate two Gaussians. As can be seen, the WGAN does not have vanishing gradients

as the Vanilla GAN does.

WGAN had an improvement reflected in (Gulrajani et al. 2017). This new version is called

WGAN-GP. GP stands for Gradient-Penalty, a mechanism to prevent gradient explosion on

the critic.

WGAN-GP is a state-of-the-art GAN model, as it allows for better training stability. How-

ever, these problems continue to occur. In addition, it has a slightly high computational cost

that lengthens training times.

2.4 ARCHITECTURES AND IMPLEMENTATIONS TO IMPROVE GANS 41

FIGURE 2.24. WGAN and Vanilla GAN gradients. Obtained from the
original WGAN paper (Arjovsky et al. 2017).

2.4.4 Weight and Spectral Normalization

Weight normalization (Salimans and Kingma 2016) is a reparameterization of the weight

vectors in a neural network which allows to stabilize the update gradients, thus avoiding

gradient explosion and speeding up their training. This technique has proven its usefulness

in multiple types of NN where the training can easily be destabilized due to the high number

of internal parameters.

Spectral Normalization (Miyato et al. 2018) is a normalization technique used to stabilize

training of the discriminator. This technique normalizes the weight for each layer (weight

matrix) with its corresponding spectral norm also known as the matrix norm, the maximum

singular value of a matrix. With spectral normalization, the weights can be normalized

whenever there are updated. This creates a network that mitigates gradient explosion prob-

lems and therefore reduces instability in training. This mechanism has shown similar results

to WGAN-GP with shorter training times.

42 2 THEORETICAL FRAMEWORK

Between these two techniques, spectral normalization has shown to provide greater power of

representation by not restricting their area too much as Weight Normalization, as verified in

the original article. However, weight normalization continues to provide competitive results

when used on GANs (Xiang and Li 2017).

2.5 Fréchet Inception Distance

Fréchet Inception Distance also known as FID (Heusel et al. 2017) has stood out in recent

years as a state-of-the-art performance metric in GANs. Although the similarity between

sets of images remains an open problem in image processing, FID has been one of the latest

heuristics designed to cope with this. This is a metric for evaluating the quality of generated

images and specifically developed to evaluate the performance of GANs (Lucic et al. 2018).

FID use the pre-trained Inception-v3 CNN (Szegedy et al. 2016) for the feature extraction

of the real (x) and synthetic (g) images. Specifically, the coding layer of the CNN (the

last pooling layer prior to the output classification of images) is used to capture computer-

vision-specific features of an input image, thus obtaining a feature-vector of 2048 numerical

values. This feature space is interpreted as a continuous multivariate Gaussian distribution.

Therefore, from the features obtained, it is calculated the Fréchet (also named Wassertein-2)

distance between both distributions using their estimated mean (µ) and covariance (Σ). The

lower this metric is, the more similar the two sets of images are, being zero when they are

equal. The FID’s formula is the following:

FID(x, g) = ‖µx—µg‖22 + Tr(Σx + Σg—2(ΣxΣg)
1
2) (2.21)

where ‖µx—µg‖22 refers to the sum squared difference between the two mean vectors, Tr(·)
refers to the trace linear algebra operation, i.e., the sum of the elements along the main

diagonal of the square matrix and (ΣxΣg)
1
2 is the square root of the square matrix, given as

the product between the two covariance matrices.

2.6 EVOLUTIONARY COMPUTING 43

The Figure 2.25, obtained from the FID original article, shows examples of its increase

depending on the level of disturbance in the images.

FIGURE 2.25. FID evaluations with different disturbances. Left to right,
top to bottom: Gaussian noise, Gaussian blur, swirled faces, salt and pepper
noise. Obtained from the original FID paper (Heusel et al. 2017).

2.6 Evolutionary Computing

Evolutionary Computing (EC) in essence refers to a set of search algorithms obtained from

the theory of biological evolution used to tackle complex problems (Nayyar et al. 2018). EC

is a set of engineering methods that imitates the mechanism of evolution in organisms and

applies this to the deforming, synthesis, and selection of data structures. Their aim is to solve

optimization problems (Iba 2018).

Despite the fact that there are numerous evolutionary computing algorithms, the common

idea behind all of them remains the same; begin by randomly generating a set of potential

solutions called population. Then a new population is obtained by iteratively modifying these

44 2 THEORETICAL FRAMEWORK

potential solutions (offspring). The modification is done by iterative application of selection,

crossover, and mutation operators. This process stochastically discards poor solutions and

evolves fitter (better) ones. Due to the nature of this operators, it is expected that the evolved

solutions will become better iteration by iteration (generation) (Bansal et al. 2019).

The adaptation of these solutions to their environment is measured by their fitness function

(i.e. objective function), which is responsible for measuring the quality of the solution in the

search space for a defined problem e.g. an optimization problem to minimize the value of a

function f(x), which is defined as:

minimize
x

f(x)

subject to gi(x) ≤ 0, i = 1, ...,m

hj(x) = 0, j = 1, ..., p

(2.22)

where x is a solution vector of n variables and the function f maps the value of x (Rn) to a

real value (R). The gi(x) ≤ 0 are called inequality constraints and hj(x) = 0 are equality

constraints, both must be fulfilled by the solution vector. The goal is to find x∗ called the

optimal vector, that minimizes f in such a way that any other solution (x) is greater than the

value of this i.e. f(x) > f(x∗). Therefore the purpose of EAs is to find the solution x∗ or

failing that, a competitive solution (or a set of them).

The representation of the solutions in the EAs has an important role, since depending on

this choice, a solution can be evaluated directly through the fitness function or it will need

a previous decoding step that maps it to a suitable representation to evaluate. For example,

an encoding through the binary system will need to be decoded to the decimal system if the

function requires it, or directly evaluated according to its sequence of bits. The choice of

the encoding of the potential solutions is strongly linked to the representation of the search

space, so its choice must be rigorously made in order not to cause bias in the search or restrict

access to certain areas of the search space (Bansal et al. 2019).

2.6 EVOLUTIONARY COMPUTING 45

Evolutionary computing differs from the traditional searching and optimizing in the follow-

ing ways:

• EC is population-based: Utilizing potential solutions simultaneously to aid the

searching process through the search space, the set of solutions among which the

desired solution resides. They mostly use recombination to form a new solution by

mixing the information of previous candidates.

• EC is a metaheuristic: Rather than using function derivatives or related know-

ledge, it uses direct fitness information that provides a heuristic estimate of solution

quality.

• EC is stochastic: Using probabilistic, as opposed to deterministic, transition guidelines.

EC gives good solutions, implying that the solutions are not necessarily optimal.

The previous characteristics allow customizable solutions for specific issues that are applic-

able on a variety of problems and deliver good solutions in adequate time. Evolutionary com-

puting algorithms cater to these needs and thus answer the challenge of making automated

solution methods for a large number of problems, which are increasingly mind-boggling, in

the least possible time (Nayyar et al. 2018).

There are many families of algorithms that come under the umbrella of EC such as Ge-

netic Algorithms (GAs), Genetic Programming (GP), Evolutionary Programming (EP), and

Evolutionary Strategy (ES). However, evolutionary computing has broaden its scope and

extended to include many areas, one of which is Swarm Intelligence.

2.6.1 Swarm Intelligence

Loosely speaking, Swarm Intelligence (SI) is part of the EC paradigm, but the interests

in swarm intelligence are so overwhelming that has almost become a field of itself (Yang

2015). SI is quite a general concept that multiple agents interact and exchange information,

following simple rules. Rather surprisingly, such simple systems can show complex, self-

organized behaviour.

46 2 THEORETICAL FRAMEWORK

The word swarm refers to a collection of disorganized moving individuals or objects like

insects, birds, fishes. More formally, a swarm can be considered a collection of interacting

homogeneous agents or individuals. Researchers have developed many useful algorithms by

modeling and simulating the foraging behavior of these individuals (Bansal et al. 2019).

The qualities of SI algorithms that researchers find attractive are their simplicity, ease of

implementation and very few control parameters. Literature shows that lots of research pa-

pers reported the successful use of SI-based algorithms in a wide range of applications, like

structural optimization, scheduling, bioinformatics, machine learning, data mining, medical

informatics, image analysis, industrial problems, operations research, dynamical systems

and even finance and business (Bansal et al. 2019, Nayyar et al. 2018).

Some merits of swarm intelligence are (Kumar et al. 2019):

• Scability: These algorithms are applicable for wide range of problems. SI systems

are highly scalable, as they are able to explore the complete solution search space,

and it is interpreted as the control mechanisms are independent on swarm size.

• Adaptability: These algorithms easily adapt the environmental conditions and try

to converge into optimal solutions and react very quickly for varying surroundings

and make use of self-organization capabilities and inherit auto-configuration. The

adaptability permits them to adapt individual’s behaviour to the environment on a

run-time basis, with wide-ranging flexibility.

• Cooperative robustness: There is no central control in these algorithms and all the

individuals work collectively because of its robust structure. However, the fault-

tolerance skills are curiously high in SI systems, as all individuals communicate

with others, therefore such systems do not have any chance of failure. The risk

factor is reduced because the system works independently.

• Individual Simplicity: The individual agents in the swarm are very simple and not

intelligent due to limited capabilities, but they collectively show intelligence.

2.6 EVOLUTIONARY COMPUTING 47

The most representative algorithms in the field of SI are Particle Swarm Optimization (PSO),

Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Firefly Algorithm (FA),

among others. The present work focuses on the use of PSO for neuroevolution.

2.6.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is inspired on the flying pattern of bird flocks. Originally

developed by Kennedy and Eberhart (1995); it was intended to be applied to optimization

problems. In PSO the individuals, called particles, move in a multidimensional space (search

space) and each of them represents a potential solution.

Each particle stores its own position vector in the search space expressed by a vector of real

numbers (in the original version of PSO) and their velocity vector, which represents the rate

of the change of direction and magnitude of its movement, also represented by a real vector.

For a D-dimensional search space, the position vector of the i-th particle of the swarm at

generation (iteration) t is represented by a D-dimensional vector xti = (xti1, x
t
i2, ..., x

t
iD)T .

The velocity is represented by another D-dimensional vector vti = (vti1, v
t
i2, ..., v

t
iD)T . Each

particle has also knowledge of its best historical position at which the individual obtained the

highest fitness value, called pBest (pBestti = (pBestti1, pBest
t
i2, ..., pBest

t
iD)T). All indi-

viduals also share information regarding the position with the highest fitness value which has

been found historically up to generation t, known as gBest (gBestt = (gBestt1, gBest
t
2, ..., gBest

t
D)T).

The position vector and the pBest and gBest vectors have a fitness value assigned relative to

the quality of the solution they represent (fitnessti).

The particle swarm is not merely a collection of particles. A particle alone is powerless

to solve any kind of problem; headway occurs only when the particles communicate. Each

member of the swarm interacts with others using simple and limited actions. Particle swarms

usually use three components to determine the searching behaviour of each individual (Nay-

yar et al. 2018):

• Cognitive: Responsible for weighing the importance an individual gives to its own

knowledge of the world.

48 2 THEORETICAL FRAMEWORK

• Social: Weighs the importance an individual with respect to the cumulative know-

ledge of the swarm as a whole.

• Inertia: Specifies how fast individuals move and change direction over time.

With the above in mind, the presence of these components can be observed in the formula in

charge of updating the velocity of the i-th particle:

vt+1
id = w × vtid + cp × rp × (pBesttid—xtid) + cg × rg × (gBesttd—xtid) (2.23)

where w is a constant called inertia weight that adjusts how much the previous velocity af-

fects the new velocity (Inertia component); cp and rp are a constant (user defined) and a ran-

dom uniform number ([0,1)), respectively, that determine the influence of pBest (Cognitive

component) and finally, similar to the last pair, cg and rg determine the influence of gBest

(Social component).

The formula in charge of updating the position of the particles is:

xt+1
id = xtid + vt+1

id (2.24)

The Figure 2.26 represents the behavior of a particle when updating its position, and Al-

gorithm 1 shows the general pseudocode of the classic version of PSO.

PSO has the characteristic of allowing a fast convergence (Sahu et al. 2012) i.e. to find

a solution in an optimum, generally a local one, which causes the rest of the population

to turn in that direction. This could generate an early stagnation of the search, reducing

the exploration power of the algorithm (and promoting exploitation). However, this ability

is useful when computational resources are limited since it allows to shorten search times

and then in fewer generations to find competent solutions. This allows avoiding extensive

searches that, on the contrary, more popular evolutionary computing algorithms such as the

Genetic Algorithm would take longer to converge towards this type of solutions and that

2.6 EVOLUTIONARY COMPUTING 49

FIGURE 2.26. Example of a PSO 2D particle update mechanism.

PSO variants have been shown to obtain better results than these, when they are limited to a

low number of calls of the fitness function, as shown in (Piotrowski et al. 2017).

2.6.3 Neuroevolution

Neuroevolution, which draws inspiration from the biological process that produced the hu-

man brain, design and train neural networks with evolutionary computing algorithms (Miikku-

lainen et al. 2019). Such methods enable important capabilities that are typically unavailable

to classical approaches. Such capabilities for neural networks include learning their building

blocks (e.g. activation functions), hyperparameters (e.g. learning rates), architectures (e.g.

number of neurons per layer, number of layers) and even the rules for learning themselves

(Stanley et al. 2019).

This EC application has allowed to obtain better performances in multiple areas of DL, from

building more accurate, more complex or even shallower networks, with methods and sets

50 2 THEORETICAL FRAMEWORK

Algorithm 1 Classic PSO Pseudo-code
Input: Number of particles, N; number of dimensions, D; number of generations (itera-

tions), T.
Output: gBestT (Best solution found)

1: Random initialization: D-dimensional swarm of N particles S (x11, ..., x
1
N); velocity vec-

tor of each particle (v11, ..., v
1
N).

2: Evaluate fitness of each particle (fitness11, ..., f itness
1
N) and choice pbest

((pBest11, ..., pBest
1
N)) and gBest (gBest1).

3: for t=1 to T do
4: for i=1 to N do
5: for d=1 to D do
6: Update vtid with (2.23)
7: Update xtid with (2.24)
8: end for
9: Evaluate fitness of xt+1

i (fitnesst+1
i)

10: if fitnesst+1
i better that fitness of pBestti then

11: pBestt+1
i ← xt+1

i

12: end if
13: end for
14: for i=1 to N do
15: if pBestt+1

i better that fitness of gBestt then
16: gBestt+1 ← pBestt+1

i

17: end if
18: end for
19: end for

of training parameters not previously developed, all according to the needs of the task or the

avaible computing resources (Galván and Mooney 2020, Martinez et al. 2020).

As GANs are DL models, their designing and training through these EC methods have been

explored and thereby improving their performance and helping to solve the major problems

that afflict them.

2.7 Biomedical Imaging and Data Augmentation

Biomedical imaging concentrates on the capture of images for both diagnostic and thera-

peutic purposes. Snapshots of in vivo physiology and physiological processes can be garnered

through advanced sensors and computer technology (Lu et al. 2017).

2.7 BIOMEDICAL IMAGING AND DATA AUGMENTATION 51

Biomedical imaging technologies utilize either X-rays (CT scans), sound (ultrasound), mag-

netism (MRI), radioactive pharmaceuticals (nuclear medicine: SPECT, PET) or light (endo-

scopy, OCT) to assess the current condition of an organ or tissue and can monitor a patient

over time for diagnostic and treatment evaluation (Suetens 2017).

These types of images supported with Deep Learning models have had innumerable suc-

cesses in tasks related to the diagnosis and prediction of diseases (Litjens et al. 2017, Bakator

and Radosav 2018, Mohapatra et al. 2021). However, these DL models require a vast amount

of data for proper generalization and thereby raise their performances. The foregoing are

conflicts with the use of biomedical images, as are scarce for four main reasons (Guibas et

al. 2017):

• Privacy: Taking biomedical images of a patient implies confidentiality clauses

since they are dealing with sensitive information that may violate their right to pri-

vacy. Therefore, the patient’s approval is not always available to use these data

outside of those strictly necessary for his/her diagnosis and treatment.

• Health bias: Those patients who are afflicted by illnesses are more likely to attend

to health centers than those that are healthy, thus more information about ill patients

is available.

• Cost: Some tests to obtain these types of images are usually expensive so not every

patient can take them.

• Risk: Taking these images may involve exposing the patient to radiation doses that

can affect them in large quantities.

That is why the use of techniques that allow to artificially increase the number of available

samples has been very useful in DL. These techniques are called Data Augmentation (DA)

(Abdollahi et al. 2020). Classic DA methods involve oversampling the available data by

applying a series of spatial transformations to images, such as rotation, translation, clipping,

and filter application. The Figure 2.27 shows a series of examples of these techniques.

DA has been proven to improve the performance of DL models (Perez and Wang 2017).

However, DA tools have a limit in improving DL systems (Buda et al. 2018), so a generative

52 2 THEORETICAL FRAMEWORK

FIGURE 2.27. Example of classic DA techniques in a brain MRI. Ob-
tained from (Nalepa et al. 2019).

approach such as GANs has allowed to further extend the limits of exploitation of the set of

original images for being used in multiple medical applications (Shin et al. 2018, Sorin et al.

2020, Kazeminia et al. 2020).

2.8 Chest X-ray Images

Chest X-rays (CXR) are a type of biomedical images with multiple uses in the medical area,

many of these applications have made use of Deep Learning. DL-based computer vision

models are used to detect the attributes of these diseases and design appropriate models to

support the biomedical area. Its most prominent applications are the diagnosis of multiple

diseases (e.g. lung cancer or tuberculosis) or the segmentation of areas of interest (Gordienko

et al. 2018, Stirenko et al. 2018, Bhandary et al. 2020). However, as previously mentioned,

these DL models require a vast amount of data. Therefore, the use of Generative Adversarial

Networks has made it possible to increase the available CXR image bases for training sys-

tems that support medical professionals in the diagnosis of this ailments.

The use of CXR images has increased with the sudden appearance of the Severate Acuate

Respiratory Syndrome Coronavirus (SARS-Cov-2), known as COVID-19, since the end of

2019 (Bonilla-Aldana et al. 2020). This pathology has caused an exponential growth of

infected people around the world, escalating to the level of a pandemic, causing the loss

of countless lives. The disease generated by this new virus, belonging to the Coronavirus

family (CoV), infects the lungs and causes life-threatening respiratory syndromes (Huang et

2.8 CHEST X-RAY IMAGES 53

al. 2020). One of the main complications caused by this disease is pneumonia with distinct-

ive characteristics, different from pneumonia by other causes such as bacterial infection. The

search for these singularities is accomplished by CXR images of patients afflicted with pneu-

monia and suspected of COVID-19, in which the lungs of patients are shown. An example

of this kind of images is shown in Figure 2.28. However, these characteristics are hardly de-

tectable with the naked eye by health experts (Ng et al. 2020, Huang et al. 2020). Motivated

by that, in recent months projects and works have been developed focusing on designing DL

models that perform the task of detecting these qualities through the processing of CXR im-

ages in order to support the diagnosis and medical decision making. This would also reduce

the waiting time of the current COVID-19 detection technique called Reverse-Transcriptase

Polymerase Chain Reaction (RT-PCR) (Corman et al. 2020). The main approach to detect-

ing COVID-19 using CXR images has been the use of CNN for its classification, which has

obtained quite good results (Kumar et al. 2020, Shi et al. 2020, Zhang et al. 2020, Jain et al.

2021, Ismael and Şengür 2021).

FIGURE 2.28. Example of chest X-ray image from a patient with
COVID-19 pneumonia. Obtained from (Chowdhury et al. 2020).

However, prior to the COVID-19 scenario, CXR imaging has also been used for other types

of illnesses such as pneumonia from bacterial or viral causes (Rajpurkar et al. 2017,Bal-

truschat et al. 2019). That is why there are datasets focused on this type of diseases, also

enriched with CXR images of healthy patients in order to have the necessary data to make an

adequate discrimination and contrast between cases with any of these diseases and healthy

cases.

54 2 THEORETICAL FRAMEWORK

Having available public data sets of CXR images of various pathologies (including COVID-

19 pneumonia) allows for an adequate case study to apply the neuroevolution of GANs in

the area of biomedical images.

2.9 Chapter Summary

This chapter addressed the basic fundamentals of Deep Learning, the Convolutional Neural

Networks as well as the Generative Adversarial Networks and their variants and additions

in order to improve their stability. Additionally, Evolutionary Computing and Swarm Intel-

ligence were presented as well as the branch focused on evolving Neural Networks called

Neuroevolution. Finally, the contributions of GANs to Data Augmentation were mentioned

as well as the case study addressed in this research work, the chest X-ray images.

CHAPTER 3

Literature Review

This chapter presents a review of the literature related to the progressive growth of GANs as

well as the neuroevolution of GANs. Further, the works that use GANs for the synthesis of

chest X-ray images are exposed. To the best of our knowledge this is all the work done in

these areas until May 2021.

3.1 Progressive Augmentation of GANs

Since the conception of the GANs in 2014 there have been a plethora of works dedicated

to improving the stability of their training and thereby avoiding related problems e.g. mode

collapse and vanishing gradient. Part of that work has been dedicated to proposing better

GAN architectures, such as DCGAN (see section 2.4.1); implement better cost functions

that improve learning e.g. W-GAN (see section 2.4.3); or even limit the learning gradients

of the NN, in order to preserve the balance between both modules of the GANs, as proposed

by Spectral Normalization (see section 2.4.4).

In recent years, one approach that has led to promising results in improving GANs has been

their progressive augmentation. This term refers to when the NN have an addition of sets

of layers or increase the complexity of the task to be carried out by one of the NN as their

training progresses, allowing to obtain more complex outputs than in the previous step, until

reaching a desired final complexity or size of the output (e.g. resolution of the image).
55

56 3 LITERATURE REVIEW

Table 3.1 shows a synthesis of the works related to GANs progressive augmentation. This

table condenses the name and reference of the work, the datasets used, the evaluation metrics

of its results and its highlights.

As can be seen, there have been few works with this approach all of them applied to popular

datasets and without any focus on biomedical images or any real applications. However, all

of these have presented an improvement in the stability of the GANs. Among these works,

the most prominent and the one that has been used as a starting point in the present thesis is

Pro-GAN, a brief description of it will be provided below.

3.1.1 Pro-GAN

Progressive growing of GANs is the approach taken by Pro-GAN (also known as PGAN or

PGGAN). This presents a process to progressively add layers to the GAN networks, as the

training is carried out. This set of layers predefined by the authors gradually doubles the

resolution of the output images until the desired final resolution is obtained. The principle

on which they were based was that training GANs at low resolutions is less complex, which

is why the GAN obtains good results and has a more stable training. Through increasing

the complexity to learn, the GAN has a moderate learning of the more complex distributions

given with greater resolution. This allows to obtain better and more stable results compared

to training from the beginning to the GAN with the complexity of the final resolution.

The representation of the Pro-GAN process is shown in Figure 3.1 taken from the original

article. In that image it is observed how as the training progresses, new layers are added

to the generator and the discriminator, both networks as a mirror image with respect to the

other.

Multiple works have been based on the Pro-GAN mechanism, including the synthesis of

biomedical images, those works are concentrated in Table 3.2, where the reference and the

type of synthesized biomedical image are included. As shown, this mechanism has many

successes in the area of biomedical images, allowing to expand the number of instances

available to generate and train pro-health models, such as the support of diagnosis through

3.1 PROGRESSIVE AUGMENTATION OF GANS 57

Name
(Authors, year)

Architecture Datasets Evaluation metrics Highlights

Laplacian GAN
(Denton et al.
2015)

Vanilla GAN
• STL
• LSUN
• CIFAR-10

Log-Likelihood
• Use a sequence of generat-
ors to scale the resolution.
• Each generator has an out-
put conditioned by the im-
age synthesized by the gen-
erator of the previous resol-
ution.

Pro-GAN
(Karras et al.
2017)

DCGAN-based
• CelebA
• LSUN
• CIFAR-10

• Sliced Wasserstein Dis-
tance (SWD).
• Multi-scale structural

SIMilarity (MS-SSIM).

• Adding preset layers (in
generator and discriminator)
as the training goes on.
• Training speedup com-

pared to fixed models.
PA-GAN
(Zhang and
Khoreva 2019)

DCGAN-based
(with spectral
normalization)

• CIFAR-10
• MNIST
• F-MNIST
• CelebA

FID
• Progressively increase the
discriminator input so that
the complexity of its clas-
sification increases to avoid
early performance satura-
tion.
• Architecture-agnostic.

SinGAN
(Shaham et al.
2019)

Own-design Web images
• Amazon Mechanical

Turk
• Single FID

• Single image learning.
• The synthesized image

of the previous resolution is
concatenated to a random
noise image and is input to
the generator of the next res-
olution.
• Applications in paint to im-
age, editing, harmonization,
Super-resolution and anima-
tion.

SP-GAN
(Song et al. 2020)

DCGAN-based
• MNIST
• CelebA
• CIFAR-10
• CUFS

• Structural SIMilarity
(SSIM).
• Riesz-transform based

Feature SIMilarity metric
(RFSIM).

• Self-growing and pruning
of GAN with preset layers.
• Design and use of a new
GAN’s cost function.
• Training speedup.

TABLE 3.1. GANs Progressive Augmentation literature review summary.

the detection of pathologies in this type of images. So far, no work has used Pro-GAN for

the synthesis of CXR images, so based on its previous successes in biomedical imaging its

use in this type of images is promising, which is why it has been one of the approaches used

in this thesis.

58 3 LITERATURE REVIEW

FIGURE 3.1. Progressive Growing of GANs. Inspired by (Karras et al. 2017)

Reference Synthesized biomedical image
Beers et al. 2018 Retinal images

Korkinof et al. 2018 Mammograms
Eklund 2019 Brain volumes (voxels)

Han et al. 2019 Magnetic resonances
Teramoto et al. 2020 Lung cytological images

Abdelhalim et al. 2021 Skin lesions

TABLE 3.2. Biomedical image synthesis using Pro-GAN literature review
summary.

3.2 GANs Neuroevolution

Previous works regarding the neuroevolution of GANs are summarized in Table 3.3, which

includes the reference and the name given to the algorithm, the evolutionary algorithm used,

the GAN’s architecture (if it is evolvable, the used network encoding), variation operators,

fitness function, as well as the type of offspring selection, the evaluation metrics and the

training datasets.

As can be seen, most of the papers are focused on the use of Genetic Algorithms and Co-

evolution. The use of Swarm Intelligence algorithms is a great absence. Also, many of

3.2 GANS NEUROEVOLUTION 59

these works have a DCGAN-based architecture which shows its status as a state-of-the-art

architecture.

All works that evolve its architecture use a list-based encoding scheme, in which there are

declarative blocks that contain the hyperparameters of each layer in the NN.

In the field of evaluation metrics there is no general consensus, so multiple approaches have

been used. However, the Fréchet Inception Distance (FID) (see Section 2.5) has stood out in

recent years as a state-of-the-art metric.

Something else that can be seen in the revision of the literature is that the most of the work

in GANs neuroevolution has focused on the use of well-known image benchmarks (e.g.

CIFAR-10, MNIST, CelebA), which contain thousands of images, yet without exploring sets

of real applications, such as the use of biomedical images, which usually do not usually

exceed a thousand images.

60
3

L
IT

E
R

A
T

U
R

E
R

E
V

IE
W

Name
(Authors, year)

EA type Architecture
(Encoding
scheme)

Variation Operat-
ors

Fitness Selection Evaluation met-
rics

Datasets

CAGAN
(Ni et al. 2018)

Cultural algorithm DCGAN-based Mutation
(discriminator
weights)

Custom Best individual Inception score
• CIFAR-10
• STL-10

Pareto GAN
(Garciarena et al.
2018)

Genetic algorithm Evolvable
(List-based) • Crossover

• Mutation

IGD
(Pareto front)

Pareto domin-
ance

IGD Bi-objetive
functions

Lipizzaner
(Al-Dujaili et al.
2018)

Coevolution DCGAN-based Mutation (weights) GAN loss Spatial Qualitative
• MNIST
• CelebA

Mustangs
(Toutouh et al. 2019)

Coevolution DCGAN-based Mutation (weights
and loss)

GAN loss Spatial FID
• MNIST
• CelebA

E-GAN
(Wang, C. et al.
2019)

Evolutionary learn-
ing algorithm

DCGAN-based Mutation
(loss function)

Custom Best individual
• Inception score
• FID

• CIFAR-10
• LSUN
• CelebA

COEGAN
(Costa et al. 2019)

Coevolution. Evolvable
(List-based)

Mutation
(architecture) • FID

• GAN loss

NEAT-based FID
• MNIST
• F-MNIST
• CelebA

CA-GAN
(Mehta et al. 2019)

Cultural algorithm Evolvable
(List-based)

Mutation
(architecture,
weights and loss)

GAN loss Best individuals Classification
performance

Face images

DEGAN
(Zheng et al. 2019)

Differential evolu-
tion

DCGAN-based
• Mutation
• Crossover
(images in training
set)

Custom Best individual Average pre-
cision (image
outlines)

• BSDS500
• NYUD

GAN-GA
(Cho and Kim 2019)

Genetic algorithm DCGAN-based
• Crossover
• Mutation
(both for generated
images)

Discriminator
value of the
generated image

Best individuals GAN loss MNIST

HEO-GAN
(Korde et al. 2019)

Genetic algorithm
• DCGAN-based
• WGAN
• Vanilla GAN

• Crossover
• Mutation
(weights)

FID Best individuals FID
• MNIST
• CelebA

CO-EGAN
(Shu et al. 2019)

Coevolution. CycleGAN
(Binary strings) • Mutation

• Crossover
(Generator architec-
ture)

Custom Best individual
• FLOPs
• FID
• FCN

Multiples
focused on
style transfer

NSLC-COEGAN
(Costa et al. 2020a)

Coevolution. Evolvable
(List-based)

Mutation
(architecture)

NSLC-based Best individual FID MNIST

COEGAN+Skill
(Costa et al. 2020c)

Coevolution. Evolvable
(List-based)

Mutation
(architecture) • FID

• Skill rating

NEAT-based FID
• SVHN
• F-MNIST
• CelebA

TABLE 3.3. GANs neuroevolution literature review summary.

3.3 CXR SYNTHESIS WITH GANS 61

3.3 CXR Synthesis with GANs

Table 3.4 summarizes GANs implementations to synthesize CXR images. It contains the

work reference, the GAN architecture used, the resolution of the synthetic images, the eval-

uation metrics of the results and the synthesized CXR images classes.

Once again, the hegemony of the used DCGAN-based models can be observed. Disadvant-

ageously, all of these architectures are handcrafted and they might not be generalizable to

other lung pathologies or biomedical images.

The resolutions worked are diverse, but most take a resolution equal to or less than 256x256

pixels, proving that this is sufficient for use in subsequent activities. Regarding the metrics

to evaluate their results, they put aside the similarity between the sets of images to focus on

improving the performance of specific tasks such as classification.

As can be seen, most of the work was carried out in 2020, due to the increase in implement-

ations developed in order to obtain synthetic images to improve the DL models focused on

the detection of COVID-19 pneumonia from CXR images. For the rest of the works, the ma-

jority was in charge of synthesizing mainly CXR of pneumonia and healthy classes, mainly

due to the fact that these are the most abundant in open access sources.

62 3 LITERATURE REVIEW

Authors, year Architecture Image size Evaluation metrics Synthesized
CXR class

Madani et al.
2018

DCGAN-based 128x128 pixels Classification performance
• Healthy
• Cardiomegaly

Salehinejad et
al.
2018

DCGAN-based 256x256 pixels
• Radiologists
• Classification performance

• Cardiomegaly
• Pneumothorax
• Edema
• Effusion
• Healthy

Middel et al.
2019

WGAN-GP 128x128 pixels
• FID
• Structural SIMilarity (SSIM)
• Mean Squared Error (MSE)
• Specificity
• Generalization ability
• PCA

• Pneumonia
• Healthy

Zhang et al.
2019

Own design 512x512 pixels
• Sliced Wasserstein Distance
(SWD)
• Multi-Scale Structural SIMil-
arity (MS-SSIM)
• FID

• Pneumonia
• Healthy

Karakanis and
Leontidis.
2020

Conditional GAN 446x446 pixels Classification performances COVID-19

Khalifa et al.
2020

DCGAN-based 256x256 pixels Classification performance
• Healthy
• Pneumonia

Loey et al. 2020 DCGAN-based 512x512 pixels Classification performance
• Healthy
• Pneumonia bac-
terial
• Pneumonia virus
• COVID-19

Menon et al.
2020

MTTGAN 128x128 pixels
• Classification performance
• Radiologists

COVID-19

Shams et al.
2020

DCGAN-based 64x64 pixels GAN loss
• Healthy
• COVID-19

Waheed et al.
2020

DCGAN-based 112x112 pixels
• Classification performance
• PCA

• Healthy
• COVID-19

Zulkifley et al.
2020

DCGAN-based 224x224 pixels Classification performances COVID-19

Karbhari et al.
2021

ACGAN 112x112 pixels
• FID
• Inception score
• Classification performances

• Healthy
• COVID-19

Kora Venu and
Ravula.
2021

DCGAN-based 128x128 pixels
• Classification performances
• FID

Healthy

Sheykhivand et
al.
2021

Vanilla GAN 224x224 pixels Classification performances COVID-19

TABLE 3.4. CXR synthesis with GANs literature review summary.

3.4 CHAPTER SUMMARY 63

3.4 Chapter Summary

This chapter presented the background in the areas of progressive augmentation of GANs,

GANs neuroevolution and synthesis of CXR images using GANs. Through these studies,

the following observations were obtained:

• There is an improvement in the stability of the GANs when they are obtained

through a progressive regime i.e. a gradual increase in the complexity of training.

• Until now, Swarm Intelligence has not been used in Evolutionary Computing meth-

ods for neuroevolution of GANs, a gap that misuses the potential of these algorithms

to obtain faster convergences that implies savings in computational costs.

• The networks for the synthesis of CXR are entirely developed under the expertise

of the researchers and based on the DCGANs, an approach that may not be gener-

alizable to other pathologies or areas different from the original tasks.

CHAPTER 4

Proposed Algorithm

This chapter presents the algorithm proposed for the neuroevolution of GANs, named DCGAN-

PSO and its multi-class version named cDCGAN-PSO.

4.1 DCGAN-PSO

The algorithm proposed here is based on three fundamental principles supported by the lit-

erature:

• Training a DCGAN with progressive resolution growth allows for better training

stability.

• Using PSO allows rapid convergence, which shortens search times.

• DCGANs being composed by CNNs can exploit previous knowledge in CNN neuro-

evolution.

Based on these ideas, DCGAN-PSO was developed. This algorithm evolves DCGAN-based

architectures and train them by gradually increasing the resolution of the generated images

adding layers not preset but constantly evolving using a version of Particle Swarm Optimiz-

ation.

DCGAN-PSO presents the following novelties to the field of GANs neuroevolution:

• It is the first algorithm on GANs neuroevolution based on Swarm Intelligence, to

the best of the author’s knowledge.
64

4.1 DCGAN-PSO 65

• First to use biomedical imaging as a target area in GANs neuroevolution, to the best

of the author’s knowledge.

The different aspects that make up the DCGAN-PSO will be addressed below.

4.1.1 Base Works

The proposed algorithm was based primarily on the work carried out by Pro-GAN in the

progressive growth of DCGANs (work previously seen in section 3.1.1) and Junior and

Yen (2019) work to be detailed below.

psoCNN is the name given to the algorithm created by Junior and Yen which uses Particle

Swarm Optimization to evolve the architecture of CNN with the purpose of finding classifiers

with high performances in different benchmark datasets (e.g. MNIST) automatically. Some

of the achievements obtained by his work are:

• Reduction of search times (mainly due to the rapid convergence of the PSO) with

few particles and iterations, then reducing computational costs with respect to other

CNN neuroevolution algorithms.

• Using an almost standard PSO algorithm with few parameters that avoid excessive

complexity both in its implementation and in its operation.

• Design of operators that allow the evolution of the networks represented respecting

the nature of the original PSO.

• Obtaining better results than other state-of-the-art neuroevolution algorithms in

CNN (including another PSO).

It is for these highlights that psoCNN was taken as a basis for this proposal, making the

appropriate adjustments to be able to be used with DCGANs.

66 4 PROPOSED ALGORITHM

4.1.2 Pseudocode of DCGAN-PSO

Algorithm 2 has the pseudocode of the mechanism implemented by DCGAN-PSO for the

evolution of GANs for the synthesis of CXR images of COVID-19 pneumonia.

As seen in the pseudocode, the algorithm receives as input the datasets of CXR images in the

different resolutions used, as well as the parameters that define its behavior. As output, the

best trained particle (gBest) will be obtained, which will generate images with 2562 pixels

of resolution.

The algorithm begins the iteration through the various resolutions, starting from 42 pixels of

resolution until gradually reaching 2562 pixels, doubling it at each step (line 1). For each

resolution, the swarm will be initialized with particles that generate images in the current

resolution, as well as the respective pBest of each particle and the gBest (line 2). Therefore,

for a defined number of generations, the particles will be decoded in their corresponding

DCGANs, they will be then trained and later their fitness will be evaluated (lines 3-15).

According to their fitness, the pBests and the gBest will be updated (lines 16-21). After that,

the velocity and position of each particle will be updated (lines 22-24). At the end of the

iterations through all the necessary resolutions, the trained gBest is returned (line 28) which

is the best trained DCGAN.

The detailed explanation of each mechanism in DCGAN-PSO will be presented in the fol-

lowing sections.

4.1.3 Encoding-Scheme

A list-based encoding is used to represent the topology of the CNNs in the DCGAN model.

Each module in the list represents a layer and the sequence of modules in the list is used to

implement the generator and by using a mirror image of this, the discriminator is implemen-

ted. This list is the representation of the particle in the proposed PSO. However, a faithful

mirror image is not implemented, because the nature of the tasks of both NN, the layers used

and the restrictions implemented are different between the two parts of the DCGAN.

4.1 DCGAN-PSO 67

Algorithm 2 DCGAN-PSO
Input: Training CXR dataset of each resolution used, N° generations per resolution, N°

epochs per particle training, Swarm size, Cg, resolutions list.
Output: Trained DCGAN of CXR images of pneumonia caused by COVID-19 in 2562

pixels resolution (gBest).
1: for resolution in resolutions list do
2: Initialization: Swarm← Initialize Swarm(resolution), pBests, gBest.
3: for N° generations per resolution do
4: for particle in swarm do
5: if resolution = 42 pixels then
6: Network← DCGAN particle architecture
7: else
8: Network← DCGAN previous resolution pBest architecture
9: Network weights← Previous resolution pBest weights

10: Network← Add DCGAN particle architecture at the end of the Network
11: end if
12: for N° epochs per particle training do
13: Train Network with CXR dataset of its respective resolution
14: end for
15: particle fitness← FID(Network)
16: if particle fitness ≤ particle pBest fitness then
17: particle pBest← particle
18: particle pBest weights← particle weights
19: end if
20: end for
21: gBest← pBest with lowest fitness
22: for particle in swarm do
23: particle velocity← UpdateVelocity(particle)
24: particle← UpdateParticle(particle velocity)
25: end for
26: end for
27: end for
28: RETURN gBest

The differences in the implementation between both NN are the following:

• The transposed convolutional layers in the generator are replaced by convolutional

layers in the discriminator. This is because the task of the generator is to expand the

feature maps of the previous layer and the discriminator aims to obtain finer motifs

that allow the classification of the images.

68 4 PROPOSED ALGORITHM

• While the generator could use convolutional layers to process the feature maps of

the previous layer while keeping them with the same two dimensions i.e. length and

width, they are not used in the discriminator. This is in order to reduce computa-

tional costs, since it could cause very deep discriminators with a very high number

of weights to train; this in addition to avoid over-complexity that can lead to prob-

lems such as over-fitting or power imbalance in the GAN.

The different layers used in the generator and their counterpart in the discriminator, as well

as the hyperparameters that define them are shown in Table 4.1. The stride has a fixed value

in the layers since this allows them to fulfill their nature of keeping, doubling or reducing the

size of the input. Padding is calculated at the time of implementation taking into account the

characteristics of the filters to also ensure preserving or modifying the input size.

An example of a DCGAN’s list and their respective decoded NN can be seen in Figure 4.1. In

that image, section (a) shows a list (particle) with three blocks, where each block represents

a different layer. The sequence of these blocks is faithfully implemented in the generator

((b)-left), while for the discriminator ((b)-right) the mirror image is implemented with the

equivalent layers but in the opposite direction (i.e. first the convolutional part and then the

fully connected layer). The dotted lines indicate the relationship between the module in the

list and the implemented layer. Both sets of layers use the respective parameters that are

marked in each block of the particle.

4.1.4 Difference Between Particles

The first step prior to updating the particles in the PSO is to measure the difference between

two particles, P1 and P2, since these may have different sizes and design patterns. This dif-

ference will be represented in a difference vector (P1 − P2) . The difference only takes into

consideration the type of layer of each particle. If two layers in the same position of both

particles are the same type then the difference is zero, independent of their hyperparamet-

ers. This zero-difference indicates that the layer will remain when the particle architecture

4.1 DCGAN-PSO 69

Generator layer Description Discriminator layer Description Hyperparameters
Transposed con-
volutional

Increases the
size (length and
width) of the
output of the
previous layer
by a factor of 2
(stride of 2).

Convolutional Decreases the
size (length
and width) of
previous layer
output depend-
ing on filter
characteristics.

• Filter size
• Number of filters
• Stride = 2

• Padding: Cal-
culated according to
filter

Convolutional Keeps the size
(length and
width) of the
previous layer
output

Does not apply Does not apply
• Filter size
• Number of filters
• Stride = 1

• Padding: Cal-
culated according to
filter

Fully connected Processes and
resizes the ran-
dom noise input

Fully connected Processes the
high-level fea-
tures (obtained
by the convolu-
tional part of the
NN) to perform
the classification.

Number of neurons

TABLE 4.1. Different types of layers used with their equivalents according
to the GAN module. The first four columns represent the pair of equivalent
layers used in the generator and discriminator, respectively, with the definition
of the activity they perform. The last column shows the hyperparameters that
define both layers.

FIGURE 4.1. Particle encoding-decoding.

70 4 PROPOSED ALGORITHM

updates. If both layers are of different type, P1 will have priority and its layer will be pre-

served, including its hyperparameters. If P1 has fewer layers than P2 then -1 will be added

at the end of the difference vector to denote that these extra layers in P2 should be elimin-

ated when updating the particle. In the opposite case, if P1 has more layers than P2, then

indicators +L will be added that represent that layers of type "L" will be added in those posi-

tions when updating the particle (with randomly chosen hyperparameters). Figure 4.2 shows

examples to measure the difference between particles.

FIGURE 4.2. Measurement of differences between particles. (a): P1 has
more layers than P2. (b): P1 has fewer layers than P2. Inspired by (Junior
and Yen 2019).

4.1.5 Velocity Operator

The velocity computation of a particle (P), is done by comparing it with their pBest and gBest.

Thus, the differences (pBest — P) and (gBest — P) are computed. With both difference

vectors the velocity vector is calculated. For this operation the parameterCg is needed, called

decision factor, and also r, which is a random number from a uniform distribution in the

range [0,1). For each position of the difference vectors, if r ≤ Cg, the velocity operator will

take the layer from the difference (gBest — P) and from (pBest — P), otherwise. Therefore,

Cg will control the convergence of the particle towards the global best. This operation is

made by UpdateVelocity() and the mechanism of this operator is exemplified in Figure 4.3

(a).

4.1 DCGAN-PSO 71

4.1.6 Position Operator

The operator to update the position of the particles i.e. evolving their DCGAN architecture,

is UpdateParticle(). This operator takes the particle’s velocity to modify the pertinent layers.

Layers are added or removed from the particle architecture according to its velocity. An

example of the action of this operator is found in Figure 4.3 (b).

When the particle is updated, there must be a record of the transposed convolutional layers

in the architecture, so that there is the number allowed by the parameters according to the

current resolution that is evolving. A number greater than the allowed would create images

of a higher resolution than needed. When there are extra layers, the same extra number of

layers is chosen randomly and replaced by a randomly initialized convolutional layer that

keeps the size of the previous layer output.

Similarly, only one fully connected layer will be available at the beginning of architecture.

This layer will be evolved only when the resolution is 42 pixels, as the DCGAN architecture

only uses this layer at the beginning to process the noise input. Since the fully connected

layer will always be in the first position of the particles there will always be zero-difference

in that position. Therefore, to avoid stagnation in evolution, the number of neurons in these

layers will always be randomly changed in each update.

4.1.7 Fitness Function

In the present work Fréchet Inception Distance (FID), presented and detailed previously

in Section 2.5, is used as fitness function and performance metric (for final results) of the

different training evolved GANs.

The FID is measured using the set of real training images and a sample of the same size of

synthetic images obtained by the generator of the trained GAN to be evaluated. By means of

this metric the fitness of the particle is qualified, remembering that the lower the better.

72 4 PROPOSED ALGORITHM

FIGURE 4.3. Example of velocity and position operators. (a): Velocity
computation of a particle. (b): Particle updated using their velocity. Inspired
by (Junior and Yen 2019).

4.1.8 Progressive Growth

The training of the various DCGANs (particles) was carried out progressively, starting with

a resolution of 42 to 2562 pixels in steps that doubled the resolution. The final resolution was

chosen because it is one that equals or exceeds the resolution adopted by previous GANs

work for CXR synthesis.

The swarm is initialized with particles that generate images with a resolution of 42 pixels.

These particles are trained for a number of epochs by backpropagation and gradient descent

with the dataset of CXR images with the same resolution. After training, the quality of the

creations of these particles is evaluated by FID, which acts as a fitness function. Using the

fitness values, the pBest of each particle and the gBest are selected. If an architecture is selec-

ted as pBest, the weights of the trained DCGAN are saved. The particles are updated by the

pBests and gBest for a certain number of generations. At the end of the cycle of iterations,

the pBests of the particles are taken as the basis for the next resolution, fixing that part of the

architecture and only adding and modifying the layers ahead of this part to obtain the images

4.1 DCGAN-PSO 73

of the next resolution. When the DCGANs of the particles of the new swarm are implemen-

ted, the weights for the layers belonging to the previous pBest are loaded. To avoid reducing

the learning rate to smooth the training of the previous pre-trained layers with respect to the

newly initialized layers, Weigth Normalization (WN) technique is used in the generator (see

Section 2.4.4). WN has proven to stabilize training in GANs in addition to avoiding explod-

ing gradients when learning rates are relatively high for certain layers. Meanwhile in the

discriminator, Spectral Normalization is used to stabilize the training. The experimentation

carried out to decide the training of the particles using Spectral Normalization can be seen

in Appendix 1.

The previous process is repeated until obtaining the trained gBest of the final resolution. In

Figure 4.4 the mechanism of progressive growth is represented. In such figure the growth

of the generator is represented but the equivalent procedure is used in the discriminator. (a)

At the beginning there are particles that generate CXR images in 42 pixels, from where the

pBests are selected. (b) When the resolution is doubled, the architecture and the trained

weights of particle’s pBest in the previous resolution are used. pBest’s layers remains fixed

without evolving (but still training), while a new population is generated with particles that

will be concatenated to the pbest part and which will be evolved by the PSO. (c) The previ-

ous process is repeated doubling the resolution until obtaining CXR images of 2562 pixels

resolution.

4.1.9 Swarm Initialization

When the swarm is initialized (Initialize Swarm()), the number of layers in each particle is

selected at random with an uniform distribution (to avoid bias) within a defined range. This

range is calculated from the ranges of allowed layers of each type in the particle. In turn,

as previously mentioned, this number of allowed layers is dependent on the resolution to be

obtained in the current generation. To clarify this mechanism, an example will be presented.

As the particle is a composition of the three types of layers previously seen, they have a

minimum and maximum number of those that can be found in the particle in a certain part

74 4 PROPOSED ALGORITHM

FIGURE 4.4. Progressive growing of DCGAN particle.

of the evolution according to the resolution sought. Suppose that the ranges ([minimum

number, maximum number]) for each layer are as follows:

• Fully connected: [1,1]

• Transposed convolutional: [0,1]

• Convolutional: [0,2]

With the above, the minimum and maximum size of the particles will be defined (limited) by

the sum of the minimum and maximum numbers of each layer. This is calculated as follows:

• Minimum number of layers in the particle = minimum of fully connected + min-

imum of transposed convolutional + minimum of convolutional

• Maximum number of layers in the particle = maximum of fully connected +

maximum of transposed convolutional + maximum of convolutional

These previous values are 1 and 4, respectively, for the present example. These values rep-

resent the lower and upper limits, respectively, from which a random number with uniform

distribution is taken, which will represent the size of the particle.

4.2 CDCGAN-PSO 75

Once with the defined size, layers of the three types are inserted randomly, with their hyper-

parameters also randomly initialized, and it is also verified that they do not exceed the limits

established for each type.

4.2 cDCGAN-PSO

A second version of DCGAN-PSO was developed, named cDCGAN-PSO.

The main difference with respect to the previous version is that in this one a Conditional

DCGAN (see section 2.4.2) is used, which allows the synthesis of multiple classes of images

with a single trained DCGAN, unlike the original version where they can only be synthesized

images of a single class. This addition made it possible to synthesize CXR images not only of

the COVID-19 pneumonia class but also of Non-COVID-19 pneumonia and Healthy classes.

All the sections related in the previous section to define the DCGAN-PSO are similar for

the cDCGAN-PSO. Only one section is modified, which is realted to measure the particle

fitness, a change that will be detailed below.

4.2.1 cDCGAN-PSO Fitness Function

The fitness function is also performed by calculating the FID using the images generated by

the trained cDCGAN and the real set. However, since there are multiple classes, the FID of

each one is calculated separately using a set of generated images belonging to that class and

its respective real set. When obtaining the different FID measurements for each class, they

are averaged and with such mean value the quality of the particle is evaluated.

4.2.2 Pseudocode of cDGAN-PSO

Algorithm 3 has the pseudocode of cDCGAN-PSO. As can be seen, this is the same as the

first version of the algorithm (see Algorithm 2) with slight adaptations that are highlighted

76 4 PROPOSED ALGORITHM

in red. These slight changes are related to the use of a multi-class CXR images dataset, the

use of cDCGAN instead of DCGAN, and the average of the FID as fitness function.

Algorithm 3 cDCGAN-PSO
Input: Training labeled dataset of c classes of CXR images of each resolution used, N°

generations per resolution, N° epochs per particle training, Swarm size, Cg, resolutions
list.

Output: Trained DCGAN of CXR images of pneumonia caused by COVID-19 in 2562

pixels resolution (gBest).
1: for resolution in resolutions list do
2: Initialization: Swarm← Initialize Swarm(resolution), pBests, gBest.
3: for N° generations per resolution do
4: for particle in swarm do
5: if resolution = 42 pixels then
6: Network← cDCGAN particle architecture
7: else
8: Network← cDCGAN previous resolution pBest architecture
9: Network weights← Previous resolution pBest weights

10: Network← Add cDCGAN particle architecture at the end of the Network
11: end if
12: for N° epochs per particle training do
13: Train Network with CXR dataset of its respective resolution
14: end for
15: //Measure FID for each class.
16: particle fitness← 0
17: for class in CXR dataset do
18: particle fitness← particle fitness + FID(Network for class)
19: end for
20: //Average FID.
21: particle fitness← particle fitness / c
22: if particle fitness ≤ particle pBest fitness then
23: particle pBest← particle
24: particle pBest weights← particle weights
25: end if
26: end for
27: gBest← pBest with lowest fitness
28: for particle in swarm do
29: particle velocity← UpdateVelocity(particle)
30: particle← UpdateParticle(particle velocity)
31: end for
32: end for
33: end for
34: RETURN gBest

4.3 CHAPTER SUMMARY 77

4.3 Chapter Summary

In this chapter, the DCGAN-PSO and cDCGAN-PSO algorithms based on Particle Swarm

Optimization were presented for the evolution of the topology of DCGANs and cDCGANs

respectively, at the same time as their progressive training is carried out.

The studies that were taken as a basis, the representation of the particles used, the evolution

operators, as well as the fitness function were described in detail to understand the mechan-

isms of the algorithms.

CHAPTER 5

Experiments and Results

This chapter will detail the obtaining of the dataset used as well as the methodology carried

out to test the previously mentioned hypotheses.

The results of experimentation and their discussion are also mentioned.

5.1 Methodology

The methodology used to carry out this project is summarized in Figure 5.1. Below is the

detailed information for each step.

(1) To obtain and process datasets of CXR images: This will be detailed in the sec-

tion 5.2.

(2) Development and implementation of DCGAN-PSO: This is detailed in section

4.1.

(3) To perform independent runs of the DCGAN-PSO: Ten runs of the DCGAN-

PSO were carried out using the CXR images of pneumonia caused by COVID-19.

(4) To implement and train state-of-the-art models in synthesis of CXR images with

GANs: For comparison purposes, eight approaches using DCGANs reported in the

literature review of CXR synthesis (see Section 3.3) were implemented and trained.

(5) To perform experimentation using a binary classification CNN: The binary clas-

sification of CXR images (i.e. COVID-19 and Non-COVID-19 classes) was carried

out using a CNN with unbalanced and artificially balanced image sets with synthetic

images.
78

5.1 METHODOLOGY 79

(6) Development and implementation of cDCGAN-PSO: This is detailed in Section

4.2.

(7) To perform runs of the cDCGAN-PSO: Six runs of the cDCGAN-PSO were car-

ried out using the CXR images of pneumonia caused by COVID-19, pneumonia

Non-COVID-19, and healthy.

(8) To perform runs of DCGAN-PSO for Pneumonia and Healthy classes to com-

pare with cDCGAN-PSO: Two runs of each class of the DCGAN-PSO were car-

ried out using the CXR images of pneumonia Non-COVID-19 and healthy.

(9) To perform experimentation using a multi-class classification CNN: The mul-

ticlass classification of CXR images (i.e. pneumonia COVID-19, pneumonia Non-

COVID-19, and healthy classes) was carried out using a CNN with unbalanced and

artificially balanced image sets with synthetic images.

(10) To perform experimentation using CViCom COVID-19: Carry out the multi-

class classification (i.e. pneumonia COVID-19, pneumonia Non-COVID-19, and

healthy classes) using the UNAM CViCOM COVID-19 diagnostic system to verify

the correct detection of the synthetic images of each class.

The details of activities 3-5 and 7-10 will be addressed in Section 5.4, while their results and

discussion will be reflected in Section 5.5.

The schedule of activities carried out for the development of this thesis can be found in

Appendix 2.

80
5

E
X

P
E

R
IM

E
N

T
S

A
N

D
R

E
S

U
LT

S

Obtain and pro-
cess datasets of
CXR images.

Development and
implementation

of DCGAN-PSO.

Perform runs of
the DCGAN-PSO.

Implement and train
state-of-the-art models
in synthesis of CXR
images with GANs.

Perform experiment-
ation using a binary
classification CNN.

Development and
implementation of

cDCGAN-PSO.

Perform runs of
the cDCGAN-PSO.

Perform runs of
DCGAN-PSO for

Pneumonia and Healthy
classes to compare

with cDCGAN-PSO.

Perform experimenta-
tion using a multi-class

classification CNN.

Perform experiment-
ation using CViCom
COVID-19 system.

FIGURE 5.1. Methodology diagram.

5.3 TECHNICAL IMPLEMENTATION DETAILS 81

5.2 CXR Images Datasets

For the generation of CXR images as a case study, public image datasets available at (Chow-

dhury et al. 2020), (Cohen et al. 2020) and (Tabik et al. 2020) for the COVID-19 pneumonia

class were used. For the pneumonia non-COVID-19 and healthy classes, the dataset from

(Mooney 2018) was used. From these sets, 994 CXR images from the COVID-19 class and

918 from each of the pneumonia and healthy classes, were selected for their quality.

Subsequently, a processing was carried out which consisted of three steps:

(1) Converting images to grayscale (one channel).

(2) Resize the images to the different used resolutions (one dataset per resolution) using

bicubic interpolation.

(3) Applying histogram equalization, to increase the contrast of the images.

(4) Normalize in a range of [-1,1] in order to be adequate for the training of the DCGAN

or cDCGAN. In addition, and as it was mentioned before, the output of the generator

is the Tanh function that provides outputs in the same range.

These steps were performed with the purpose of reducing the large variability of the im-

age appearance, depending on the acquisition source, radiation dose as well as proprietary

non-linear post-processing (Guendel et al. 2019). Examples of the images before and after

processing are shown in Figure 5.2.

5.3 Technical Implementation Details

5.3.1 DCGAN Training details

The design rules for architectures based on the DCGAN original paper (Radford et al. 2015)

were used:

82 5 EXPERIMENTS AND RESULTS

FIGURE 5.2. Sample image processing. The images belong to CXR of
pneumonia generated by COVID-19. The left column shows original images
from public image datasets while the right column shows the same images
after processing.

• Batch Normalization layers were used between the layers of convolutional nature

in the generator and the discriminator, except in the last one of the generator and

the first of the discriminator.

• ReLU is used as activation function in generator, except in the last layer where Tanh

was employed; while in discriminator, LeakyReLU was used in all layers, except in

the last one, where Sigmoid was required to perform the classification.

Adam optimizer (Kingma and Ba 2014) was used in DCGAN training method for stochastic

optimization. Python 3.6.9 programming language with the framework PyTorch (Paszke et

al. 2017) were used for the implementation of all the NN used on the free access online

platform Google Colaboratory1 to have free access to GPUs for the NN training. These

1https://colab.research.google.com/

https://colab.research.google.com/

5.4 EXPERIMENTATION 83

resources were limited in time and capacity and each new usage granted different computa-

tional resources, then an analysis of the run times with respect to such infrastructure was not

possible.

5.3.2 Amount of Data

In the experiments, only 600 images of the created dataset were used, this with the purpose

of representing the low amounts of biomedical images. However, for the FID evaluation, the

total images of each dataset were used together with a batch of the same size of synthetic

images.

5.3.3 Parameter Selection

The parameters used in all experiments for both versions of the neuroevolution algorithm are

found in Table 5.1.

The parameters Cg and number of generations per resolution were taken from the original

article of psoCNN (Junior and Yen 2019), while the swarm size was reduced (originally it is

20) to 15 to reduce costs and computational times. The rest of the parameters were selected

through a brief experimentation, depending on the limited computational capacity available.

5.4 Experimentation

To verify compliance with the hypotheses developed at the beginning of the thesis (see Sec-

tion 1.5) the following experiments were carried out.

84 5 EXPERIMENTS AND RESULTS

Parameter Value
Particle Swarm Optimization

Swarm size 15
N° generations per

resolution
10

Cg 0.5
Resolutions list [42 px., 82 px., 162 px., 322 px., 642 px., 1282 px., 2562 px., 3202 px.]

Ranges of particle parameters
N° Fully connected

layers
[1,1] (42 px.) ; [0,0] (otherwise)

N° Convolutional
layers

[0,2]

N° Transposed
convolutional layers

[0,0] (42 px.) ; [1,1] (otherwise)

Filter size [2,5]
N° filters 42:642 px. = [1,256]; 1282 px. = [1,64]; 2562:3202 px. = [1,32]

N° neurons [1,300]
DCGAN & cDCGAN training

CXR images classes COVID-19 (DCGAN-PSO);
COVID-19, Pneumonia, and Healthy (cDCGAN-PSO)

N° epochs per particle
training

200

N° images used by
class

600

Batch size 42:1282 px. = 16; 2562 px. = 14
Optimizer Adam

Learning rate (G and
D)

2× 10−4

β1, β2 (optimizer) 0.5 , 0.999
LeakyReLU slope (D’s

activations)
0.2

Weight’s initializer (G
and D)

N (0, 0.02)

Noise distribution (pz):
R100

N (0, 1)

CNN training
Batch size 32
N° epochs 100

N° images per class
used in the validation

set

300 of each real class

Optimizer Adam
Learning rate 2× 10−4

β1, β2 (optimizer) 0.5 , 0.999
Weight’s initializer N (0, 0.02)

Cost function Cross-Entropy loss

TABLE 5.1. Parameter values of DCGAN-PSO, cDCGAN-PSO, and CNN
used in the experiments.

5.4 EXPERIMENTATION 85

5.4.1 Algorithm Executions

5.4.1 DCGAN-PSO

The execution of DCGAN-PSO, using the CXR images belonging to the COVID-19 class,

was performed 10 times, being this number is due to computational limitations. Each run

lasted approximately one week and with each change of resolution the time was doubled

with respect to the previous resolution.

In addition, two runs of each class of the DCGAN-PSO were carried out using the CXR

images of pneumonia and healthy classes. The results of these runs were only used for FID

comparison with the cDCGAN-PSO, the second version of the neuroevolution algorithm.

5.4.2 cDCGAN-PSO

The execution of cDCGAN-PSO, using the CXR images belonging to the COVID-19, pneu-

monia and healthy classes, was performed six times, being this lower number with respect

to the previous experiment due to computational limitations. Each run lasted approximately

one week and half and with each change of resolution the time was doubled with respect to

the previous resolution. Two runs were scaled up to a resolution of 3202 pixels resolution

because this is the base resolution to experiment in the CViCom COVID-19 system. The

parameters used for the rest of the runs were respected and those necessary to scale up to

3202 pixels are found in Table 5.1.

5.4.2 Fitness Evolution

The fitness values of the gBest were monitored during the different generations and evolu-

tion stages of the runs.

In addition, the FID of the gBest in cDCGAN-PSO runs was monitored for each of the CXR

images classes used in the runs.

86 5 EXPERIMENTS AND RESULTS

5.4.3 Qualitative Evaluation

A sample of the COVID-19 class images synthesized by the DCGAN generator evolved by

DCGAN-PSO is visually compared with a sample from the real set.

Samples of images of each class synthesized by the cDCGAN generator evolved by cDCGAN-

PSO are visually compared with samples from the real sets.

The synthetic images were obtained from the generator with the FID value closest to the

median of the FID evaluation of each algorithm version.

5.4.4 FID Evaluation

The FID measurement was performed with the complete sets of real images and a batch of

the same size synthesized by the generator of the evolved GANs obtained at the end of the

runs by the two algorithm versions.

5.4.5 COVID-19 CXR Synthesis Comparison

Eight of the state-of-the-art CXR synthesis DCGANs seen in the literature review (see sec-

tion 3.3) were implemented for comparison purposes. These models were trained with the

same parameters established in their source articles and using the same set of CXR images

for COVID-19. Each GAN was trained five independent times.

The reason for only using the models for the synthesis of the COVID-19 class was due to

the limited computational time available which was used to carry out the other types of

experimentation.

In addition, the random creation of DCGANs was carried out (with the same parameters for

network depth and layers that were used in both versions of the algorithm) for images wit

resolution of 2562 pixels.

5.4 EXPERIMENTATION 87

The FID evaluation of the synthetic images obtained by the state-of-the-art models and the

random DCGANs was carried out. These values were compared with those obtained by the

FID evaluation of the GANs evolved by both versions of the algorithm for the COVID-19

class.

The 95%-confidence Wilcoxon rank-sum test was used to verify that the results come from

the same distributions (null hypothesis). If the significance values of this test (p-values) are

less than 0.05, the alternative hypothesis is accepted i.e. the samples come from different

distributions.

5.4.6 Classification Performance

A CNN was implemented to perform binary and multiclass classification for images obtained

using the DCGAN-PSO and cDCGAN-PSO, respectively.

The CNN was designed based on VGG16 models (Simonyan and Zisserman 2014), which

tend to perform well for image classification. Furthermore, CNNs designed based on this

structure were used in previous CXR images classification work (Waheed et al. 2020, Panwar

et al. 2020, Rajaraman et al. 2018, Civit-Masot et al. 2020). Through a brief experimentation,

the topology of the network was established, this is shown in figure 5.3. The same network

was used for binary and multiclass classification concatenating at the end different layers

according to the scenario, which are the following:

• Binary: One fully connected layer with one neuron and the sigmoid activation

function to obtain a binomial probability.

• Multiclass: One fully connected layer with three neurons and the SoftMax activa-

tion function to obtain a multinomial probability.

The binary classification using the synthetic CXR images obtained by the DCGAN-PSO

was performed for the COVID-19 and Non-COVID-19 classes (composed of pneumonia and

healthy classes). Five independent CNN trainings were conducted for each of the following

scenarios:

88 5 EXPERIMENTS AND RESULTS

FIGURE 5.3. CNN architecture for classification. (a) Final layer used for
binary classification. (b) Final layer used for multiclass classification. The
red text on the layers indicates the activation function used.

(1) Unbalanced dataset:

• 600 COVID-19 real images.

• 1200 Non-COVID-19 real images (600 from pneumonia and 600 from healthy).

(2) Balanced dataset:

• 600 COVID-19 real images + 600 COVID-19 synthetic images.

• 1200 Non-COVID-19 real images (600 from pneumonia and 600 from healthy).

The multiclass classification using the synthetic CXR images obtained by the cDCGAN-PSO

was performed for the COVID-19, pneumonia and healthy classes. Five independent CNN

trainings were conducted for each of the following scenarios:

(1) Unbalanced COVID-19 dataset:

• 300 COVID-19 real images.

• 600 pneumonia real images.

• 600 healthy real images.

(2) Balanced COVID-19 dataset:

• 300 COVID-19 real images + 300 COVID-19 synthetic images.

• 600 pneumonia real images.

• 600 healthy real images.

(3) Unbalanced pneumonia dataset:

• 600 COVID-19 real images.

• 300 pneumonia real images.

5.4 EXPERIMENTATION 89

• 600 healthy real images.

(4) Balanced COVID-19 dataset:

• 600 COVID-19 real images.

• 300 pneumonia real images + 300 pneumonia synthetic images.

• 600 healthy real images.

(5) Unbalanced healthy dataset:

• 600 COVID-19 real images.

• 600 pneumonia real images.

• 300 healthy real images.

(6) Balanced healthy dataset:

• 600 COVID-19 real images.

• 600 pneumonia real images.

• 300 healthy real images + 300 healthy synthetic images.

(7) Balanced dataset:

• 600 COVID-19 real images.

• 600 pneumonia real images.

• 600 healthy real images.

(8) Extended balanced dataset:

• 600 COVID-19 real images + 600 COVID-19 synthetic images.

• 600 pneumonia real images + 600 pneumonia synthetic images.

• 600 healthy real images + 600 healthy synthetic images.

The synthetic images were obtained from the generator with the FID value closest to the

median of the FID evaluation results of each version of the neuroevolution algorithm.

The classification performance was measured in terms of accuracy which is the fraction of

predictions that the model made correctly. This is calculated using the following formula:

Accuracy =
Number of correct predictions
Total number of predictions

(5.1)

90 5 EXPERIMENTS AND RESULTS

The parameters used in the CNN training are found in their corresponding section in Table

5.1.

The 95%-confidence Wilcoxon rank-sum test was used to verify that the results come from

the same of different distributions.

It is worth mentioning that the results obtained by this classification experimentation do

not seek to obtain state-of-the-art results for the classification of CXR images, since this

is beyond the scope of this work. Such experiment only has the purpose of verifying the

improvement in performance obtained through the use of synthetic images of evolved GANs.

Later uses of the algorithms could have this application as an objective to improve.

5.4.7 CViCom COVID-19 Classification Performance

The CViCom-COVID-19 system2, which was designed to detect COVID-19, pneumonia and

healthy cases from CXR images, was used to classify the synthetic images obtained from

both versions of the algorithm. The synthetic images were obtained from the generators with

the FID value closest to the median of the FID evaluation results of each class and version.

Images with 2562 pixels of resolution were used for the DCGAN-PSO, since this was the

only resolution handled in their experimentation batch. While for cDCGAN-PSO the images

from one of the two runs with a resolution of 3202 pixels were used. In addition, real images

of each class in 3202 pixel resolution were used as control and comparison.

The batch size for each set of images was 30.

The 95%-confidence Wilcoxon rank-sum test was used to verify that the results come from

the same of different distributions.

2https://www.imagensalud.unam.mx/

5.4 EXPERIMENTATION 91

5.4.8 Two-Dimensional Visualizations

Two-dimensional visual comparison of the real sets and a batch of the same size of images

synthesized by the evolved GANs of both versions of the neuroevolution algorithm was

performed only for the purpose of visualizing and condensing in a simpler way the results

obtained. The feature vectors of both batches of images were extracted using the pre-trained

Inception-v3 network (the same one used for the FID calculation) thus obtaining vectors

with a length of 2048 numerical values. This with the purpose of comparing the high-level

characteristics extracted from both types of images. The synthetic images were obtained

from the generators with the FID value closest to the median of the FID evaluation. The

methods used for dimension reduction are as follows:

• t-SNE: Like the strategy shown in (Costa et al. 2020a) and (Sheykhivand et al.

2021), the t-Distributed Stochastic Neighbor Embedding (t-SNE) (Maaten and Hin-

ton 2008) method was used, which is an unsupervised nonlinear technique used

primarily for data exploration and high-dimensional data visualization. This method

models each high-dimensional object by a two-dimensional point in such a way that

similar objects are modeled by nearby points and dissimilar objects are modeled by

distant points with high probability.

• PCA: Principal Component Analysis is a method which reduces the dimension of

feature space such that new variables are independent. PCA retains large pair dis-

tances in order to optimize variance (Wold et al. 1987). The two first principal

components were used, obtained from the feature vector batches. The values of

these principal components were normalized in the range [0,1]. This visualization

technique has previously been used in the synthesis of CXR images with GANs for

the comparison of the results with the real sets (Middel et al. 2019, Waheed et al.

2020).

92 5 EXPERIMENTS AND RESULTS

5.5 Results and Discussion

5.5.1 Fitness Evolution

The FID value of the gBest through the evolution of the resolutions of the images of the ten

runs with the COVID-19 class and the two runs of each class pneumonia and healthy using

the DCGAN-PSO are shown in Fig. 5.4.

The evolution of gBest FID of the six runs of cDCGAN-PSO for all three classes of CXR

images is shown in Fig. 5.5. Moreover, the individual gBest FID of each class through the

runs is shown in Fig. 5.6.

Additionally, the runs with the result closest to the median of the FID values obtained at the

end of the executions for the COVID-19 class with DCGAN-PSO and the three classes with

cDCGAN-PSO are shown in Fig. 5.7 as convergence plots.

The best DCGAN and cDCGAN architectures found and trained by the respective versions

of the algorithm, as well as those obtained in the executions closest to the median of the FID

evaluation are reflected in Fig. 5.8.

As expected from PSO, a rapid convergence is achieved in both version of the neuroevolu-

tion algorithm. This can be confirmed by observing that the performance does not improve

substantially after approximately the fifth generation of each resolution. This behavior is

more clearly noted in the runs belonging to the median. As theorized in the development of

the algorithm, this characteristic, despite having a high probability of being trapped in a local

best, allows a reduction in search times, something of great importance due to the extensive

need for resources to train and evaluate the evolved architectures.

The upward behavior in each change of resolution shown by FID has an origin. FID is not a

deterministic measure because it uses a CNN to extract high-level features of the images and

later make a statistical comparison between them. These high-level features may vary de-

pending on multiple factors, such as the resolution of the image, greater detail which allows

it to have finer motifs and increases the complexity to be learned by the GANs. Therefore,

5.5 RESULTS AND DISCUSSION 93

the FID values will be slightly higher since the direct similarity with the real set will be

increasingly difficult. However, regardless of the resolution, the lower the FID value is, the

more similar the images will be. In such way, the achievement of reducing FID value in each

part of the run relative to a single resolution proves the existence of a successful search for

architectures and good training.

The up-down behavior shown in the gBest FID for each class in cDGAN-PSO is because

the fitness function is the average FID for the three classes used, then in some cases not all

classes can improve. In summary, sometimes the fitness of one or some classes will worsen

while the rest will improve. However, this is part of a trade-off among the three classes to

improve the overall quality of the creations.

One detail to mention is that the architectures evolved by the different versions of the al-

gorithm have a similar pattern, first use the transposed convolutional layer and then convo-

lutional layers. This strategy could mean using the first type of layer to scale the resolution

of the previous input (resolution) and later with the convolutional layers to polish the de-

tails. It can also be observed that the architectures referring to cDCGAN-PSO are more

extensive than those of DCGAN-PSO. This behavior may be due to the fact that when hand-

ling a greater number of classes, more complex GANs are needed to learn to perform the

differentiating details between the CXR images.

94 5 EXPERIMENTS AND RESULTS

(a) COVID-19 class (10 runs).

(b) Healthy class (2 runs).

(c) Pneumonia class (2 runs).

FIGURE 5.4. DCGAN-PSO gBest FID evolution.

5.5 RESULTS AND DISCUSSION 95

FIGURE 5.5. cDCGAN-PSO gBest FID evolution. COVID-19, healthy,
and pneumonia classes (6 runs).

96 5 EXPERIMENTS AND RESULTS

(a) COVID-19 class. (b) Healthy class.

(c) Pneumonia class.

FIGURE 5.6. cDCGAN-PSO gBest FID evolution of each class (6 runs).

(a) DCGAN-PSO. (b) cDCGAN-PSO.

FIGURE 5.7. Convergence plots over 70 generations of the median runs
of DCGAN-PSO and cDCGAN-PSO.

5.5 RESULTS AND DISCUSSION 97

FIGURE 5.8. Best found GAN architectures. (a) The run with the best
FID evluation for DCGAN-PSO. (b) The run with the closest FID to the FID
evaluation median for DCGAN-PSO. (c) The run with the best FID evluation
for cDCGAN-PSO. (d) The run with the closest FID to the FID evaluation
median for cDCGAN-PSO.

5.5.2 Qualitative Evaluation

Figure 5.9 shows samples of the real image dataset of COVID-19 class and examples of

those obtained from the evolved architecture with DCGAN-PSO.

Samples of the real images of the three CXR classes and synthesized from the evolved ar-

chitecture with cDCGAN-PSO are shown in Fig. 5.10.

The synthetic images of the COVID-19 class for the DCGAN-PSO, qualitatively speaking,

display a similar visual quality (morphologically) with respect to the images belonging to

the real set, with only small errors (blank areas). The sampled images captures the global

structural elements such as the lungs and the ribs. A diversity such as that seen in the original

set can also be observed, giving indications of no mode collapse in the generators what can

98 5 EXPERIMENTS AND RESULTS

be derived from stable training. Similar results were obtained from the remaining runs for

the COVID-19 class and those carried out for the pneumonia and healthy classes.

Regarding the images obtained by the cDCGAN-PSO, the visual quality of the results is

slightly better than those obtained by DCGAN-PSO, noting an increase in the quality of

the fine details of the CXR images, e.g. more defined ribs. The reason for this is because

the size of the training set was tripled by adding two new classes of CXR images. This

allowed the evolved cDCGANs to use this extra amount of data to learn more finely the

morphological details common to the three types of images. Similar results were obtained

from the remaining runs.

Collecting the expert opinion of radiologists about synthetic images would be useful to high-

light the quality of the results obtained or, failing that, to detect the main errors that may be

useful to improve the collection and processing of image sets. A higher resolution would be

recommended, since at low resolutions it is difficult for experts to detect fine details that sift

through the different types of CXR images, as is the case of diagnosing COVID-19 (Ng et al.

2020, Huang et al. 2020). This is because the images commonly used tend to have more

than 10002 pixels (Suetens 2017) and this has been previously mentioned in works of CXR

image synthesis with GANs that resort to obtaining the opinion of these medical experts

(Salehinejad et al. 2018, Menon et al. 2020).

5.5 RESULTS AND DISCUSSION 99

FIGURE 5.9. Sample of synthesized COVID-19 CXR images from
DCGAN-PSO in 256x256 pixels.

FIGURE 5.10. Sample of synthesized CXR images from cDCGAN-PSO
in 256x256 pixels. Rows from top to bottom: COVID-19, pneumonia, and
healthy classes.

100 5 EXPERIMENTS AND RESULTS

5.5.3 FID Evaluation Comparison

Using the FID values of each CXR image class of each algorithm version, a performance

comparison was made between them.

Table 5.2 contains the class of CXR images synthesized to be compared, the averages of the

FID evaluation for each version of the algorithm in the class of its corresponding row, the

p-value of the comparison between values obtained by both versions and the result of the

Wilcoxon rank-sum test between both evaluations.

As can be seen in the aforementioned table, the average results of the final FID quality

obtained by each class is slightly better in the cDCGAN-PSO. The reason for this may be

because, as discussed in the previous section, the greater amount of training data allowed for

better results than simply using a single class of CXR images as performed in the DCGAN-

PSO.

Despite the previous observation, the results obtained by the Wilcoxon rank-sum test suggest

that the performances of both algorithms are equal. In this case, the advantage is obtained

by the second version, the cDCGAN-PSO, due to the fact that by handling multiple classes

and not having a significant extension in the waiting times (half a week more). This would

be a more viable option that using the first version individually for each class, which implies

a substantial saving in the necessary computation time.

However, these results could be not very robust due to the size of the samples. Therefore, as

future work a more exhaustive comparison between both versions could be carried out with

a greater number of executions.

Class DCGAN-PSO
Average FID

cDCGAN-PSO
Average FID

p-value Wilcoxon
rank-sum test

COVID-19 3.052± 0.773 2.988± 0.631 0.8282 (=)
Pneumonia 3.2506± 0.666 3.111± 0.709 0.7388 (=)

Healthy 3.5916± 0.3242 3.345± 0.991 1 (=)

TABLE 5.2. Results and comparison of FID evaluation values of both version
of the algorithm. (=) means that the two sets of data compared have the same
performance based on the Wilcoxon rank-sum test.

5.5 RESULTS AND DISCUSSION 101

5.5.4 COVID-19 CXR Synthesis Comparison

Table 5.3 presents the FID evaluation of the synthetic images obtained from DCGAN-PSO

and cDCGAN-PSO generators and compares them with the state-of-the-art GANs in CXR

synthesis, as well as with the random creation of DCGANs. This table contains the imple-

mented GAN model as well as its average FID in the first two columns. Columns 3 and

4 show the p-value obtained from comparing the results of each model with the DCGAN-

PSO and the result of the Wilcoxon rank-sum referring to comparing the DCGAN-PSO with

the approach in the corresponding row. Finally, columns 5 and 6 contain the same type of

information as the previous two columns but for the cDCGAN-PSO.

As can be seen in the aforementioned table, the results obtained through the evolution of

GAN architectures with progressive training improved the results of previous works in the

synthesis of CXR images using handcrafted GANs, showing that the networks obtained by

the proposed algorithm have a better average (lower) in the FID evaluation values than the

rest of the works, supported by the Wilcoxon rank-sum test.

The behavior of the runs shown above indicating the progressive improvement of the evolved

networks with respect to their fitness function together with the best results obtained respect

to the random DCGANs, allow to establish that a random search is not carried out but rather

an intelligent search is performed allowing the obtaining of good trained GAN networks

using both versions of the algorithm.

The promising results are an indication of the potential for improvement that both versions

of the neuroevolution algorithm can offer to obtain better trained GANs and then with better

quality in their results.

102 5 EXPERIMENTS AND RESULTS

Model Average
FID

p-value
(DCGAN-

PSO)

Wilcoxon
rank-sum test

(DCGAN-
PSO)

p-value
(cDCGAN-

PSO)

Wilcoxon
rank-sum test

(cDCGAN-
PSO)

Madani et al.
2018

5.372±
1.030

0.0021 (+) 0.0061 (+)

Salehinejad
et al. 2018

5.308±
0.842

0.0048 (+) 0.0061 (+)

Khalifa et al.
2020

4.254±
0.165

0.00705 (+) 0.0061 (+)

Loey et al.
2020

5.846±
0.855

0.00219 (+) 0.0061 (+)

Shams et al.
2020

5.938±
0.601

0.00219 (+) 0.0061 (+)

Waheed et al.
2020

4.296±
0.533

0.01 (+) 0.0061 (+)

Zulkifley et al.
2020

4.492±
0.633

0.0101 (+) 0.0061 (+)

Kora Venu and
Ravula 2021

5.576±
0.482

0.00219 (+) 0.0061 (+)

Random
DCGANs

9.851±
2.028

3.178e−5 (+) 4.5e−4 (+)

DCGAN-
PSO

3.052±
0.773

——- ——- 0.8282 (=)

cDCGAN-
PSO

2.988±
0.631

0.8282 (=) ——- ——-

TABLE 5.3. Results and comparison of FID evaluation values. (=) means
that the algorithm version in the column has the same performance that the
compared approach in the corresponding row. (+) means that the algorithm
version in the column outperformed the compared approach in the corres-
ponding row. In red the best values are remarked.

5.5.5 Classification Performance

Table 5.4 shows the results obtained from the experimentation in binary classification using

the GAN evolved by the DCGAN-PSO for the COVID-19 class. The results of the experi-

mentation in multiclass classification using the GAN evolved by cDCGAN-PSO for the three

classes of CXR images are found in Table 5.5. Both tables include the dataset used, the num-

ber of images by each class, the average accuracy obtained, the p-value obtained from the

5.5 RESULTS AND DISCUSSION 103

comparison between the unbalanced and balanced versions of the datasets and the result of

the Wilcoxon rank-sum test between both versions of the datasets.

As can be seen, the binary and multiclass classifications benefited from the artificial increase

of the datasets through synthetic images by both versions of the algorithm. This is supported

by the Wilcoxon rank-sum test. These results remark the value of the synthetic images of the

evolved GAN with progressive growth through both versions of the algorithm used for an

external application such as classification, one of the main uses of biomedical images. The

usage of the proposed algorithms in other types of biomedical images, or even in applications

outside this area, migth have a high potential to support other types of Deep Learning-based

tasks for which the amount of data is highly relevant and having an increase can be very

supportive.

Dataset Classes N° images Average
acurracy

p-value Wilcoxon
rank-sum testReal Synthetic

Unbalanced COVID-19 600 —–
72.3± 4.3

0.0282
(-)Non-

COVID-19
1200 —–

Balanced COVID-19 600 600
80.4± 3.12 (+)Non-

COVID-19
1200 —–

TABLE 5.4. Results of binary classification with synthesized images from
DCGAN-PSO. In red the best value obtained. (-) means that the dataset used
is worse than the other dataset compared, (+) means the opposite.

104 5 EXPERIMENTS AND RESULTS

Dataset Classes N° images Average
acurracy

p-value Wilcoxon
rank-sum testReal Synthetic

Unbalanced
COVID-19

COVID-19 300 —–
75.43± 3.78

0.0472

(-)Pneumonia 600 —–
Healthy 600 —–

Balanced
COVID-19

COVID-19 300 300
81.31± 3.04 (+)Pneumonia 600 —–

Healthy 600 —–

Unbalanced
Pneumonia

COVID-19 600 —–
72.78± 2.87

0.0282

(-)Pneumonia 300 —–
Healthy 600 —–

Balanced
Pneumonia

COVID-19 600 —–
78.91± 3.4 (+)Pneumonia 300 300

Healthy 600 —–

Unbalanced
Healthy

COVID-19 600 —–
74.37± 1.97

0.009

(-)Pneumonia 600 —–
Healthy 300 —–

Balanced Healthy
COVID-19 600 —–

82.96± 2.39 (+)Pneumonia 600 —–
Healthy 300 300

Balanced
COVID-19 600 —–

84.871± 3.21

0.0282

(-)Pneumonia 600 —–
Healthy 600 —–

Extended
balanced

COVID-19 600 600
88.361± 2.34 (+)Pneumonia 600 600

Healthy 600 600

TABLE 5.5. Multiclass classification results with synthesized images from
cDCGAN-PSO. In red the best values obtained. (-) means that the dataset
used is worse than the other dataset compared, (+) means the opposite.

5.5.6 CViCom COVID-19 Classification Performance

The results obtained from the classification of CXR images using the CViCom COVID-19

system are condensed in Table 5.6. That table compares the classification results obtained

by the sets of real images of each class and those obtained for the same class of synthetic

images of both algorithms. The average predictions, the p-values of the comparison between

the real set and the respective synthetic set and the result of the Wilcoxon rank-sum test

between both sets are shown. Furthermore, the results obtained for the same classes with

both algorithms are compared.

5.5 RESULTS AND DISCUSSION 105

As can be seen, the results obtained between the real and synthetic sets obtained by cDCGAN-

PSO are the same for the COVID-19 and pneumonia classes, and this is validated by the

Wilcoxon rank-sum test. These results suggest that the quality of the synthetic images is

close enough to the real ones that even the system gives quite similar prediction values.

In contrast, the synthetic results obtained by the DCGAN-PSO are different and lower than

those obtained with the real images, this also happens with the healthy class of the cDCGAN-

PSO. The reason for this with respect to DCGAN-PSO may be that the resolution of the im-

ages is less than the ideal minimum required by the system to carry out a correct prediction.

Despite this, the average results do not show an extensive gap between those obtained by the

real sets or by cDCGAN-PSO, so the quality of the images is not so different.

Regarding the synthetic images of the healthy class in cDCGAN-PSO, and also applies to

those of DCGAN-PSO, the lower prediction certainty may be due to the fact that, as previ-

ously mentioned, the synthetic images have small white areas which denotes small defects

in their synthesis, so that these artifacts could hinder the prediction, perhaps confusing them-

selves with the opacities that usually characterize pneumonia seen through CXR images.

Regarding the comparisons between the same classes for both algorithms, as can be seen,

the predictions obtained for the cDCGAN-PSO are better than for the DCGAN-PSO. This

again may be due to the differences between the resolutions of both versions. However, these

differences are not too large.

It is necessary to mention that the healthy class in all its versions was classified in the same

way by the classifier system. However, the COVID-19 and pneumonia classes were classified

as COVID-19. The reason for this may be mainly due to the low resolution of the synthetic

images and a lack of fine details that allow sifting between the two classes, since as it will be

recalled, the CXR images of COVID-19 represent pneumonia due to this disease, for which

the pneumonia class can be confused with the COVID-19 class.

106 5 EXPERIMENTS AND RESULTS

Dataset 1 Average
prediction

Dataset 2 Average
prediction

p-value Wilcoxon
rank-sum test

COVID-19 real 0.9988±
0.005

COVID-19
DCGAN-PSO

0.9388±
0.082

5.78e−5 (-)

COVID-19
cDCGAN-PSO

0.9885±
0.028

0.1691 (=)

Pneumonia real 0.9549±
0.101

Pneumonia
DCGAN-PSO

0.8913±
0.092

7.19e−5 (-)

Pneumonia
cDCGAN-PSO

0.9413±
0.112

0.2115 (=)

Healthy real 0.9998±
0.0001

Healthy
DCGAN-PSO

0.8598±
0.124

2.87e−11 (-)

Healthy
cDCGAN-PSO

0.9129±
0.132

2.15e−10 (-)

COVID-19
DCGAN-PSO

0.9388±
0.082

COVID-19
cDCGAN-PSO

0.9885±
0.028

0.00485 (+)

Pneumonia
DCGAN-PSO

0.8913±
0.092

Pneumonia
cDCGAN-PSO

0.9413±
0.112

1.67e−3 (+)

Healthy
DCGAN-PSO

0.8598±
0.124

Healthy
cDCGAN-PSO

0.9129±
0.132

0.00181 (+)

TABLE 5.6. Classification results using CViCom COVID-19 system. (-)
means that Dataset 2 used is worse than Dataset 1, (+) means the opposite.
(=) means the both datasets have the same performance.

5.5.7 Two-Dimensional Visualizations

The two-dimensional representation by t-SNE of the feature vector sets of real CXR images

and synthesized by the evolved GAN using DCGAN-PSO are found in Figure 5.11. While

those relating to the cDCGAN-PSO are found in Figure 5.12.

The representation in two dimensions using the first two principal components of PCA of

the feature vectors from the real images and those synthesized with the GANs evolved with

DCGAN-PSO and cDCGAN-PSO are shown in Figure 5.13 and Figure 5.14, respectively.

As seen in both visual representations for both algorithms, the area covered by real images

of all classes is highly similar to that of synthetic images of the same class. Although there

are cases in which a part of the synthetic images overflows the area of the real images (e.g.

5.5 RESULTS AND DISCUSSION 107

COVID-19 class in Fig. 5.11), the highest density of synthetic images is positioned in the

area of the real ones. In none of the visualizations can be observed a set of cases completely

isolated from the real set, which would suggest that there is no similarity between both sets

of images.

The above mentioned represents that the visual diversity of the synthetic images is highly

similar to that of the real images. This may represent the absence of mode collapse, which is

an indicator of a more stable training of GANs using the designed algorithms.

108 5 EXPERIMENTS AND RESULTS

(a) COVID-19 class. (b) Healthy class.

(c) Pneumonia class.

FIGURE 5.11. t-SNE comparison of real and synthetic CXR images from
DCGAN-PSO. Green for real images and red for synthetic ones.

5.5 RESULTS AND DISCUSSION 109

(a) COVID-19 class. (b) Healthy class.

(c) Pneumonia class.

FIGURE 5.12. t-SNE comparison of real and synthetic CXR images from
cDCGAN-PSO. Green for real images and red for synthetic ones.

110 5 EXPERIMENTS AND RESULTS

(a) COVID-19 class. (b) Healthy class.

(c) Pneumonia class.

FIGURE 5.13. PCA comparison of real and synthetic CXR images from
DCGAN-PSO. Green for real images and red for synthetic ones.

5.6 HYPOTHESIS VALIDATION 111

(a) COVID-19 class. (b) Healthy class.

(c) Pneumonia class.

FIGURE 5.14. PCA comparison of real and synthetic CXR images from
cDCGAN-PSO. Green for real images and red for synthetic ones.

5.6 Hypothesis Validation

The purpose of the experimentation already presented is to test and validate the hypotheses

designed for the present algorithms of neuroevolution of GANs, which are stated again:

112 5 EXPERIMENTS AND RESULTS

• Hypothesis 1: Generate chest X-ray images with high similarity to the set of real

images (measured by FID), preserving the quality and diversity of that, what would

be an indicator of the avoidance or reduction of training instability problems.

• Hypothesis 2: Obtaining better FID results than handcrafted GANs for the syn-

thesis of CXR images of pneumonia by COVID-19.

• Hypothesis 3: Improve the classification, in terms of accuracy, of CXR images in

CNN, with respect to unbalanced sets, using artificially balanced sets using syn-

thetic images obtained from evolved GANs.

The observations and related tests to check each hypothesis are as follows:

• Hypothesis 1:

– The low FID values obtained through the FID evaluation using the complete

real set (see Section 5.5.4), because the low values of this metric is an indicator

of similarity in quality and diversity with the real set of images.

– The quality and visual diversity of synthetic images (see Section 5.5.2). No

mode collapse indicator, a problem related to training instability.

– Similar classification results between real and synthetic classes using the CViCom

COVID-19 system (see Section 5.5.6). This is an indicator of similarity between

the synthetic and real images.

– Similar areas between real and synthetic images in two-dimensional visualiza-

tions (see Section 5.5.7), which shows a similar diversity and quality between

real and synthetic images.

• Hypothesis 2:

– Better FID values than state-of-the-art handcrafted architectures for COVID-

19 CXR images synthesis using GANs (see Section 5.5.4).

• Hypothesis 3:

– Better performances in binary and multiclass classification with CNN using

synthetic images obtained from evolved GANs (see Section 5.5.5).

5.7 CHAPTER SUMMARY 113

The above allows to verify and validate the hypotheses established for the development of

this thesis.

5.7 Chapter Summary

In this chapter the methodology, the experimentation carried out as well as the results and

respective discussion are covered.

The results obtained allow to establish the evidence to validate the hypotheses developed in

this thesis. Both versions of the GANs neuroevolution algorithm presented similar perform-

ances in the multiple tests carried out, highlighting the good level of diversity and quality

obtained, highly similar to those of the real sets. However, the cDCGAN-PSO presented

advantages related to the quality of its creations and its savings in computational time.

The adequate progressive design and evolutionary training of the GANs allowed to obtain

better performances than handcrafted GANs of the state-of-the-art for CXR synthesis, which

indicate the support that neuroevolution brings to the GANs.

The good performance in this case study makes it possible to establish the potential of the

algorithm to be used in other types of biomedical images or even outside of this area to sup-

port increasing the amounts of data available for tasks based on Deep Learning, as verified

by its use in CNN classification.

Part of the experimentation of this chapter related to the DCGAN-PSO was used for the pub-

lication of a conference paper in the Congress on Evolutionary Computation (CEC) 20213.

This paper is attached in Appendix 3.

Part of the experimentation of this chapter related to the cDCGAN-PSO was used for the

publication of a conference paper in the International Symposium on Medical Information

Processing and Analysis (SIPAIM) 20214. This paper is attached in Appendix 4.

3https://cec2021.mini.pw.edu.pl/
4https://sipaim.org/

CHAPTER 6

Conclusion and Future Work

In this work DCGAN-PSO and cDCGAN-PSO algorithms were presented. They are, to

the best of the author’s knowledge, the first Swarm Intelligence algorithms for Generative

Adversarial Networks (GANs) neuroevolution based on Particle Swarm Optimization (PSO)

that performs the search and training of DCGAN architectures through their progressive

growth.

The present work also focused on the use of GANs evolution in the automatic design and

training of architectures for biomedical images generation (previously unexplored area by

GANs neuroevolution), specifically chest X-ray images.

The obtained results showed that the visual quality and diversity of the synthetic CXR im-

ages from the evolution of GANs were better than the synthesized results by handcrafted

architectures from previous works, measured through Fréchet Inception Distance (FID).

The low FID values obtained from the synthetic images generated by the evolved GANs

indicate the similarity of diversity and quality with respect to the real images, which is an

indication of the reduction in common problems of GANs training instability, such as mode

collapse (lack of diversity in synthetic images) or gradient fading (poor quality of results).

This similarity can be observed more clearly by observing batches of synthetic images, which

manage to mimic the general morphological characteristics of the real CXR images.

These results make it possible to verify that the use of progressive growth allows greater sta-

bility in training, as mentioned in its original article (Karras et al. 2017), and in conjunction

with the intelligent search of the GAN topology using PSO, high quality results are obtained.

114

6 CONCLUSION AND FUTURE WORK 115

In addition, through the use of synthetic images in the improvement of the CNN classi-

fication of CXR images and through an external classification system, the similarity that

exists between both types of images in various groups of CXR images is reinforced. Two-

dimensional visualizations using t-SNE and PCA allow to accentuate this conclusion.

In addition, the premature convergence behavior by the developed PSO could allow to re-

duce search times, necessary in cases of limited computational budget, since finding a net-

work with a good performance in just a few generations avoids an extensive search that other

evolutionary computation algorithms with slower convergence might need. This character-

istic can be an attractive feature in various applications to find a GAN that meets the specific

needs of the task with good quality results in reasonable time.

For future work the proposed algorithm can be expanded through the following approaches:

• Reducing the size of the networks (reducing the range of parameters) and limit-

ing the use to only transposed convolutional layers in the generator, since many

DCGAN-based architectures only use these layers. This is in order to reduce com-

putational costs, since a run of the versions lasts at least a week with limited com-

putational budget.

• Obtaining higher resolution synthetic CXR images that contain greater and finer

details with two purposes: 1. To get a better performance in tasks that use synthetic

images e.g. CNN classification. 2. To consult radiologist experts to carry out a

detailed study of the synthetic images.

• Modifying the PSO operators, in such a way that they not only take into account the

evolution of the layers as a whole but also evolve their inner parameters.

• Expand the final resolution of synthetic images, to obtain a better quality that can

better support Deep Learning-based systems.

• Use the algorithms in other types of biomedical images and other subsequent ap-

plications, such as segmentation.

• Using other types of GANs architectures compatible with the encoding used based

on DCGANs.

Bibliography

Abdelhalim, Ibrahim Saad Aly, Mamdouh Farouk Mohamed and Yousef Bassyouni Mahdy

(2021). ‘Data augmentation for skin lesion using self-attention based progressive gen-

erative adversarial network’. In: Expert Systems with Applications 165, p. 113922. DOI:

10.1016/j.eswa.2020.113922.

Abdollahi, Behnaz, Naofumi Tomita and Saeed Hassanpour (2020). ‘Data Augmentation in

Training Deep Learning Models for Medical Image Analysis’. In: Deep Learners and

Deep Learner Descriptors for Medical Applications. Springer, pp. 167–180. DOI: 10 .

1007/978-3-030-42750-4_6.

Aggarwal and Charu C (2018). Neural networks and deep learning. Springer. DOI: 10.1007/

978-3-319-94463-0.

Aloysius, Neena and M Geetha (2017). ‘A review on deep convolutional neural networks’.

In: 2017 International Conference on Communication and Signal Processing (ICCSP).

IEEE, pp. 0588–0592. DOI: 10.1109/ICCSP.2017.8286426.

Alqahtani, Hamed, Manolya Kavakli-Thorne and Gulshan Kumar (2019). ‘Applications of

generative adversarial networks (gans): An updated review’. In: Archives of Computa-

tional Methods in Engineering, pp. 1–28. DOI: 10.1007/s11831-019-09388-y.

Arjovsky, Martin, Soumith Chintala and Léon Bottou (Jan. 2017). ‘Wasserstein GAN’. In:

arXiv e-prints. arXiv: 1701.07875 [stat.ML].

Bakator, Mihalj and Dragica Radosav (2018). ‘Deep learning and medical diagnosis: A re-

view of literature’. In: Multimodal Technologies and Interaction 2.3, p. 47. DOI: 10.3390/

mti2030047.

Baltruschat, Ivo M et al. (2019). ‘Comparison of deep learning approaches for multi-label

chest X-ray classification’. In: Scientific reports 9.1, pp. 1–10. DOI: 10.1038/s41598-

019-42294-8.

116

https://doi.org/10.1016/j.eswa.2020.113922
https://doi.org/10.1007/978-3-030-42750-4_6
https://doi.org/10.1007/978-3-030-42750-4_6
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1109/ICCSP.2017.8286426
https://doi.org/10.1007/s11831-019-09388-y
https://arxiv.org/abs/1701.07875
https://doi.org/10.3390/mti2030047
https://doi.org/10.3390/mti2030047
https://doi.org/10.1038/s41598-019-42294-8
https://doi.org/10.1038/s41598-019-42294-8

BIBLIOGRAPHY 117

Bansal, Jagdish Chand, Pramod Kumar Singh and Nikhil R Pal (2019). Evolutionary and

swarm intelligence algorithms. Springer. DOI: 10.1007/978-3-319-91341-4.

Beers, Andrew et al. (May 2018). ‘High-resolution medical image synthesis using progress-

ively grown generative adversarial networks’. In: arXiv e-prints. arXiv: 1805 . 03144

[cs.CV].

Bhandary, Abhir et al. (2020). ‘Deep-learning framework to detect lung abnormality–A

study with chest X-Ray and lung CT scan images’. In: Pattern Recognition Letters 129,

pp. 271–278. DOI: 10.1016/j.patrec.2019.11.013.

Bonilla-Aldana, D Katterine, Kuldeep Dhama and Alfonso J Rodriguez-Morales (2020).

‘Revisiting the one health approach in the context of COVID-19: a look into the eco-

logy of this emerging disease’. In: Adv Anim Vet Sci 8.3, pp. 234–237. DOI: 10.17582/

journal.aavs/2020/8.3.234.237.

Buda, Mateusz, Atsuto Maki and Maciej A Mazurowski (2018). ‘A systematic study of the

class imbalance problem in convolutional neural networks’. In: Neural Networks 106,

pp. 249–259. DOI: 10.1016/j.neunet.2018.07.011.

Cho, Hwi-Yeon and Yong-Hyuk Kim (2019). ‘Stabilized Training of Generative Adversarial

Networks by a Genetic Algorithm’. In: Proceedings of the Genetic and Evolutionary

Computation Conference. GECCO ’19. Prague, Czech Republic: Association for Com-

puting Machinery, pp. 51–52. DOI: 10.1145/3319619.3326774.

Chowdhury, M. E. H. et al. (2020). ‘Can AI Help in Screening Viral and COVID-19 Pneu-

monia?’ In: IEEE Access 8, pp. 132665–132676. DOI: 10.1109/ACCESS.2020.3010287.

Civit-Masot, Javier et al. (2020). ‘Deep learning system for COVID-19 diagnosis aid us-

ing X-ray pulmonary images’. In: Applied Sciences 10.13, p. 4640. DOI: 10 . 3390 /

app10134640.

Cohen, Joseph Paul et al. (June 2020). ‘COVID-19 Image Data Collection: Prospective Pre-

dictions Are the Future’. In: arXiv e-prints. arXiv: 2006 . 11988 [q-bio.QM]. URL:

https://github.com/ieee8023/covid-chestxray-dataset.

Corman, Victor M et al. (2020). ‘Detection of 2019 novel coronavirus (2019-nCoV) by real-

time RT-PCR’. In: Eurosurveillance 25.3, p. 2000045. DOI: 10.2807/1560- 7917.ES.

2020.25.3.2000045.

https://doi.org/10.1007/978-3-319-91341-4
https://arxiv.org/abs/1805.03144
https://arxiv.org/abs/1805.03144
https://doi.org/10.1016/j.patrec.2019.11.013
https://doi.org/10.17582/journal.aavs/2020/8.3.234.237
https://doi.org/10.17582/journal.aavs/2020/8.3.234.237
https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.1145/3319619.3326774
https://doi.org/10.1109/ACCESS.2020.3010287
https://doi.org/10.3390/app10134640
https://doi.org/10.3390/app10134640
https://arxiv.org/abs/2006.11988
https://github.com/ieee8023/covid-chestxray-dataset
https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045
https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045

118 BIBLIOGRAPHY

Costa, Victor et al. (2019). ‘COEGAN: Evaluating the Coevolution Effect in Generative Ad-

versarial Networks’. In: Proceedings of the Genetic and Evolutionary Computation Con-

ference. GECCO ’19. Prague, Czech Republic: Association for Computing Machinery,

pp. 374–382. DOI: 10.1145/3321707.3321746.

— (2020a). ‘Exploring the evolution of GANs through quality diversity’. In: Proceedings

of the 2020 Genetic and Evolutionary Computation Conference, pp. 297–305. DOI: 10.

1145/3377930.3389824.

— (2020b). ‘Neuroevolution of Generative Adversarial Networks’. In: Deep Neural Evolu-

tion. Springer, pp. 293–322. DOI: 10.1007/978-981-15-3685-4_11.

— (2020c). ‘Using Skill Rating as Fitness on the Evolution of GANs’. In: International

Conference on the Applications of Evolutionary Computation (Part of EvoStar). Springer,

pp. 562–577. DOI: 10.1007/978-3-030-43722-0_36.

Denton, Emily et al. (2015). ‘Deep Generative Image Models Using a Laplacian Pyramid of

Adversarial Networks’. In: Proceedings of the 28th International Conference on Neural

Information Processing Systems - Volume 1. NIPS’15. Montreal, Canada: MIT Press,

pp. 1486–1494. DOI: 10.5555/2969239.2969405.

Al-Dujaili, Abdullah, Tom Schmiedlechner and Una-May O’Reilly (July 2018). ‘Towards

Distributed Coevolutionary GANs’. In: arXiv e-prints. arXiv: 1807.08194 [cs.NE].

Dumoulin, Vincent and Francesco Visin (Mar. 2016). ‘A guide to convolution arithmetic for

deep learning’. In: ArXiv e-prints. eprint: 1603.07285.

Eiben, Agoston E and James E Smith (2015). Introduction to evolutionary computing. Springer.

DOI: 10.1007/978-3-662-44874-8.

Eklund, Anders (Dec. 2019). ‘Feeding the zombies: Synthesizing brain volumes using a 3D

progressive growing GAN’. In: arXiv e-prints. arXiv: 1912.05357 [eess.IV].

Galván, Edgar and Peter Mooney (June 2020). ‘Neuroevolution in Deep Neural Networks:

Current Trends and Future Challenges’. In: arXiv e-prints. arXiv: 2006.05415 [cs.NE].

Garciarena, Unai, Roberto Santana and Alexander Mendiburu (2018). ‘Evolved GANs for

Generating Pareto Set Approximations’. In: Proceedings of the Genetic and Evolution-

ary Computation Conference. GECCO ’18. Kyoto, Japan: Association for Computing

Machinery, pp. 434–441. ISBN: 9781450356183. DOI: 10.1145/3205455.3205550.

https://doi.org/10.1145/3321707.3321746
https://doi.org/10.1145/3377930.3389824
https://doi.org/10.1145/3377930.3389824
https://doi.org/10.1007/978-981-15-3685-4_11
https://doi.org/10.1007/978-3-030-43722-0_36
https://doi.org/10.5555/2969239.2969405
https://arxiv.org/abs/1807.08194
1603.07285
https://doi.org/10.1007/978-3-662-44874-8
https://arxiv.org/abs/1912.05357
https://arxiv.org/abs/2006.05415
https://doi.org/10.1145/3205455.3205550

BIBLIOGRAPHY 119

Goodfellow, Ian, Yoshua Bengio and Aaron Courville (2016). Deep Learning. http://www.

deeplearningbook.org. MIT Press.

Goodfellow, Ian J. et al. (2014). ‘Generative Adversarial Networks’. In: arXiv e-prints.

arXiv: 1406.2661 [stat.ML].

Gordienko, Yu et al. (2018). ‘Deep learning with lung segmentation and bone shadow ex-

clusion techniques for chest X-ray analysis of lung cancer’. In: International Conference

on Computer Science, Engineering and Education Applications. Springer, pp. 638–647.

DOI: 10.1007/978-3-319-91008-6_63.

Guendel, Sebastian et al. (May 2019). ‘Multi-task Learning for Chest X-ray Abnormality

Classification on Noisy Labels’. In: arXiv e-prints. arXiv: 1905.06362 [cs.CV].

Gui, Jie et al. (Jan. 2020). ‘A Review on Generative Adversarial Networks: Algorithms,

Theory, and Applications’. In: arXiv e-prints. arXiv: 2001.06937 [cs.LG].

Guibas, John T., Tejpal S. Virdi and Peter S. Li (Sept. 2017). ‘Synthetic Medical Images

from Dual Generative Adversarial Networks’. In: arXiv e-prints. arXiv: 1709 . 01872

[cs.CV].

Gulrajani, Ishaan et al. (2017). ‘Improved training of wasserstein gans’. In: Advances in

neural information processing systems, pp. 5767–5777. DOI: 10.5555/3295222.3295327.

Han, Changhee et al. (2019). ‘Learning more with less: Conditional PGGAN-based data

augmentation for brain metastases detection using highly-rough annotation on MR im-

ages’. In: Proceedings of the 28th ACM International Conference on Information and

Knowledge Management, pp. 119–127. DOI: 10.1145/3357384.3357890.

Heusel, Martin et al. (2017). ‘Gans trained by a two time-scale update rule converge to a local

nash equilibrium’. In: Advances in neural information processing systems, pp. 6626–

6637. DOI: 10.5555/3295222.3295408.

Huang, Chaolin et al. (2020). ‘Clinical features of patients infected with 2019 novel coronavirus

in Wuhan, China’. In: The lancet 395.10223, pp. 497–506. DOI: 10.1016/S0140-6736(20)

30183-5.

Huang, He, Philip S. Yu and Changhu Wang (Mar. 2018). ‘An Introduction to Image Syn-

thesis with Generative Adversarial Nets’. In: arXiv e-prints. arXiv: 1803.04469 [cs.CV].

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1406.2661
https://doi.org/10.1007/978-3-319-91008-6_63
https://arxiv.org/abs/1905.06362
https://arxiv.org/abs/2001.06937
https://arxiv.org/abs/1709.01872
https://arxiv.org/abs/1709.01872
https://doi.org/10.5555/3295222.3295327
https://doi.org/10.1145/3357384.3357890
https://doi.org/10.5555/3295222.3295408
https://doi.org/10.1016/S0140-6736(20)30183-5
https://doi.org/10.1016/S0140-6736(20)30183-5
https://arxiv.org/abs/1803.04469

120 BIBLIOGRAPHY

Hubel, David H and Torsten N Wiesel (1959). ‘Receptive fields of single neurones in the

cat’s striate cortex’. In: The Journal of physiology 148.3, pp. 574–591. DOI: 10.1113/

jphysiol.1959.sp006308.

Human, Becoming (2020). Building a Convolutional Neural Network (CNN) Model for Im-

age classification. URL: https:/ /becominghuman.ai/building- a- convolutional- neural-

network-cnn-model-for-image-classification-116f77a7a236 (visited on 02/06/2021).

Iba, Hitoshi (2018). Evolutionary approach to machine learning and deep neural networks.

Springer. DOI: 10.1007/978-981-13-0200-8.

Iba, Hitoshi and Nasimul Noman (2020). Deep Neural Evolution. Springer. DOI: 10.1007/

978-981-15-3685-4.

Ismael, Aras M and Abdulkadir Şengür (2021). ‘Deep learning approaches for COVID-

19 detection based on chest X-ray images’. In: Expert Systems with Applications 164,

p. 114054. DOI: 10.1016/j.eswa.2020.114054.

Jain, Rachna et al. (2021). ‘Deep learning based detection and analysis of COVID-19 on

chest X-ray images’. In: Applied Intelligence 51.3, pp. 1690–1700. DOI: 10.1007/s10489-

020-01902-1.

Junior, Francisco Erivaldo Fernandes and Gary G Yen (2019). ‘Particle swarm optimization

of deep neural networks architectures for image classification’. In: Swarm and Evolu-

tionary Computation 49, pp. 62–74. DOI: 10.1016/j.swevo.2019.05.010.

Karakanis, Stefanos and Georgios Leontidis (2020). ‘Lightweight deep learning models for

detecting COVID-19 from chest X-ray images’. In: Computers in Biology and Medicine

130, p. 104181. DOI: 10.1016/j.compbiomed.2020.104181.

Karbhari, Yash et al. (2021). ‘Generation of Synthetic Chest X-ray Images and Detection

of COVID-19: A Deep Learning Based Approach’. In: Diagnostics 11.5, p. 895. DOI:

10.3390/diagnostics11050895.

Karras, Tero et al. (Oct. 2017). ‘Progressive Growing of GANs for Improved Quality, Stabil-

ity, and Variation’. In: arXiv e-prints. arXiv: 1710.10196 [cs.NE].

Kazeminia, Salome et al. (2020). ‘GANs for medical image analysis’. In: Artificial Intelli-

gence in Medicine 109, p. 101938. DOI: 10.1016/j.artmed.2020.101938.

https://doi.org/10.1113/jphysiol.1959.sp006308
https://doi.org/10.1113/jphysiol.1959.sp006308
https://becominghuman.ai/building-a-convolutional-neural-network-cnn-model-for-image-classification-116f77a7a236
https://becominghuman.ai/building-a-convolutional-neural-network-cnn-model-for-image-classification-116f77a7a236
https://doi.org/10.1007/978-981-13-0200-8
https://doi.org/10.1007/978-981-15-3685-4
https://doi.org/10.1007/978-981-15-3685-4
https://doi.org/10.1016/j.eswa.2020.114054
https://doi.org/10.1007/s10489-020-01902-1
https://doi.org/10.1007/s10489-020-01902-1
https://doi.org/10.1016/j.swevo.2019.05.010
https://doi.org/10.1016/j.compbiomed.2020.104181
https://doi.org/10.3390/diagnostics11050895
https://arxiv.org/abs/1710.10196
https://doi.org/10.1016/j.artmed.2020.101938

BIBLIOGRAPHY 121

Kennedy, James and Russell Eberhart (1995). ‘Particle swarm optimization’. In: Proceedings

of ICNN’95-International Conference on Neural Networks. Vol. 4. IEEE, pp. 1942–1948.

DOI: 10.1109/ICNN.1995.488968.

Khalifa, Nour Eldeen M. et al. (Apr. 2020). ‘Detection of Coronavirus (COVID-19) Asso-

ciated Pneumonia based on Generative Adversarial Networks and a Fine-Tuned Deep

Transfer Learning Model using Chest X-ray Dataset’. In: arXiv e-prints. arXiv: 2004.

01184 [eess.IV].

Khan, Asifullah et al. (2020). ‘A survey of the recent architectures of deep convolutional

neural networks’. In: Artificial Intelligence Review 53, pp. 5455–5516. DOI: 10.1007/

s10462-020-09825-6.

Khan, Salman et al. (2018). ‘A guide to convolutional neural networks for computer vision’.

In: Synthesis Lectures on Computer Vision. DOI: 10.2200/S00822ED1V01Y201712COV015.

Kingma, Diederik P. and Jimmy Ba (Dec. 2014). ‘Adam: A Method for Stochastic Optimiz-

ation’. In: arXiv e-prints. arXiv: 1412.6980 [cs.LG].

Kora Venu, Sagar and Sridhar Ravula (2021). ‘Evaluation of Deep Convolutional Generat-

ive Adversarial Networks for Data Augmentation of Chest X-ray Images’. In: Future

Internet 13.1, p. 8. DOI: 10.3390/fi13010008.

Korde, Charudatta G et al. (2019). ‘Training of Generative Adversarial Networks with Hy-

brid Evolutionary Optimization Technique’. In: 2019 IEEE 16th India Council Interna-

tional Conference (INDICON). IEEE, pp. 1–4. DOI: 10 .1109 / INDICON47234 .2019 .

9030352.

Korkinof, Dimitrios et al. (July 2018). ‘High-Resolution Mammogram Synthesis using Pro-

gressive Generative Adversarial Networks’. In: arXiv e-prints. arXiv: 1807.03401 [cs.CV].

Kumar, Aishwarya, Puneet Kumar Gupta and Ankita Srivastava (2020). ‘A review of modern

technologies for tackling COVID-19 pandemic’. In: Diabetes & Metabolic Syndrome:

Clinical Research & Reviews 14.4, pp. 569–573. DOI: 10.1016/j.dsx.2020.05.008.

Kumar, Sandeep, Anand Nayyar and Anand Paul (2019). Swarm Intelligence and Evolution-

ary Algorithms in Healthcare and Drug Development. CRC Press. ISBN: 9780367257576.

Litjens, Geert et al. (2017). ‘A survey on deep learning in medical image analysis’. In: Med-

ical image analysis 42, pp. 60–88. DOI: 10.1016/j.media.2017.07.005.

https://doi.org/10.1109/ICNN.1995.488968
https://arxiv.org/abs/2004.01184
https://arxiv.org/abs/2004.01184
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.2200/S00822ED1V01Y201712COV015
https://arxiv.org/abs/1412.6980
https://doi.org/10.3390/fi13010008
https://doi.org/10.1109/INDICON47234.2019.9030352
https://doi.org/10.1109/INDICON47234.2019.9030352
https://arxiv.org/abs/1807.03401
https://doi.org/10.1016/j.dsx.2020.05.008
https://doi.org/10.1016/j.media.2017.07.005

122 BIBLIOGRAPHY

Loey, Mohamed, Florentin Smarandache and Nour Eldeen M Khalifa (2020). ‘Within the

Lack of Chest COVID-19 X-ray Dataset: A Novel Detection Model Based on GAN and

Deep Transfer Learning’. In: Symmetry 12.4, p. 651. DOI: 10.3390/sym12040651.

Lu, Le et al. (2017). ‘Deep learning and convolutional neural networks for medical image

computing’. In: Advances in Computer Vision and Pattern Recognition. DOI: 10.1007/

978-3-319-42999-1.

Lucic, Mario et al. (2018). ‘Are gans created equal? a large-scale study’. In: Advances in

neural information processing systems, pp. 700–709. DOI: 10.5555/3326943.3327008.

Maaten, Laurens van der and Geoffrey Hinton (2008). ‘Visualizing data using t-SNE’. In:

Journal of machine learning research 9.Nov, pp. 2579–2605. URL: https://www.jmlr.

org/papers/v9/vandermaaten08a.html.

Madani, Ali et al. (2018). ‘Semi-supervised learning with generative adversarial networks

for chest x-ray classification with ability of data domain adaptation’. In: 2018 IEEE 15th

International Symposium on Biomedical Imaging (ISBI 2018). IEEE, pp. 1038–1042.

DOI: 10.1109/ISBI.2018.8363749..

Mao, Xudong et al. (2017). ‘Least squares generative adversarial networks’. In: Proceedings

of the IEEE international conference on computer vision, pp. 2794–2802. DOI: 10.1109/

ICCV.2017.304..

Martinez, Aritz D et al. (2020). ‘Lights and shadows in Evolutionary Deep Learning: Tax-

onomy, critical methodological analysis, cases of study, learned lessons, recommenda-

tions and challenges’. In: Information Fusion 67, pp. 161–194. DOI: 10.1016/j.inffus.

2020.10.014.

McCulloch, Warren S and Walter Pitts (1943). ‘A logical calculus of the ideas immanent

in nervous activity’. In: Bulletin of mathematical biophysics 5.4, pp. 115–133. DOI: 10.

1007/BF02478259.

Mehta, Kaitav et al. (2019). ‘Data Augmentation using CA Evolved GANs’. In: 2019 IEEE

Symposium on Computers and Communications (ISCC). IEEE, pp. 1087–1092. DOI: 10.

1109/ISCC47284.2019.8969638.

https://doi.org/10.3390/sym12040651
https://doi.org/10.1007/978-3-319-42999-1
https://doi.org/10.1007/978-3-319-42999-1
https://doi.org/10.5555/3326943.3327008
https://www.jmlr.org/papers/v9/vandermaaten08a.html
https://www.jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1109/ISBI.2018.8363749.
https://doi.org/10.1109/ICCV.2017.304.
https://doi.org/10.1109/ICCV.2017.304.
https://doi.org/10.1016/j.inffus.2020.10.014
https://doi.org/10.1016/j.inffus.2020.10.014
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1109/ISCC47284.2019.8969638
https://doi.org/10.1109/ISCC47284.2019.8969638

BIBLIOGRAPHY 123

Menon, Sumeet et al. (2020). ‘Generating Realistic COVID-19 x-rays with a Mean Teacher

+ Transfer Learning GAN’. In: 2020 IEEE International Conference on Big Data (Big

Data), pp. 1216–1225. DOI: 10.1109/BigData50022.2020.9377878.

Middel, Luise, Christoph Palm and Marius Erdt (2019). ‘Synthesis of medical images using

gans’. In: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and

Clinical Image-Based Procedures. Springer, pp. 125–134. DOI: 10.1007/978- 3- 030-

32689-0_13.

Miikkulainen, Risto et al. (2019). ‘Evolving deep neural networks’. In: Artificial Intelligence

in the Age of Neural Networks and Brain Computing. Elsevier, pp. 293–312. DOI: 10.

1016/B978-0-12-815480-9.00015-3.

Mirza, Mehdi and Simon Osindero (Nov. 2014). ‘Conditional Generative Adversarial Nets’.

In: arXiv e-prints. arXiv: 1411.1784 [cs.LG].

Miyato, Takeru et al. (Feb. 2018). ‘Spectral Normalization for Generative Adversarial Net-

works’. In: arXiv e-prints. arXiv: 1802.05957 [cs.LG].

Mohapatra, Subhashree, Tripti Swarnkar and Jayashankar Das (2021). ‘Deep convolutional

neural network in medical image processing’. In: Handbook of Deep Learning in Bio-

medical Engineering. Elsevier, pp. 25–60. DOI: 10.1016/B978-0-12-823014-5.00006-5.

Mooney, Paul (2018). ‘Chest x-ray images (pneumonia)’. In: kaggle, Marzo. URL: https :

//www.kaggle.com/paultimothymooney/chest-xray-pneumonia.

Nalepa, Jakub, Michal Marcinkiewicz and Michal Kawulok (2019). ‘Data augmentation

for brain-tumor segmentation: A review’. In: Frontiers in Computational Neuroscience

13.83. DOI: 10.3389/fncom.2019.00083.

Nayyar, Anand, Dac-Nhuong Le and Nhu Gia Nguyen (2018). Advances in swarm intelli-

gence for optimizing problems in computer science. CRC Press. ISBN: 9781138482517.

Neyshabur, Behnam, Srinadh Bhojanapalli and Ayan Chakrabarti (May 2017). ‘Stabilizing

GAN Training with Multiple Random Projections’. In: arXiv e-prints. arXiv: 1705.07831

[cs.LG].

Ng, Ming-Yen et al. (2020). ‘Imaging profile of the COVID-19 infection: radiologic findings

and literature review’. In: Radiology: Cardiothoracic Imaging 2.1. DOI: 10.1148/ryct.

2020200034.

https://doi.org/10.1109/BigData50022.2020.9377878
https://doi.org/10.1007/978-3-030-32689-0_13
https://doi.org/10.1007/978-3-030-32689-0_13
https://doi.org/10.1016/B978-0-12-815480-9.00015-3
https://doi.org/10.1016/B978-0-12-815480-9.00015-3
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1802.05957
https://doi.org/10.1016/B978-0-12-823014-5.00006-5
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://doi.org/10.3389/fncom.2019.00083
https://arxiv.org/abs/1705.07831
https://arxiv.org/abs/1705.07831
https://doi.org/10.1148/ryct.2020200034
https://doi.org/10.1148/ryct.2020200034

124 BIBLIOGRAPHY

Ni, Yao et al. (July 2018). ‘CAGAN: Consistent Adversarial Training Enhanced GANs’. In:

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelli-

gence, IJCAI-18. International Joint Conferences on Artificial Intelligence Organization,

pp. 2588–2594. DOI: 10.24963/ijcai.2018/359.

Noman, Nasimul (2020). ‘A Shallow Introduction to Deep Neural Networks’. In: Deep

Neural Evolution. Springer, pp. 35–63. DOI: 10.1007/978-981-15-3685-4_2.

Pan, Zhaoqing et al. (2019). ‘Recent progress on generative adversarial networks (GANs):

A survey’. In: IEEE Access 7, pp. 36322–36333. DOI: 10.1109/ACCESS.2019.2905015.

Panwar, Harsh et al. (2020). ‘Application of deep learning for fast detection of COVID-

19 in X-Rays using nCOVnet’. In: Chaos, Solitons & Fractals 138, p. 109944. DOI:

10.1016/j.chaos.2020.109944.

Paszke, Adam et al. (2017). ‘Automatic differentiation in pytorch’. In: URL: https://openreview.

net/pdf?id=BJJsrmfCZ.

Patterson, J. and A. Gibson (2017). Deep Learning: A Practitioner’s Approach. O’Reilly.

ISBN: 9781491914250. URL: https://books.google.com.mx/books?id=BdPrrQEACAAJ.

Perez, Luis and Jason Wang (Dec. 2017). ‘The Effectiveness of Data Augmentation in Image

Classification using Deep Learning’. In: arXiv e-prints. arXiv: 1712.04621 [cs.CV].

Piotrowski, Adam P et al. (2017). ‘Swarm intelligence and evolutionary algorithms: Per-

formance versus speed’. In: Information Sciences 384, pp. 34–85. DOI: 10.1016/j.ins.

2016.12.028.

Radford, Alec, Luke Metz and Soumith Chintala (Nov. 2015). ‘Unsupervised Representation

Learning with Deep Convolutional Generative Adversarial Networks’. In: arXiv e-prints.

arXiv: 1511.06434 [cs.LG].

Rajaraman, Sivaramakrishnan et al. (2018). ‘Visualization and interpretation of convolu-

tional neural network predictions in detecting pneumonia in pediatric chest radiographs’.

In: Applied Sciences 8.10, p. 1715. DOI: 10.3390/app8101715.

Rajpurkar, Pranav et al. (Nov. 2017). ‘CheXNet: Radiologist-Level Pneumonia Detection on

Chest X-Rays with Deep Learning’. In: arXiv e-prints. arXiv: 1711.05225 [cs.CV].

https://doi.org/10.24963/ijcai.2018/359
https://doi.org/10.1007/978-981-15-3685-4_2
https://doi.org/10.1109/ACCESS.2019.2905015
https://doi.org/10.1016/j.chaos.2020.109944
https://openreview.net/pdf?id=BJJsrmfCZ
https://openreview.net/pdf?id=BJJsrmfCZ
https://books.google.com.mx/books?id=BdPrrQEACAAJ
https://arxiv.org/abs/1712.04621
https://doi.org/10.1016/j.ins.2016.12.028
https://doi.org/10.1016/j.ins.2016.12.028
https://arxiv.org/abs/1511.06434
https://doi.org/10.3390/app8101715
https://arxiv.org/abs/1711.05225

BIBLIOGRAPHY 125

Rosenblatt, Frank (1958). ‘The perceptron: a probabilistic model for information storage

and organization in the brain.’ In: Psychological review 65.6, pp. 386–408. DOI: 10 .

1037/h0042519.

Sahu, Amaresh, Sushanta Kumar Panigrahi and Sabyasachi Pattnaik (2012). ‘Fast conver-

gence particle swarm optimization for functions optimization’. In: Procedia Technology

4, pp. 319–324. DOI: 10.1016/j.protcy.2012.05.048.

Salehinejad, Hojjat et al. (2018). ‘Generalization of deep neural networks for chest patho-

logy classification in x-rays using generative adversarial networks’. In: 2018 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,

pp. 990–994. DOI: 10.1109/ICASSP.2018.8461430..

Salimans, Tim and Diederik P. Kingma (2016). ‘Weight Normalization: A Simple Repara-

meterization to Accelerate Training of Deep Neural Networks’. In: Proceedings of the

30th International Conference on Neural Information Processing Systems. NIPS’16.

Barcelona, Spain: Curran Associates Inc., pp. 901–909. ISBN: 9781510838819. DOI:

10.5555/3157096.3157197.

Shaham, Tamar Rott, Tali Dekel and Tomer Michaeli (2019). ‘Singan: Learning a generat-

ive model from a single natural image’. In: Proceedings of the IEEE/CVF International

Conference on Computer Vision, pp. 4570–4580. DOI: 10.1109/ICCV.2019.00467.

Shams, MY et al. (2020). ‘Why Are Generative Adversarial Networks Vital for Deep Neural

Networks? A Case Study on COVID-19 Chest X-Ray Images’. In: Big Data Analytics

and Artificial Intelligence Against COVID-19: Innovation Vision and Approach. Springer,

pp. 147–162. DOI: 10.1007/978-3-030-55258-9_9.

Sheykhivand, Sobhan et al. (2021). ‘Developing an efficient deep neural network for auto-

matic detection of COVID-19 using chest X-ray images’. In: Alexandria Engineering

Journal 60.3, pp. 2885–2903. DOI: 10.1016/j.aej.2021.01.011.

Shi, Feng et al. (2020). ‘Review of artificial intelligence techniques in imaging data ac-

quisition, segmentation and diagnosis for covid-19’. In: IEEE Reviews in Biomedical

Engineering. DOI: 10.1109/RBME.2020.2987975.

Shin, Hoo-Chang et al. (2018). ‘Medical image synthesis for data augmentation and anonym-

ization using generative adversarial networks’. In: International workshop on simulation

https://doi.org/10.1037/h0042519
https://doi.org/10.1037/h0042519
https://doi.org/10.1016/j.protcy.2012.05.048
https://doi.org/10.1109/ICASSP.2018.8461430.
https://doi.org/10.5555/3157096.3157197
https://doi.org/10.1109/ICCV.2019.00467
https://doi.org/10.1007/978-3-030-55258-9_9
https://doi.org/10.1016/j.aej.2021.01.011
https://doi.org/10.1109/RBME.2020.2987975

126 BIBLIOGRAPHY

and synthesis in medical imaging. Springer, pp. 1–11. DOI: 10.1007/978-3-030-00536-

8_1.

Shorten, Connor and Taghi M Khoshgoftaar (2019). ‘A survey on image data augmentation

for deep learning’. In: Journal of Big Data 6.1, p. 60. DOI: 10.1186/s40537-019-0197-0.

Shu, Han et al. (2019). ‘Co-Evolutionary Compression for Unpaired Image Translation’. In:

2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3234–3243.

DOI: 10.1109/ICCV.2019.00333.

Shukla, Nagesh et al. (2020). ‘Half a century of computer methods and programs in biomedi-

cine: A bibliometric analysis from 1970 to 2017’. In: Computer methods and programs

in biomedicine 183, p. 105075. DOI: 10.1016/j.cmpb.2019.105075.

Simonyan, Karen and Andrew Zisserman (Sept. 2014). ‘Very Deep Convolutional Networks

for Large-Scale Image Recognition’. In: arXiv e-prints. arXiv: 1409.1556 [cs.CV].

Song, Xiaoning et al. (2020). ‘SP-GAN: Self-growing and pruning generative adversarial

networks’. In: IEEE Transactions on Neural Networks and Learning Systems. DOI: 10.

1109/TNNLS.2020.3005574..

Sorin, Vera et al. (2020). ‘Creating Artificial Images for Radiology Applications Using Gen-

erative Adversarial Networks (GANs)-A Systematic Review’. In: Academic Radiology.

DOI: 10.1016/j.acra.2019.12.024.

Stanley, Kenneth O et al. (2019). ‘Designing neural networks through neuroevolution’. In:

Nature Machine Intelligence 1.1, pp. 24–35. DOI: 10.1038/s42256-018-0006-z.

Stirenko, Sergii et al. (2018). ‘Chest X-Ray Analysis of Tuberculosis by Deep Learning

with Segmentation and Augmentation’. In: 2018 IEEE 38th International Conference

on Electronics and Nanotechnology (ELNANO), pp. 422–428. DOI: 10.1109/ELNANO.

2018.8477564.

Suetens, Paul (2017). Fundamentals of medical imaging. Cambridge university press. DOI:

10.1017/CBO9780511596803.

Szegedy, Christian et al. (2016). ‘Rethinking the inception architecture for computer vision’.

In: Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 2818–2826. DOI: 10.1109/CVPR.2016.308.

https://doi.org/10.1007/978-3-030-00536-8_1
https://doi.org/10.1007/978-3-030-00536-8_1
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1109/ICCV.2019.00333
https://doi.org/10.1016/j.cmpb.2019.105075
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/TNNLS.2020.3005574.
https://doi.org/10.1109/TNNLS.2020.3005574.
https://doi.org/10.1016/j.acra.2019.12.024
https://doi.org/10.1038/s42256-018-0006-z
https://doi.org/10.1109/ELNANO.2018.8477564
https://doi.org/10.1109/ELNANO.2018.8477564
https://doi.org/10.1017/CBO9780511596803
https://doi.org/10.1109/CVPR.2016.308

BIBLIOGRAPHY 127

Tabik, S. et al. (2020). ‘COVIDGR Dataset and COVID-SDNet Methodology for Predicting

COVID-19 Based on Chest X-Ray Images’. In: IEEE Journal of Biomedical and Health

Informatics 24.12, pp. 3595–3605. DOI: 10.1109/JBHI.2020.3037127.

Teramoto, Atsushi et al. (2020). ‘Deep learning approach to classification of lung cytological

images: Two-step training using actual and synthesized images by progressive growing

of generative adversarial networks’. In: PloS one 15.3, e0229951. DOI: 10.1371/journal.

pone.0229951.

Toutouh, Jamal, Erik Hemberg and Una-May O’Reilly (2019). ‘Spatial Evolutionary Gen-

erative Adversarial Networks’. In: Proceedings of the Genetic and Evolutionary Com-

putation Conference. GECCO ’19. Prague, Czech Republic: Association for Computing

Machinery, pp. 472–480. DOI: 10.1145/3321707.3321860.

Waheed, Abdul et al. (2020). ‘Covidgan: Data augmentation using auxiliary classifier gan

for improved covid-19 detection’. In: IEEE Access 8, pp. 91916–91923. DOI: 10.1109/

ACCESS.2020.2994762..

Wang, L. et al. (2020). ‘A State-of-the-Art Review on Image Synthesis With Generative

Adversarial Networks’. In: IEEE Access 8, pp. 63514–63537. DOI: 10.1109/ACCESS.

2020.2982224.

Wang, Zhengwei, Qi She and Tomas E. Ward (June 2019). ‘Generative Adversarial Networks

in Computer Vision: A Survey and Taxonomy’. In: arXiv e-prints. arXiv: 1906.01529

[cs.LG].

Wang, C. et al. (2019). ‘Evolutionary Generative Adversarial Networks’. In: IEEE Trans-

actions on Evolutionary Computation 23.6, pp. 921–934. DOI: 10.1109/TEVC.2019.

2895748.

Wold, Svante, Kim Esbensen and Paul Geladi (1987). ‘Principal component analysis’. In:

Chemometrics and intelligent laboratory systems 2.1-3, pp. 37–52. DOI: 10.1016/0169-

7439(87)80084-9.

Xiang, Sitao and Hao Li (Apr. 2017). ‘On the Effects of Batch and Weight Normalization in

Generative Adversarial Networks’. In: arXiv e-prints. arXiv: 1704.03971 [stat.ML].

Yang, Xin-She (2015). Recent advances in swarm intelligence and evolutionary computa-

tion. Springer. DOI: 10.1007/978-3-319-13826-8.

https://doi.org/10.1109/JBHI.2020.3037127
https://doi.org/10.1371/journal.pone.0229951
https://doi.org/10.1371/journal.pone.0229951
https://doi.org/10.1145/3321707.3321860
https://doi.org/10.1109/ACCESS.2020.2994762.
https://doi.org/10.1109/ACCESS.2020.2994762.
https://doi.org/10.1109/ACCESS.2020.2982224
https://doi.org/10.1109/ACCESS.2020.2982224
https://arxiv.org/abs/1906.01529
https://arxiv.org/abs/1906.01529
https://doi.org/10.1109/TEVC.2019.2895748
https://doi.org/10.1109/TEVC.2019.2895748
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1016/0169-7439(87)80084-9
https://arxiv.org/abs/1704.03971
https://doi.org/10.1007/978-3-319-13826-8

128 BIBLIOGRAPHY

Yi, Xin, Ekta Walia and Paul Babyn (2019). ‘Generative adversarial network in medical

imaging: A review’. In: Medical image analysis 58, p. 101552. DOI: 10.1016/j.media.

2019.101552.

Zhang, Dan and Anna Khoreva (Jan. 2019). ‘Progressive Augmentation of GANs’. In: arXiv

e-prints. arXiv: 1901.10422 [cs.CV].

Zhang, Jianpeng et al. (2020). ‘Viral Pneumonia Screening on Chest X-rays Using Confidence-

Aware Anomaly Detection’. In: IEEE transactions on medical imaging. DOI: 10.1109/

TMI.2020.3040950.

Zhang, Tianyang et al. (2019). ‘SkrGAN: Sketching-rendering unconditional generative ad-

versarial networks for medical image synthesis’. In: International Conference on Med-

ical Image Computing and Computer-Assisted Intervention. Springer, pp. 777–785. DOI:

10.1007/978-3-030-32251-9_85.

Zheng, W. et al. (2019). ‘Differential-Evolution-Based Generative Adversarial Networks

for Edge Detection’. In: 2019 IEEE/CVF International Conference on Computer Vision

Workshop (ICCVW), pp. 2999–3008. DOI: 10.1109/ICCVW.2019.00362.

Zhou, Sharon (2020). Build Basic Generative Adversarial Networks (GANs). Conditional

Generation: Intuition. URL: https://www.coursera.org/lecture/build-basic-generative-

adversarial-networks-gans/conditional-generation-inputs-2OPrG (visited on 23/06/2021).

Zulkifley, Mohd Asyraf, Siti Raihanah Abdani and Nuraisyah Hani Zulkifley (2020). ‘COVID-

19 Screening Using a Lightweight Convolutional Neural Network with Generative Ad-

versarial Network Data Augmentation’. In: Symmetry 12.9, p. 1530. DOI: 10 . 3390 /

sym12091530.

https://doi.org/10.1016/j.media.2019.101552
https://doi.org/10.1016/j.media.2019.101552
https://arxiv.org/abs/1901.10422
https://doi.org/10.1109/TMI.2020.3040950
https://doi.org/10.1109/TMI.2020.3040950
https://doi.org/10.1007/978-3-030-32251-9_85
https://doi.org/10.1109/ICCVW.2019.00362
https://www.coursera.org/lecture/build-basic-generative-adversarial-networks-gans/conditional-generation-inputs-2OPrG
https://www.coursera.org/lecture/build-basic-generative-adversarial-networks-gans/conditional-generation-inputs-2OPrG
https://doi.org/10.3390/sym12091530
https://doi.org/10.3390/sym12091530

Appendices

129

1 VANILLA DCGAN VS. WGAN VS. SPECTRAL NORMALIZATION EXPERIMENTATION 131

1 Vanilla DCGAN vs. WGAN vs. Spectral Normalization

Experimentation

The WGAN-GP (see section 2.4.3) was implemented as a training mechanism for DCGANs

to evolve due to its stability properties in training and good results obtained as a state-of-

the-art model. For these tests, only 642 pixels resolution images were synthesized and no

progressive growth was performed. These results were compared with training using Spec-

tral Normalization (see section 2.4.4) for the DCGAN discriminator (SN-DCGAN) and with

the original version of DCGAN (Vanilla DCGAN) (see section 2.4.1).

The results are compared in three aspects, quality of the synthetic images, variance of the fi-

nal results obtained between different runs (the FID value was used in these two) and training

speed (minutes).

The observations obtained in these aspects in the three implementations are the following:

• Quality and Variance: The results in the table .1 show the mean and standard de-

viation of the FID value obtained from training two different architectures with the

three variants for 200 epochs each with 5 runs. As can be seen, WGAN-GP obtains

the best FID values (lower is better) and also has a lower variance. SN-DCGAN

is positioned as second best, although the average is not as good as WGAN-GP, it

is quite low and with a not so high variance. Lastly, the worst approach on both

architectures turned out to be Vanilla DCGAN with large FID values and quite high

variance compared to its competitors. These quality results are exemplified with fig-

ure .1, where a batch of synthetic images is shown for the same architecture trained

with the three variants.

• Training speed: The results of this field are found in the table .2, where the same

architecture was trained with the three variants during 1000 epochs in 5 runs and its

time was recorded. As can be seen, the shortest time was obtained by SN-DCGAN,

requiring approximately only one third and one seventh of the time required by

132

Vanilla DCGAN and WGAN-GP respectively. This advantage has a great weight

since it has limited computational resources.

With the previous results, the conclusion was reached that SN-DCGAN offers a trade-off

between the quality and stability capabilities (little variance) of WGAN-GP and the speed of

Vanilla DCGAN, and although it does not obtain a very good final quality, it is more stable

compared to Vanilla DCGAN, which allows to obtain robustness in the fitness measurements

carried out within DCGAN-PSO. That is why SN-DCGAN is the method used to train the

particles of the proposed algorithm.

FIGURE .1. Synthetic images obtained from the same DCGAN architec-
ture trained with the three variants with 1000 epochs. From left to right:
Vanilla DCGAN, WGAN-GP and SN-DCGAN.

Architecure Vanilla-DCGAN WGAN-GP SN-DCGAN
1 19.66± 17.59 1.42± 0.11 3.9755± 0.73
2 22.28± 36.55 1.91± 0.13 7.49± 1.12

TABLE .1. FID results (mean ± std.dev.) of the three DCGAN variants.
Two different architectures were trained for 200 epochs and 5 times with each
variant.

Model Training time per 1000 epochs (min.)
Vanilla-DCGAN 25.15± 2.30

WGAN-GP 61.4± 5.32
SN-DCGAN 9.21± 0.45

TABLE .2. Time results in minutes for 3 runs of each variant for 1000 epochs
(mean± std.dev.).

3 CONGRESS ON EVOLUTIONARY COMPUTING 2021 PAPER 133

2 Thesis Activities Schedule

Year 2020 2021
Activity

Se
pt

em
be

r

O
ct

ob
er

N
ov

em
be

r

D
ec

em
be

r

Ja
nu

ar
y

Fe
br

ua
ry

M
ar

ch

A
pr

il

M
ay

Ju
ne

Ju
ly

Literature review X X X X X X X X X X
Obtaining CXR images and pro-
cessing

X X X X

EA development and implementa-
tion

X X X X X X X X

First batch of experiments
(DCGAN-PSO)

X X X X X X

Research stay at IIMAS-UNAM X X
Second batch of experiments
(cDCGAN-PSO)

X X X X

Thesis redaction X X X X X X X X X X
Thesis submission and defense X X
Design and submission of article for
CEC 2021 (DCGAN-PSO)

X X X X

Presentation of accepted article in
CEC 2021 (DCGAN-PSO)

X

Design and submission of article for
SIPAIM 2021 (cDCGAN-PSO)

X X

TABLE .3. Schedule of activities.

3 Congress on Evolutionary Computing 2021 Paper

J.-A. Rodríguez-de-la-Cruz, H.-G. Acosta-Mesa and E. Mezura-Montes, "Evolution of Gen-

erative Adversarial Networks Using PSO for Synthesis of COVID-19 Chest X-ray Images,"

2021 IEEE Congress on Evolutionary Computation (CEC), 2021, pp. 2226-2233, doi:

10.1109/CEC45853.2021.9504743.

Evolution of Generative Adversarial Networks
Using PSO for Synthesis of COVID-19 Chest X-ray

Images
Juan-Antonio Rodrı́guez-de-la-Cruz

Artificial Intelligence Research Institute
University of Veracruz

Xalapa, Veracruz, México
juanantonio 2604@hotmail.es

Héctor-Gabriel Acosta-Mesa
Artificial Intelligence Research Institute

University of Veracruz
Xalapa, Veracruz, México

heacosta@uv.mx

Efrén Mezura-Montes
Senior Member, IEEE

Artificial Intelligence Research Institute
University of Veracruz

Xalapa, Veracruz, México
emezura@uv.mx

Abstract—The use of biomedical images for the training of
various Deep Learning (DL) systems oriented to health has
reported a competitive performance. However, DL needs a large
number of images for a correct generalization and, particularly
in the case of biomedical images, these can be scarce. Generative
Adversarial Networks (GANs) as Data Augmenting tools have
reaped significant results to improve performance in tasks that
involve the use of this kind of image. However, the architectural
design of these generative models in the biomedical image
area has been usually relegated to the expertise of researchers.
Moreover, GANs are affected by training instability that may
lead to poor quality results. This paper presents a neuroevolution
algorithm based on Particle Swarm Optimization for the design
and training of GANs for the generation of biomedical Chest
X-Ray (CXR) images of pneumonia caused by COVID-19. The
proposed approach allows having a swarm of GANs topologies,
where each one of them grows progressively while being trained
at the same time. The fitness value is based on the Frechet
Inception Distance (FID). The proposed algorithm is able to
obtain better FID results compared to handcrafted GANs for
the synthesis of CXR images.

Index Terms—GANs neuroevolution, Particle Swarm Opti-
mization, Biomedical Imaging Synthesis, COVID-19.

I. INTRODUCTION

Computer-aided diagnosis (CAD) with biomedical images
has made use of Deep Learning (DL) models in recent years.
This approach has proven to improve the performance in
disease detection and areas of interest segmentation [1]. One
of the main obstacles in DL-based models in CAD is the size
restrictions of the available image datasets. Biomedical images
are scarce because of four main reasons: (1) patient privacy;
(2) cost of the tests; (3) health bias, i.e. more available data
of sick patients; and (4) risk, as some tests expose the patient
to high doses of radiation [2].

For the aforementioned, the use of Data Augmentation (DA)
techniques that allow artificially increasing the number of
available samples, has been very useful in DL. However, as
those DA classic tools usually focus on oversampling the

original images by altering them, the expected performance
improvement in the learning task may be limited.

Therefore, the efforts of the last decade have turned around
developing more and better techniques to support model
training with small datasets and unbalanced classes. In recent
years, the use of Generative Adversarial Networks (GANs)
for the synthesis of images that expand the size of available
datasets has significantly improved the capabilities provided by
previous efforts in DA for CAD [3]. However, the usage of
GANs comes with training instability issues that have plagued
these generative models since their creation. Furthermore,
the design of a topology for a specific task depends most
of the time on the iterative design process based on the
researcher’s expertise. Different works have been developed
with the support of Evolutionary Computation (EC) to design
GANs [4], i.e., neuroevolution. The research efforts have
been particularly centered in the use of Genetic Algorithms
(GAs) and Coevolution. In contrast, to the best of the authors’
knowledge, Swarm Intelligence (SI) algorithms are yet to be
explored.

This paper presents the so-called Deep Convolutional Gen-
erative Adversarial Networks with Particle Swarm Optimiza-
tion (DCGAN-PSO), an algorithm to design and train DC-
GANs specialized in image synthesis. PSO has showed a
faster convergence in different domains than that of Genetic
Algorithms [5] (one of the main approaches for GANs neu-
roevolution). Such property is attractive in the context of neu-
roevolution, as it may reduce the usually costly search process.
Therefore, this work aims to analyze the capabilities of PSO to
get competitive DCGANs with a limited computational budget.

The remaining of this paper is organized as follows. In Sec-
tion II brief backgrounds about GANs, PSO and COVID-19
CXR are presented. The related work about GANs neuroevolu-
tion and CXR synthesis is shown in Section III. The proposed
algorithm is described in detail in Section IV. Section V
recounts the experiments carried out and their results, while
Section VI discusses them. For last, Section VII concludes this
paper and proposes directions for future work.978-1-7281-8393-0/21/$31.00 ©2021 IEEE

II. BACKGROUND

A. Generative Adversarial Networks

GANs were proposed in 2014 [6] as generative models and
consist of two Neural Networks (NNs), known as Generator
(G) and Discriminator (D).

The Generator’s goal is to synthesize data that are very
similar (in quality and diversity) to the original training dataset
distribution (pdata). Such process takes a random values vector
from a simple prior distribution (z ∼ p(z)), e.g., normal
or uniform, as input, and then passes it through the NN’s
inner layers until output data (G(z) ∼ pg(G(z))) is obtained.
Meanwhile, the Discriminator is in charge of classifying (dis-
criminating) between two classes, the real set (x ∼ pdata(x))
and the generated samples (G(z) ∼ pgG(z)). The input of
the Discriminator is real or fake data, while its outputs are
classification probabilities for both classes (D(·)), e.g., values
close to 0 for fake data and values close to 1 for real data.

The GANs training is described as a zero-sum game be-
tween two players, generator and discriminator, with opposite
objectives. When the input is a real sample, the D’s goal is to
make D(x) near to 1. In the fake data scenario, the goal of D
is to get D(G(z)) close to 0, while G will try to make near
to 1 i.e. causing the discriminator to confuse the samples with
the real set. The GANs cost function is stated as in Eq. (1):

min
G

max
D

E
x∼pdata

[log(D(x))] + E
z∼pz

[log(1—D(G(z)))] (1)

Both NNs are trained simultaneously. In every iteration, a gra-
dient step is made to reduce the cost function of each network.
The training process is repeated for a number of iterations until
the generator learns to make synthetic data similar to the real
distribution. The training process is represented in Fig. 1(b).

Since their inception, GANs have presented training insta-
bility problems [4]. This issue is caused by the fact that a
balance between both NNs abilities must be maintained so
as to avoid a disproportion that generates an irrecoverable
learning gap. This instability creates common problems such
as mode collapse and vanishing gradient. In the mode collapse
problem, the generator captures only a small portion of the
dataset distribution provided as input to the discriminator.
This is not desirable since it is expected that a generative
model reproduces the whole distribution of the data to achieve
variability on the output samples. Meanwhile, the vanishing
gradient occurs when either, the discriminator or the generator,
becomes powerful enough to harm the balance required on the
training, e.g. the discriminator becomes too strong that almost
perfectly classifies both types of data, then the cost function
is too small, the gradient does not flow with enough power to
the generator, and the GANs progress stagnates.

The efforts to overcome the above mentioned problems
include the creation of Deep Convolutional Generative Ad-
versarial Networks [7]. This is a type of GAN, in which both
NNs are Convolutional Neural Networks (CNN). This model
is focused on the synthesis of images. The layers used in this
architecture are transposed convolutional, convolutional and
fully connected. Unlike the traditional CNN, pooling is not

Fig. 1. DCGAN representation. (a): Encoding: the parameters of each layer
are explicitly written in the slots of the list. (b): Decoded particle and DCGAN
training process.

used. These networks have significantly improved the training
stability, but they do not completely avoid it.

There are other approaches, using DCGAN as a basis, as the
progressive growth presented in [8]. In that work the size of the
generated images is gradually scaled by adding preset layers
as the training goes on. With this, it is argued that learning
by steps of increasingly complex resolutions stabilizes the
GANs training, obtaining better results compared to learning
the final resolution from the beginning. Another work focused
on improving GANs training stability is related to the use
of Spectral Normalization [9]. This technique normalizes the
weight matrices in the discriminator by their corresponding
spectral norm, which helps to control the Lipschitz constant
of the discriminator. Lipschitz continuity is important to ensure
the boundedness of the optimal discriminator.

B. Particle Swarm Optimization

Particle Swarm Optimization is a Swarm Intelligence al-
gorithm, originally proposed in 1995 [10], that simulates the
flying pattern of a bird flock. In PSO, every solution is called
particle and the set of all the solutions is named swarm.
Each particle has knowledge of its best historical configuration
called pBest and the best current solution in the swarm known
as gBest. In each iteration, a particle updates its velocity so
that its new position will be influenced to be closer to pBest
and gBest. The velocity and position of the i-th particle in its
j-th dimension at iteration t+1 is updated with Eq. (2) and Eq.
(3), respectively,

vi,j(t+ 1) =w × vi,j(t) + cp × rp × (pBesti,j—Posi,j(t))

+ cg × rg × (gBestj—Posi,j(t))
(2)

Posi,j(t+ 1) = Posi,j(t) + vi,j(t+ 1) (3)

where v is the particle’s velocity; Pos is the particle’s position;
w is a constant called inertia weight that adjusts the influence
of the previous velocity; cp and cg are constants that determine
the influence of pBest and gBest, respectively and therefore
the exploration and exploitation capacity of the algorithm;
finally rp and rg are random numbers within [0,1) that provide
the search a stochastic behavior.

C. Chest X-Ray images of pneumonia generated by COVID-19

The sudden appearance in late 2019 of the Severe Acute
Respiratory Syndrome Coronavirus (SARS-Cov-2), known as
COVID-19, has caused an exponential growth of infected
people around the world, escalating to the level of a pandemic
and causing the loss of countless lives. One of the main
complications caused by this disease is pneumonia with dis-
tinctive characteristics [11]. The search for these singularities
is accomplished by Chest X-Ray (CXR) images of patients
afflicted with pneumonia. However, these characteristics are
hardly detectable with the naked eye by health experts. There-
fore it is relevant to create DL models to help in the detection
while reducing the diagnostic waiting times [12]. Nevertheless,
DL models require a vast amount of data for proper learning.
Hence, the use of GANs can help to increase the available
image datasets. Therefore, this is the case of study in this
paper.

III. RELATED WORK

A. GANs Neuroevolution

Previous works regarding the neuroevolution of GANs are
summarized in Table I, which includes the reference and the
name given to the algorithm, the year of publication, the type
of evolutionary algorithm used, the GAN’s architecture (if it is
evolvable, the encoding scheme used), the variation operators
used, the fitness metric used as well as the type of offspring
selection, the performance measures and the datasets used.

As it can be seen, most of the papers are focused on
the use of GAs and Coevolution. The use of SI algorithms
is a notable absence. Moreover, many of those works have
a DCGAN-based architecture. The proposals that evolve its
architecture use a list-based encoding scheme, in which there
are declaratively blocks that contain the hyperparameters of
each layer in the NNs.

Regarding evaluation metrics, there is no general consensus
as different options have been adopted. However, the Frechet
Inception Distance (FID) [13] has stood out in recent years
as a state-of-the-art metric, specifically developed to evaluate
the performance of GANs. FID uses the Inception-v3 CNN for
the feature extraction of the real (x) and synthetic (g) images.
Based on that, the Frechet distance between both multivariate
Gaussian feature distributions using their estimated mean (µ)
and covariance (Σ) is calculated. A lower value of this metric
indicates a higher similarity between the two sets of images,
being zero when they are equal. The FID’s formula is showed
in Eq. (4).

FID(x, g) = ‖µx—µg‖22 + Tr(Σx + Σg—2(ΣxΣg)
1
2) (4)

Most of the GAN neuroevolution works have focused on
the use of well-known image benchmarks (e.g. CIFAR-10,
MNIST, CelebA) yet without exploring sets of real applica-
tions such as the use of biomedical images.

B. GANs to synthesize CXR

Previous works related to the use of GANs in the synthesis
of chest X-ray images are condensed in Table II. It specifies
the reference, the year of publication, the GAN’s architecture,
the resolution of the synthesized images in pixels (px.), the
metrics used for performance evaluation and if they were used
in the detection of pneumonia due to COVID-19.

Most of the studies were developed in 2020, with the
goal of increasing the available sets of CXR for COVID-19
pneumonia for subsequent implementations. The other works
focused on obtaining CXR from lungs afflicted with various
pathologies. Furthermore, most architectures are DCGAN-
based, proving the usefulness of this model in the synthesis
of these biomedical images. On the other hand, all these
architectures are handcrafted and they might not be easy to
adapt to other lung pathologies or biomedical images.

The sizes of the synthetic images are different, but most
of them have a resolution equal to or less than 2562 px.,
indicating that such value is suitable to use in subsequent
activities. Regarding the metrics to evaluate their results,
they put aside the similarity between the sets of images to
focus on improving the performance of specific tasks such as
classification.

IV. PROPOSED ALGORITHM

The proposed algorithm, was inspired by three main foun-
dations:

• Training a DCGAN with progressive resolution growth
favors training stability.

• Using PSO leads to get competitive results with a limited
search time.

• DCGANs being composed by CNNs can exploit previous
knowledge in CNN neuroevolution.

Based on those ideas, DCGAN-PSO was developed. This
algorithm evolves DCGAN-based architectures using a PSO,

TABLE I
GANS NEUROEVOLUTION WORK.

Reference
and Name

Year EA type Architecture
(Encoding
scheme)

Variation
Operators

Fitness Selection Evaluation
metrics

Datasets

[14] CA-
GAN

2018 Cultural al-
gorithm

DCGAN-
based

Mutation
(discrimina-
tor weights)

Custom Best individ-
ual

Inception
score

CIFAR-10
STL-10

[15] Pareto
GAN

2018 Genetic Alg. Evolvable
(List-based)

Crossover
and
Mutation

IGD (Pareto
front)

Pareto domi-
nance

IGD Bi-objetive
functions

[16] Lipiz-
zaner

2018 Coevolution DCGAN-
based

Mutation
(weights)

GAN loss Spatial Qualitative MNIST
CelebA

[17] E-
GAN

2019 Genetic Alg. DCGAN-
based

Mutation
(loss
function)

Custom Best individ-
ual

Inception
and FID
score

CIFAR-10
LSUN
CelebA

[18] Mus-
tangs

2019 Coevolution DCGAN-
based

Mutation
(weights and
loss)

GAN loss Spatial FID score MNIST
CelebA

[19] CO-
EGAN

2019 Coevolution. Evolvable
(List-based)

Mutation (ar-
chitecture)

FID and
GAN loss

NEAT-based FID score MNIST
F-MNIST
CelebA

[20] CA-
GAN

2019 Cultural al-
gorithm

Evolvable
(List-based)

Mutation
(architecture,
weights and
loss)

GAN loss Best individ-
uals

Classification
performance

Face images

[21] GAN-
GA

2019 Genetic
algorithm

DCGAN-
based

Crossover
and
Mutation
(both for
generated
images)

Discriminator
score

Best individ-
uals

GAN loss MNIST

[22] HEO-
GAN

2019 Genetic
algorithm

DCGAN-
based,
WGAN and
Vanilla GAN

Crossover
and
Mutation
(weights)

FID Best individ-
uals

FID MNIST
CelebA

TABLE II
CXR SYNTHESIS WITH GANS

Reference Year Architecture Image size
(pixels)

Evaluation metrics COVID-19

[23] 2018 DCGAN-
based

256x256 Radiologists
Classification performance

No

[24] 2018 DCGAN-
based

128x128 Classification performance No

[25] 2019 Own design 512x512 SWD
MS-SSIMS
FID

No

[26] 2020 DCGAN-
based

256x256 Classification performance Yes

[27] 2020 DCGAN-
based

112x112 Radiologists
Classification performance
PCA

Yes

[28] 2020 DCGAN-
based

512x512 Classification performance Yes

[29] 2020 DCGAN-
based

64x64 GAN loss Yes

[30] 2020 Conditional
GAN

446x446 Classification performances Yes

[31] 2020 DCGAN-
based

224x224 Classification performances Yes

[32] 2021 DCGAN-
based

128x128 Classification performances
FID

No

taking advantage of its inherent qualities of faster convergence
with a low number of evaluations compared to other EC algo-
rithms [5] which allows a saving in the computational budget.
Evolved architectures are trained by gradually increasing the
resolution of the generated images. The main difference with
respect to the approach in [8] (where the layers are preset by
the authors) is that the inserted layers to scale the size of the
generated images are obtained through the PSO search, i.e.,
evaluating the quality of the DCGANs using FID as fitness
function and saving the trained weights of the best networks
obtained, thus having the opportunity to improve the type of
topology that would be obtained by manual methods.

The method to measure the difference between particles and
the operators to update the velocity and position, which will
be detailed later, are taken from [33], a state-of-the-art CNN
neuroevolution algorithm, and modified to use them in the
current approach to evolve DCGANs.

Algorithm 1 presents the pseudocode of DCGAN-PSO. The
mechanism begins the iteration through the various resolu-
tions, starting from 42 px. until gradually reaching 2562 px.,
doubling it at each step (line 1). For each resolution, the swarm
will be initialized with particles that generate images in such
resolution, as well as their corresponding pBest values and
also the gBest is identified (line 2). After that, for a pre-
defined number of generations, the DCGAN represented in
each particle will be trained with backpropagation and then its
fitness will be evaluated (lines 3-15). According to the fitness
value already computed, the pBest of each particle and also
the gBest of the whole swarm will be updated (lines 16-21).
Afterwards, the velocity and position of each particle will be
updated (lines 22-24). At the end of the iterations through
all the resolutions, the trained gBest is returned (line 28).
The detailed explanation of each process in DCGAN-PSO is
included in the following subsections.

A. Encoding-scheme

A list-based encoding scheme is used to represent the
topology of the CNNs in the DCGAN model (particle). This

Algorithm 1 DCGAN-PSO
Input: Training CXR dataset of each resolution used, N° gen-

erations per resolution, N° epochs per particle training,
Swarm size, Cg , resolutions list.

Output: Trained DCGAN of CXR images of pneumonia
caused by COVID-19 in 2562 pixels resolution (gBest).

1: for resolution in resolutions list do
2: Initialization: Swarm← Initialize Swarm (resolution),

pBests, gBest.
3: for N° generations per resolution do
4: for particle in swarm do
5: if resolution = 42 pixels then
6: Network ← DCGAN particle architecture
7: else
8: Network ← DCGAN previous resolution pBest

architecture
9: Network weights ← Previous resolution pBest

weights
10: Network ← Add DCGAN particle architecture

at the end of the Network
11: end if
12: for N° epochs per particle training do
13: Train Network with CXR dataset of its corre-

sponding resolution
14: end for
15: particle fitness ← FID (Network)
16: if particle fitness < particle pBest fitness then
17: particle pBest ← particle
18: particle pBest weights ← particle weights
19: end if
20: end for
21: gBest ← pBest with lowest fitness
22: for particle in swarm do
23: particle velocity ← UpdateVelocity (particle)
24: particle ← UpdateParticle (particle velocity)
25: end for
26: end for
27: end for
28: RETURN gBest

encoding was selected because it is the one used by the
operators taken and adapted from [33]. Each module in the list
represents a layer and the sequence of layers in the list is used
to implement both, the Generator and the Discriminator using
a mirror image, i.e. the Generator uses the sequence from the
list while the Discriminator is made up of the reverse sequence.
The different layers used in the generator and their counterpart
in the discriminator, as well as the hyperparameters that define
them, are the following:

• Transposed convolutional and Convolutional. The first
layer increases the size of the output of the previous layer
by a factor of 2 in G; the second layer decreases the size
of previous layer output in D: Filter size and Number
of filters.

• Convolutional. This layer keeps the size of the previous
layer output in G; does not apply to D in order to reduce
computational costs and to avoid an over-complexity that
could lead to overfitting: Filter size and Number of
filters.

• Fully connected layer. This layer processes and resizes
the random noise input in G and processes the high-level
features (obtained by the convolutional part of the CNN)
to perform the classification in D: Number of neurons.

The number of layers of each particle is limited by the
minimum and maximum number of layers allowed by each
type of layer, these ranges are found in Table III. A graphical
example of a particle and its respective decoded DCGAN can
be seen in Fig. 1.

When the swarm is initialized (Initialize Swarm()), the
number of layers in each particle is selected at random
with uniform distribution (to avoid bias) as well as the
hyperparameters that are associated to each layer. The ranges
of the parameter values are resolution-dependent (see Table
III). These parameter values were selected through a brief
experimental design considering the high computational cost
of each run and the infrastructure available to carry out the
experiments.

B. Difference between particles

The first step prior to updating the particles is to measure
the difference between two particles, P1 and P2, since these
may have different sizes and design patterns. This difference
is represented in a difference vector (P1−P2) . The difference
only takes into consideration the type of layer of each particle.
If two layers in the same position of both particles are
the same type then the difference is zero, regardless their
hyperparameters. This zero-difference indicates that the layer
will remain when the particle architecture is updated. If both
layers are of different type, P1 will have priority and its layer
will be preserved (including its hyperparameters). If P1 have
fewer layers that P2 then -1 will be added at the end of the
difference vector to denote that these extra layers in P2 should
be eliminated when updating the particle. In the opposite case,

TABLE III
DCGAN-PSO PARAMETER VALUES USED IN THE EXPERIMENTS.

Parameter Value
Particle Swarm Optimization

Swarm size 15
N° generations per resolution 10

Cg 0.5
Resolutions list [42 px., 82 px., 162 px., 322 px., 642 px., 1282 px., 2562 px.]

Ranges of particle parameters
N° Fully connected layers [1,1] (42 px.) ; [0,0] (otherwise)
N° Convolutional layers [0,2]

N° Transposed convolutional layers [0,0] (42 px.) ; [1,1] (otherwise)
Filter size [2,5]
N° filters 42:642 px. = [1,256]; 1282 px. = [1,64]; 2562 px. = [1,32]

N° neurons [1,300]
DCGAN training

N° epochs per particle training 200
Batch size 42:1282 px. = 16; 2562 px. = 14
Optimizer Adam [39]

Learning rate (G and D) 2× 10−4

β1, β2 (optimizer) 0.5 , 0.999
LeakyReLU slope (D’s activations) 0.2

Weight’s initializer (G and D) N (0, 0.02)
Noise distribution (pz): R100x1 N (0, 1)

if P1 has more layers than P2 then indicators +L will be
added that represent that layers of type L will be added in
those positions when updating the particle (with randomly
chosen hyperparameters). Fig. 2 shows examples to measure
the difference between particles.

C. Velocity and Position Operators

The velocity update of particle (P), is computed by compar-
ing it with its pBest and the gBest. Thus, the differences (pBest
— P) and (gBest — P) are required. With both difference
vectors the velocity vector is calculated. For this operation the
parameter Cg , called decision factor, is needed, while r is a
random number from a uniform distribution within [0,1). For
each position of the difference vectors, if r ≤ Cg , the velocity
operator will take the layer from the difference (gBest — P),
and from (pBest — P) otherwise. Therefore, Cg will control
the convergence of the particle towards the global best. This
operation is represented as UpdateVelocity().

The operator to update the position of the particles i.e.
modifying their DCGAN architecture, is UpdateParticle().
This operator takes the particle´s velocity to modify the
pertinent layers. Layers are added or removed from the particle
architecture according to its velocity. The Velocity and Position
operators are depicted in Fig. 3.

When the particle is updated, there must be a record of the
transposed convolutional layers, when there are extra layers,
they are replaced by convolutional layers that keeps the size.
Also, only one fully connected layer will be available at the
beginning of the architecture. This layer will be evolved only
when the resolution is 42 px., as the DCGAN architecture only
uses this layer at the beginning to process the noise input in G
and perform the classification in D. Since the fully connected
layer will always be in the first position of the particles there
will always be zero-difference in that position. Therefore, to
avoid stagnation in evolution, the number of neurons in these
layers will always be randomly changed in each update.

D. Progressive Particle Growth

The training of the various DCGAN was carried out pro-
gressively, starting with a resolution of 42 to 2562 px. in steps
that doubled the resolution. The final resolution was chosen
because it is one that equals or exceeds the resolution adopted
by previous GANs for CXR (Table II).

The swarm is initialized with particles that generate images
with a resolution of 42 px. These particles are trained with
backpropagation for a number of epochs with the dataset of

Fig. 2. Differences measurement between particles inspired by [33]. (a): P1

has more layers that P2. (b): P1 has fewer layers that P2.

Fig. 3. Example of velocity and position operators inspired by [33]. (a):
Velocity update. (b): Particle position updated using its velocity.

CXR images with the same resolution. After training, their
quality is evaluated by FID, which acts as a fitness function.
Using such fitness values, the pBest of each particle and also
the gBest of the whole swarm are updated. If an architecture
is selected as pBest, the weights of the trained DCGAN are
saved. The particle updates continue for a certain number
of generations. At the end, the pBest of each particle is
taken as the basis for the next resolution, fixing that part
of the architecture, but still training it, and only adding
and modifying the layers ahead of this part to obtain the
images of the next resolution. When the DCGAN of a particle
in the swarm with the increased resolution is implemented,
the weights for the layers belonging to the previous pBest
are loaded. To avoid reducing the learning rate to smooth
the training of the previous pre-trained layers with respect
to the newly initialized layers, Weigth Normalization (WN)
technique is used in the generator. WN has proven to stabilize
training in GANs in addition to avoid exploding gradients
when learning rates are relatively high for certain layers [34].
Meanwhile, in the discriminator, Spectral Normalization is
used to stabilize the training. Fig. 4 represents the progressive
growth approach. The whole DCGAN-PSO process repeats
until the final resolution is reached.

V. EXPERIMENTAL RESULTS

A. CXR Images Datasets

For the generation of CXR images of COVID-19 pneumonia
as a case study, public image datasets available at [35], [36]
and [37] were used. From these sets, 994 CXR images were
selected for their quality, although only 600 were used for
training. Three pre-processing steps were considered: (1):
grayscale conversion (one channel); (2): image resizing to
the different used resolutions (one dataset per resolution); (3):
histogram equalization to increase contrast.

B. Technical implementation details

The design rules regarding the Batch Normalization and
Activation layers for DCGANs defined in [7] were used when
DCGANs were implemented. Details about the optimizer and
initialization of the networks can be found in Table III.

Python 3.6.9 programming language with the PyTorch
framework [38] were used for the implementation on the free

access online platform Google Colaboratory1 to have access
to GPUs for the NNs training.

C. CXR Synthesis Works Comparison

For comparison purposes, the eight approaches using DC-
GANs reported in the literature review of CXR synthesis
(Table II) were implemented and trained five independent
times, with the same dataset used for DCGAN-PSO. Such
approaches were coded based on the specifications provided
by their authors in their corresponding references.

D. Performance Evaluation

1) Qualitative evaluation: Fig. 5 shows samples of the real
image dataset and examples of those obtained by DCGAN-
PSO.

2) Fitness evolution: The FID values of the best solution
obtained by DCGAN-PSO in ten independent runs (this num-
ber was chosen due to the significant computational cost of
each run i.e. a run takes a week with the available resources)
along the different image resolutions are shown in Fig. 6.

3) FID evaluation: The FID was evaluated using the com-
plete CXR image dataset (994 images) and a sample of the
same size taken from the images synthesized by the trained
generators of the DCGAN-PSO runs and by the compared ap-
proaches. The FID statistical results obtained are summarized
in Table IV. The results of the randomized design and training
of fifteen DCGANs (with the same parameters for network
depth and layers used by DCGAN-PSO) for 2562 px. images
were also included. The 95%-confidence Wilcoxon rank-sum
test was used to validate the results.

VI. DISCUSSION

The results in Table IV indicate that DCGAN-PSO was able
to outfperform the nine compared approaches based on the

Fig. 4. Progressive growth of a DCGAN represented in a particle. Here the
growth of the generator is represented but the equivalent procedure is used in
the discriminator. (a): At the beginning particles generate CXR images in 42

px. and pBests are selected. (b): When the resolution increases, the architecture
and the trained weights of the particle’s pBest in the previous resolution are
used. pBest’s layers remains fixed (not evolved), but still training, while a new
population is generated and evolved with particles that will be concatenated to
the already known pBest part. (c): The process stops when 2562 px. resolution
is reached.

1https://colab.research.google.com/

Fig. 5. 2562 px. image samples. Left: Real CXR. Right: DCGAN-PSO
generated CXR.

Fig. 6. gBest FID value obtained by DCGAN-PSO along generations and
resolutions (10 runs).

TABLE IV
FID VALUES OBTAINED BY DCGAN-PSO AND THE COMPARED

APPROACHES. (+) MEANS THAT DCGAN-PSO OUTPERFORMED THE
COMPARED APPROACH IN THE CORRESPONDING ROW BASED ON THE

95%-CONFIDENCE WILCOXON RANK-SUM TEST

Model Average & St.
Deviation

p-value Wilcoxon
rank-sum
test

Salehinejad, et al.
2018 [23]

5.308± 0.842 0.0048 (+)

Madani, et al. 2018
[24]

5.372± 1.030 0.0021 (+)

Khalifa, et al. 2020
[26]

4.254± 0.165 0.00705 (+)

Waheed, et al. 2020
[27]

4.296± 0.533 0.01 (+)

Loey, et al. 2020 [28] 5.846± 0.855 0.00219 (+)
Shams, et al. 2020
[29]

5.938± 0.601 0.00219 (+)

Zulkifley, et al. 2020
[31]

4.492± 0.633 0.0101 (+)

Kora Venu and
Ravula 2021 [32]

5.576± 0.482 0.00219 (+)

Random DCGANs 9.851± 2.028 3.178e−5 (+)
DCGAN-PSO 3.052± 0.773 ——- ——-

FID value obtained and such performance was validated by
the 95%-confidence Wilcoxon rank-sum test.

Qualitatively speaking, the images generated by DCGAN-
PSO shown in Fig. 5 display a similar visual quality (morpho-
logical) with respect to the images belonging to the real set.
Moreover, the visual diversity obtained can be an indicator of

the absence of mode collapse. Just minor errors (blank areas)
are observed in the generated images.

An interesting convergence behavior was observed in Fig.
6, where, regardless the resolution, DCGAN-PSO was able
to improve the fitness value in just a few generations. It
is important to remark that the fitness decreasing observed
between resolution increments is due to the fact that FID is not
a deterministic measure. FID uses a CNN to extract high-level
features of the images and later makes a statistical comparison
among them. Those high-level features may vary depending
on multiple factors, such as the resolution of the image, the
greater detail which allows them to have finer motifs and
increases the complexity to be learned by DCGAN. At the
end of the graph (2562 px. resolution), the values obtained are
those reported in Table IV which showed to be better (lower
FID values suggest a reduction in training instability problems)
than those of the compared approaches.

As part of a preliminary experimentation, a CNN was
implemented to classify between two classes of CXR, COVID-
19 and Non-COVID-19 (composed of healthy patients and
pneumonia not caused by COVID). Five training processes
were carried out with 600 images of COVID-19 class and
1200 images of Non-COVID-19 class. In addition, five training
processes were carried out by adding 600 synthetic images
to the COVID-19 class to balance the dataset. The synthetic
images were obtained from the generator with the FID value in
the median of the results (2.85). This experimentation shows
an improvement in the average classification accuracy of the
COVID-19 class when the dataset is balanced, i.e. 72.3± 4.3
with unbalanced data and 80.4±3.12 with a balanced dataset.
Further experimentation is required, which is one of the future
goals in the development of this research.

The overall above presented promising results suggest that
the search promoted by PSO has the potential to improve DC-
GANs designs when applied to biomedical image synthesis.

VII. CONCLUSIONS AND FUTURE WORK

In this work the DCGAN-PSO algorithm was presented. The
novelty of this Swarm Intelligence algorithm for Generative
Adversarial Networks (GANs) neuroevolution based on PSO
is (1) the usage of a progressive growth approach to perform
the search and training of the DCGAN architectures and (2)
the application domain, i.e., biomedical images generation
(previously unexplored area, to the best of the authors’ knowl-
edge, by GANs designed by neuroevolution), specifically
Chest X-Ray images of pneumonia caused by COVID-19.
The obtained results showed that the quality of the synthetic
CXR images from the evolution of DCGANs were better than
those synthesized results provided by handcrafted architectures
from previous works, measured through the Frechet Inception
Distance. Furthermore, the expected fast convergence to com-
petitive results by PSO was confirmed in this particular type
of search space.

For future work, the proposed algorithm can be expanded
through modifying the PSO operators, in such a way that they
not only take into account the evolution of the layers as a

whole but also evolve their inner hyperparameters. Finally,
the experiments on classification will be extended.

ACKNOWLEDGMENT

The first author, with CVU number 1001447, acknowledges
support from the Mexican National Council of Science and
Technology (CONACyT) through a scholarship to pursue
graduate studies at the University of Veracruz.

REFERENCES

[1] Lu, L., Zheng, Y., Carneiro, G., and Yang, L., ”Deep learning and con-
volutional neural networks for medical image computing,” in Advances
in Computer Vision and Pattern Recognition, vol. 10, 2017, pp. 978-3.

[2] Suetens, P., ”Fundamentals of medical imaging,” 2nd ed., Cambridge
university press, 2017.

[3] Yi, Xin; Walia, Ekta, and Babyn, Paul, ”Generative adversarial network
in medical imaging: A review,” in Medical image analysis, vol. 58, 2019,
p. 101552.

[4] Costa, V., Lourenço, N., Correia, J., and Machado, P., ”Neuroevolution
of generative adversarial networks,” in Deep Neural Evolution, Springer,
Singapore, 2020, pp. 293-322.

[5] Piotrowski, A. P., Napiorkowski, M. J., Napiorkowski, J. J., and
Rowinski, P. M., ”Swarm intelligence and evolutionary algorithms:
Performance versus speed,” in Information Sciences, vol. 384, 2017,
pp. 34-85.

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, ”Gen-
erative Adversarial Nets,” in Advances in Neural Information Processing
Systems, 2014, pp. 2672–2680.

[7] Radford, Alec, Luke Metz, and Soumith Chintala, ”Unsupervised rep-
resentation learning with deep convolutional generative adversarial net-
works,” arXiv preprint arXiv:1511.06434, 2015.

[8] Karras, T., Aila, T., Laine, S., and Lehtinen, J., ”Progressive growing
of GANs for improved quality, stability, and variation,” in 6th Interna-
tional Conference on Learning Representations, ICLR 2018, Vancouver,
Conference Track Proceedings, 2018.

[9] Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y., ”Spectral
normalization for generative adversarial networks,” arXiv preprint
arXiv:1802.05957, 2018.

[10] J. Kennedy and R. Eberhart, ”Particle swarm optimization,” in Pro-
ceedings of IEEE International Conference on Neural Networks (Perth,
Australia) (IEEE Service Center, Piscataway, NJ), 1995 , pp. 1942–1948.

[11] Huang, C. et al., ”Clinical features of patients infected with 2019 novel
coronavirus in Wuhan, China,” The Lancet, vol. 395(10223), 2020, pp.
497–506.

[12] Shoeibi, A., Khodatars, M., Alizadehsani, R., Ghassemi, N., Jafari, M.,
Moridian, P., and Srinivasan, D, ”Automated detection and forecasting
of covid-19 using deep learning techniques: A review”, arXiv preprint
arXiv:2007.10785, 2020.

[13] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter,
S., ”Gans trained by a two time-scale update rule converge to a
local Nash equilibrium,” in Advances in neural information processing
systems, 2017, pp. 6626-6637.

[14] Ni, Y., Song, D., Zhang, X., Wu, H. and Liao, L., ”Cagan: consistent
adversarial training enhanced gans,” in IJCAI, 2018, pp. 2588–2594.

[15] Garciarena, U., Santana, R. and Mendiburu, A., ”Evolved gans for
generating pareto set approximations”, in Proceedings of the Genetic
and Evolutionary Computation Conference, 2018, pp. 434–441.

[16] Al-Dujaili, A., Schmiedlechner, T., and O’Reilly, U. M., ”Towards dis-
tributed coevolutionary gans,” arXiv preprint arXiv:1807.08194, 2018.

[17] Wang, C., Xu, C., Yao, X. and Tao, D., ”Evolutionary generative ad-
versarial networks,” in IEEE Transactions on Evolutionary Computation
vol.23(6), 2019, pp.921–934.

[18] Toutouh, J., Hemberg, E., and O’Reilly, U.M., ”Spatial evolutionary
generative adversarial networks,” in Proceedings of the Genetic and
Evolutionary Computation Conference, 2019, pp. 472–480.

[19] Costa, V., Lourenco, N., Correia, J., and Machado, P., ”Coegan: eval-
uating the coevolution effect in generative adversarial networks,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
2019, pp. 374–382.

[20] Mehta, K., Kobti, Z., Pfaff, K. and Fox, S., ”Data augmentation
using ca evolved gans,” in 2019 IEEE Symposium on Computers and
Communications (ISCC), 2019, pp. 1087–1092.

[21] Cho, Hwi-Yeon, and Yong-Hyuk Kim, ”Stabilized Training of Genera-
tive Adversarial Networks by a Genetic Algorithm,” in Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO ’19.
Prague, Czech Republic: Association for Computing Machinery, 2019,
pp. 51–52.

[22] Korde, Charudatta G et al., ”Training of Generative Adversarial Net-
works with Hybrid Evolutionary Optimization Technique,” in 2019 IEEE
16th India Council International Conference (INDICON), IEEE, 2019,
pp. 1–4.

[23] Salehinejad, H., Valaee, S., Dowdell, T., Colak, E., and Barfett, J.,
”Generalization of deep neural networks for chest pathology classifi-
cation in x-rays using generative adversarial networks,” in 2018 IEEE
International Conference on Acoustics, Speechand Signal Processing
(ICASSP), 2018, pp. 990–994.

[24] Madani, A., Moradi, M., Karargyris, A., and Syeda-Mahmood, T.,
”Semi-supervised learning with generative adversarial networks for chest
x-ray classification with ability of data domain adaptation,” in 2018
IEEE 15th International Symposiumon Biomedical Imaging (ISBI 2018),
2018, pp. 1038–1042.

[25] Zhang, Tianyang et al., ”SkrGAN: Sketching-rendering unconditional
generative adversarial networks for medical image synthesis,” Interna-
tional Conference on Medical Image Computing and Computer-Assisted
Intervention, Springer, 2019, pp. 777–785.

[26] Khalifa, N.E.M., Taha, M.H.N., Hassanien, A.E., and Elghamrawy, S.,
”Detection of coronavirus (covid-19) associated pneumonia based on
generative adversarial networks and a fine-tuned deep transfer learning
model using chest x-ray dataset,” arXiv preprint arXiv:2004.01184,
2020.

[27] Waheed, A., Goyal, M., Gupta, D., Khanna, A., Al-Turjman, F., and
Pinheiro, P.R., ”Covidgan: Data augmentation using auxiliary classifier
gan for improved covid-19 detection,” IEEE Access, vol.8, 2020, pp.
91916–91923.

[28] Loey, M., Smarandache, F., and Khalifa, N.E.M., ”Within the lack of
chest covid-19 x-ray dataset: a novel detection model based on gan and
deep transfer learning,” Symmetry, vol.12(4), 2020, p. 651.

[29] Shams, MY et al., ”Why Are Generative Adversarial Networks Vital
for Deep Neural Networks? A Case Study on COVID-19 Chest X-Ray
Images,” Big Data Analytics and Artificial Intelligence Against COVID-
19: Innovation Vision and Approach, Springer, 2020, pp. 147–162.

[30] Karakanis, Stefanos, and Georgios Leontidis, ”Lightweight deep learn-
ing models for detecting COVID-19 from chest X-ray images,” in
Computers in Biology and Medicine, vol.130, 2020, p. 104181.

[31] Zulkifley, M. A., Abdani, S. R., and Zulkifley, N. H., ”COVID-19
Screening Using a Lightweight Convolutional Neural Network with
Generative Adversarial Network Data Augmentation,” Symmetry, vol.
12(9), 2020, p. 1530.

[32] Kora Venu, Sagar and Sridhar Ravula, ”Evaluation of Deep Convolu-
tional Generative Adversarial Networks for Data Augmentation of Chest
X-ray Images,” in Future Internet, vol. 13(1), 2021, p. 8.

[33] Junior, F. E. F., and Yen, G. G., ”Particle swarm optimization of deep
neural networks architectures for image classification,” in Swarm and
Evolutionary Computation, vol. 49, 2019, pp. 62-74.

[34] Xiang, S., and Li, H., ”On the effects of batch and weight normalization
in generative adversarial networks,” arXiv preprint arXiv:1704.03971,
2017.

[35] Chowdhury, M. E. et al., ”Can AI help in screening viral and COVID-19
pneumonia?,” arXiv preprint arXiv:2003.13145, 2020.

[36] Cohen, J.P., Morrison, P., Dao, L., Roth, K., Duong, T. Q.,
and Ghassemi, M., ”Covid-19 image data collection: prospec-
tive predictions are the future,” arXiv preprint arXiv 2006.11988,
https://github.com/ieee8023/covid-chestxray-dataset7, 2020.

[37] Tabik, S., et al., ”COVIDGR Dataset and COVID-SDNet Methodology
for Predicting COVID-19 Based on Chest X-Ray Images,” in IEEE
Journal of Biomedical and Health Informatics, vol.24(12), 2020, pp.
3595–3605.

[38] Paszke, A. et al, ”Automatic differentiation in PyTorch,” 2017.
[39] Kingma, D. P., and Ba, J., ”Adam: A method for stochastic optimiza-

tion,” arXiv preprint arXiv:1412.6980, 2014.

142

4 17th International Symposium on Medical Information

Processing and Analysis (SIPAIM) Paper

Evolution of conditional-GANs for the synthesis of chest
X-ray images.

Juan-Antonio Rodŕıguez-de-la-Cruza, Héctor-Gabriel Acosta-Mesaa, Efrén Mezura-Montesa,
Fernando Arámbula Cośıob, Boŕıs Escalante-Ramı́rezc, and Jimena Olveres Montielc

aInstituto de Investigaciones en Inteligencia Artificial, Universidad de Veracruz, Campus Sur,
Paseo 112, Col. Nueva Xalapa, C.P. 91097 Xalapa, Veracruz, México

bInstituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional
Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Cd. Mx., C.P. 04510,

México
cFacultad de Ingenieŕıa, Universidad Nacional Autónoma de México, Universidad 3000, Ciudad

Universitaria, Coyoacán, Cd. Mx., C.P. 04510, México

ABSTRACT

Deep learning (DL) is now widely used to perform tasks involving the analysis of biomedical imaging. However,
the small amounts available of annotated examples of these types of images make it difficult to use DL-based
systems, since large amounts of data are required for adequate generalization and performance. For this reason, in
recent years, Generative Adversarial Networks (GANs) have been used to obtain synthetic images that artificially
increase the amount available. Despite this, the usual training instability in GANs, in addition to their empirical
design, does not always allow for high-quality results. Through the neuroevolution of GANs it has been possible to
reduce these problems, but many of these works use benchmark datasets with thousands of images, a scenario that
does not reflect the real conditions of cases in which it is necessary to increase the data due to the limited amount
available. In this work is presented cDCGAN-PSO, an algorithm for the neuroevolution of conditional-GANs
(cGAN) that adapts the concepts of a previously reported neuroevolutionary algorithm called DCGAN-PSO,
which was focused on the design and training of DCGANs through the use of Particle Swarm Optimization, a
Swarm Intelligence algorithm that uses a set of potential solutions to approximate a highly competitive solution.
The evolved cGANs allows the synthesis of three classes of chest X-ray images and they were trained with only
600 images of each class. The synthetic images obtained of each class show good similarity with real chest X-ray
images.

Keywords: GANs, Neuroevolution, Biomedical Imaging Synthesis, Chest X-Ray Images, conditional-GAN,
DCGAN-PSO

1. INTRODUCTION

Systems based on Deep Learning (DL) used in multiple tasks that involve the use of biomedical images have made
it possible to obtain the best performances in the state of the art .1 Activities such as classification, segmentation
of areas of interest, noise elimination and registration, to name a few, have benefited from the use of these
complex systems, which in turn support the biomedical area. However, the use of DL-based models implies the
need for high amounts of data for the purpose of adequate training and generalization, since the very complexity
of these is what can cause problems, e.g. overfitting, if there is a very limited amount of data. This problem

Further author information: (Send correspondence to J-A.R-C.)
J-A.R-C.: E-mail: juanantonio 2604@hotmail.es
H-G.A-M.: E-mail: heacosta@uv.mx
E.M-M.: E-mail: emezura@uv.mx
F.A.C.: E-mail: fernando.arambula@iimas.unam.mx
B.E-R.: E-mail: boris@unam.mx
J.O.M: E-mail: jolveres@cecav.unam.mx

is present in biomedical images, where their limited quantity is due to factors such as data privacy, the risk of
some tests, e.g. exposure to radiation, or even the prohibitive cost of some tests.2

The use in recent years of Generative Adversarial Networks (GANs), for the synthesis of images with a
high similarity to the real ones, has allowed to increase the amounts available to train biomedical systems.3

However, GANs usually have a training instability that ends up affecting the quality of the synthetic images
obtained. Therefore, multiple neuroevolution systems, an area of Evolutionary Computation (EC) focused on
improving and automating the design and/or training mechanisms of Neural Networks (NNs), focused on GANs
have been developed, which has allowed progress to overcome or reduce classic GANs problems.4 Most of these
algorithms have been tested using popular benchmark datasets with thousands of images, none of them being
tested in real applications or scenarios with little amount of data available, being DCGAN-PSO, to the best of
the authors’ knowledge, the first algorithm to be used not only with a low amount of data but also in the area
of biomedical images, a field that can be highly benefited with the increase of data through GANs. However,
by using DCGAN-PSO, only GANs that can synthesize a single class of images are obtained. In this paper,
that proposal is extended and adapted to use conditional-GANs, a variant that allows the synthesis of multiple
classes of images conditioned by the user, which allows fewer algorithm executions to be carried out to obtain
different classes of synthetic images. Like the original version of the algorithm, Chest X-Ray (CXR) images were
used as a case study, handling three different classes: pneumonia due to COVID-19, non-COVID-19 pneumonia
and healthy.

To validate the results obtained using this new version, the quality was evaluated using FID and compared
against the original version in the three classes of CXR images.

The rest of the paper is organized as follows: Section 2 contains the introduction to the key concepts related
to GANs and their neuroevolution and CXR images, as well as related works. Section 3 contains the presentation
and novelty of our proposal. Section 4 defines the experimentation performed to evaluate our version, as well
as its results, while Section 5 contains the corresponding discussion. Section 6 presents the conclusions obtained
and the proposals for future work.

2. BACKGROUND AND RELATED WORK

GANs5 are Deep Learning models that belong to the set of generative models, a branch of unsupervised learning
algorithms in charge of mapping how the data was generated. The training of a GAN is described as a zero-
sum game (also called minimax) between two players with opposite objectives; these are two Neural Networks;
the Generator and the Discriminator. Taking a vector of random noise sampled from prior distributions, e.g.
normal or uniform, (z ∼ pz(z)) as input, called latent vector, the generator outputs samples from a more
complex distribution (G(z)) whose goal is to be equal to the distribution of the real dataset. Meanwhile the
discriminator has the task of distinguishing between the real samples(x ∼ pdata(x)) and the generated samples
(G(z) ∼ pg(G(z))). In the case of real data, the goal of the discriminator output (D(·)) is to be near to 1. In
the fake data scenario, the discriminator output’s goal is to be close to 0 meanwhile the generator will try to
make near to 1, i.e., fool the discriminator to classify his creations as real.

The training of both networks is carried out by means of independent backpropagation optimizations. The
generator is optimized using the discriminator’s predictions about its creations, and once this step is completed,
the discriminator is trained using the synthetic data obtained by the generator. This optimization is carried out
using the training cost function of GANs, called Minimax loss, which is reflected by the following equation:

min
G

max
D

E
x∼pdata

[log(D(x))] + E
z∼pz

[log(1—D(G(z)))] (1)

The networks are trained through multiple cycles of the two previously mentioned training steps, encour-
aging both models towards continuous improvement and adaptation. For every iteration a gradient step with
backpropagation is made to reduce the cost function of each network, optimizing their internal weights.

Conditional-GAN (cGAN)6 is a variant of the classic GAN, which uses class labels to condition the class of
the generated image from among all the classes available in the training set and thus obtain greater control over

the synthesized images, contrary to the original GAN, where the synthesis of different classes from the same
training set is completely random. The cost function of the cGAN is the same as the original GAN with the
addition of the class labels (y):

min
G

max
D

E
x∼pdata

[log(D(x|y))] + E
z∼pz

[log(1—D(G(z|y)))] (2)

In Fig. 1, the representation of the general structure of cGAN as well as its training process is shown.

Figure 1. General structure of a cGAN. The green arrow represents the concatenation of the y label to the GAN’s
inputs.

Multiple GANs have been developed focused on the synthesis of various biomedical images, with Chest X-Ray
(CXR) images being highlighted in the last year due to the need to increase the available quantities that represent
COVID-19 pneumonia7–10 to train systems that support in the diagnosis of this disease. However, other works
have mainly used CXR images of the pneumonia (bacterial and viral) and healthy classes.11–15 Nonetheless, all
these works use empirically hand-designed networks, which are usually not generalizable to other applications or
types of images. In addition, GANs commonly present training instability.4

GANs training is complicated because there must be a balance between the skills of the generator and the
discriminator. If there is a supremacy from one of the networks, training instability problems may cause the
following problems: (1)Mode collapse: The situation in which the generator can only synthesize a small subset
of data of the complete distribution since the training did not allow to generalize the richness of variants of
the original distribution; (2) Vanishing gradient: Originated when the discriminator or the generator becomes
powerful enough to cause an irreversible imbalance in training that does not make possible to the opposite
network to improve its performances, thus causing a stalemate, resulting in poor visual quality synthetic results.

The use of neuroevolution to carry out the design and training of GANs has been addressed in multiple works
recently.4 Evolutionary Computation takes inspiration on the mechanism found in nature to evolve a population
of potential solutions on the production of better outcomes for a given problem, being Neuroevolution the branch
of EC in charge of the evolution of neural networks.16 Among the works in GANs neuroevolution, DCGAN-
PSO17 stands out, which, unlike the previous works, uses a set of biomedical images as a real case of application.
This algorithm uses a low number of images (compared to benchmark datasets with thousands of images used
previously) for the evolution of DCGANs,18 a variant of GAN focused on image synthesis. DCGAN-PSO can
be extended and improved through the use of conditional-DCGANs to handle the creation of multiple classes of
images through the use of a single evolved DCGAN, without the need to perform as many runs as classes are
needed, as is necessary in DCGAN-PSO.

3. OUR APPROACH

Our approach to using conditional-DCGANs as an architecture to evolve in a neuroevolution algorithm is pre-
sented in this section. For this, we use the previously introduced method called DCGAN-PSO, adapting it to

our proposal.

3.1 DCGAN-PSO

DCGAN-PSO17 presents the use of a neuroevolution algorithm for the search for architectures and training of
DCGANs, a variant of the GANs in which both networks that compose it are Convolutional Neural Networks
(CNN), which allows obtaining networks capable of generating a single class of CXR images with a high similarity
in quality and diversity with respect to the real set, an indicator of a more stable training.

DCGAN-PSO is based on Pro-GAN,19 an approach carried out in the progressive growth of GANs, increasing
the resolution of the images generated through the addition of layers, pre-established by the researchers, at specific
moments of the GANs training. In addition, the variation operators of the CNN neuroevolution algorithm called
psoCNN20 are used.

The representation of the evolved DCGANs is by means of lists, where each slot represents a layer and the
sequence of these the network architecture. Each of these architectures represents particles of a swarm, which
when interacting can generate complex search behaviors.

For the progressive growth of the networks, a swarm of particles is initialized (random architectures) where
each particle represents a DCGAN that can synthesize images at 4x4 pixels resolution. Each particle is then
modified having the influence of the best architecture found so far by that particle (pBest) and the best obtained
by the entire swarm (gBest). Through these better architectures, variation operators update the particles in
order to find better networks. Each potential network is trained and evaluated by means of the fitness function,
if the network results to improve the performance of the particle’s pBest, its architecture and its weights are
saved. At the end of a number of cycles (generations) determined for a resolution, the best architectures of
each particle are fixed and new layers are added from these that allow doubling the resolution of the images
generated. The new added layers are evolved by the same number of cycles as the previous resolution. These
steps are repeated, doubling the resolution of the images until a final resolution of 256x256 pixels is obtained.
Fig. 2 shows the general scheme of progressive growth carried out by this algorithm.

The fitness function used is the Frechet Inception Distance (FID).21 FID uses the pre-trained Inception-v3
CNN22 for the feature extraction of the real (x) and synthetic (g) images, thus obtaining a feature-vector of
2048 numerical values. This feature space is interpreted as a continuous multivariate Gaussian distribution.

Figure 2. Progressive growth of a DCGAN represented in a particle. Here the growth of the generator is represented but
the equivalent procedure is used in the discriminator. (a): At the beginning particles generate CXR images in 42 px. and
pBests are selected. (b): When the resolution increases, the architecture and the trained weights of the particle’s pBest in
the previous resolution are used. pBest ’s layers remains fixed (not evolved), but still training, while a new population is
generated and evolved with particles that will be concatenated to the already known pBest part. (c): The process stops
when 2562 px. resolution is reached. Obtained from the original paper.17

Therefore, from the features obtained, the Fréchet distance between both distributions is calculated using their
estimated mean (µ) and covariance (Σ) by means of the following formula:

FID(x, g) = ‖µx—µg‖22 + Tr(Σx + Σg—2(ΣxΣg)
1
2) (3)

The lower this metric is, the more similar the two sets of images are, being zero when they are equal.

The results obtained by this algorithm show an improvement in the quality of the synthetic images compared
to handcrafted DCGANs for the CXR images of pneumonia due to COVID-19. In addition to verifying that
the intelligent search carried out by the algorithm allows to improve the trained networks as the cycles advance,
until having an early convergence. In the original paper, a brief experimentation was carried out improving the
performance of a CNN for the binary classification of CXR images using the synthetic images of the evolved
DCGANs, thus testing the usefulness of these synthetic biomedical images obtained through the neuroevolution
of GANs.

3.2 cDCGAN-PSO

Our proposal focuses on the use of conditional-DCGANs instead of DCGANs for the neuroevolutionary algorithm,
which allow generating different classes of images, controlled by the user, with only one evolved architecture.
This new variant would allow the evolution of GANs architectures that generate multiple classes of biomedical
images at the same time, thus reducing the number of necessary executions compared to obtain multiple classes
with the original version, which only handles one class at a time per evolved network.

The changes necessary to adapt DCGAN-PSO to our proposal are the following:

• The architecture decoded from the particles is a cDCGAN instead of a DCGAN. Since the difference
between architectures only concerns concatenating the class labels in the inputs of the generator and the
discriminator to condition their creation and criticism, respectively, the representation of the architectures
does not need any addition, since the change is made only in the implementation of the networks for their
training. Therefore, those architectures that are generated from the evolved particles are also usable for
the cDCGANs.

• The fitness function adopted is FID (as in DCGAN-PSO), but due to the handling of multiple classes it is
required to measure the FID for each class. Therefore, we resort to using the FID averaged for each of the
classes that synthesize the evolved GANs.

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup

The parameters used in all experiments for both versions of the neuroevolution algorithm are the same used in
the reference of the original version. These are detailed in Tab. 1.

4.2 CXR Images Datasets

The sets of CXR images of pneumonia and COVID-19 used for the cDCGAN-PSO experimentation were collected
from the set available in Ref. 24, which has images of pneumonia (bacterial and viral) in addition to healthy
cases. 918 images of each class were selected for their quality and processed in the same way as in the former
version of the algorithm: (1): grayscale conversion; (2): image resizing to the different used resolutions (one
dataset per resolution); (3): histogram equalization to increase contrast. The COVID-19 image set is the same
as the one used in the original version article. Only 600 images of each class were used in the GANs evolution.

4.3 Technical Details

Details about the optimizer and initialization of GANs used can be found in Tab. 1. Python 3.6.9 programming
language with the PyTorch framework25 were used for the implementation on the free access online platform
Google Colaboratory∗ to have access to GPUs for the NNs training.

∗https://colab.research.google.com/

Table 1. Experimental parameters of DCGAN-PSO and cDCGAN-PSO used.

Parameter Value Parameter Value
Particle Swarm Optimization

Swarm size 15 N° generations
per resolution

10

Cg 0.5 Resolutions list [42 px., 82 px., 162 px., 322 px., 642 px., 1282 px., 2562 px.]
Ranges of particle parameters

N° Convolutional
layers

[0,2] N° Fully
connected layers

[1,1] (42 px.) ; [0,0] (otherwise)

Filter size [2,5] N° Transposed
convolutional

layers

[0,0] (42 px.) ; [1,1] (otherwise)

N° neurons [1,300] N° filters 42:642 px. = [1,256]; 1282 px. = [1,64]; 2562 px. = [1,32]
DCGAN & cDCGAN training

CXR images
classes

COVID-19,
Pneumonia,
and Healthy

N° epochs per
particle training

200

N° images used by
class

600 Batch size 42:1282 px. = 16; 2562 px. = 14

Optimizer Adam23 Learning rate
(G and D)

2× 10−4

β1,β2 (optimizer) 0.5 , 0.999 LeakyReLU
slope (D’s

activations)

0.2

Weight’s initializer
(G and D)

N (0, 0.02) Noise
distribution
(pz): R100

N (0, 1)

4.4 Fitness Evolution

The execution of cDCGAN-PSO, using the CXR images belonging to the COVID-19, pneumonia and healthy
classes, was performed six times, this low number is due to computational limitations. Each run lasted approxi-
mately one week and half and with each change of resolution the time was doubled with respect to the previous
resolution. However, these times could be shortened if better computer systems are available for training, the
main restriction of this research.

The fitness values of the gBest solution were monitored during different generations and evolution stages of
the cDCGAN-PSO runs. The FID optimization is shown in Fig. 3.

Figure 3. cDCGAN-PSO gBest FID evolution. COVID-19, healthy, and pneumonia classes (6 runs).

4.5 Qualitive Evaluation

Samples of the real images belonging to each class used as well as synthetics can be seen in Fig. 4.

Figure 4. Sample of synthesized CXR images from cDCGAN-PSO in 256x256 pixels. Rows from top to bottom: COVID-
19, pneumonia, and healthy classes.

4.6 FID Evaluation Comparison

The values of the FID evaluation obtained for the COVID-19 class of the original version were compared with
the FID evaluation of the evolved networks of our proposal. In addition, two executions of the first version of
the neuroevolution algorithm were performed per class pneumonia and healthy, and their FID was evaluated
with the complete real set (918 for each class) and an equal size batch of synthetic images, the same was done
for the networks obtained by our version, in order to compare the performance of each version of the algorithm
for each of the CXR classes used in the present work. The low number of executions of the first version is due to
computational restrictions. The results of these evaluations are shown in Tab. 2. The 95%-confidence Wilcoxon
rank-sum (WRS) test was used to validate the statistical significance of the results.

Table 2. Results and comparison of FID evaluation values of both version of the algorithm. (=) means that the two sets
of data compared have the same performance.

Class Average FID
(DCGAN-PSO)

Average FID
(cDCGAN-PSO)

p-value WRS test

COVID-19 3.052± 0.773 2.988± 0.631 0.8282 (=)
Pneumonia 3.2506± 0.666 3.111± 0.709 0.7388 (=)
Healthy 3.5916± 0.3242 3.345± 0.991 1 (=)

5. DISCUSSION

From Fig. 3 it can be observed that the fast convergence shown by the original version of the algorithm (for
more details go to the article of the original version17) is also obtained by this new version. The behavior with
sudden increases or decreases in each resolution change is as expected since the FID is a metric highly dependent
on the level of detail shown by the different resolutions, then it has different ranges of values in each resolution.
However, the descending behavior after each resolution change shows that the evolved networks are achieving
better performances thanks to the intelligent search carried out by the neuroevolution algorithm.

Regarding the visual qualities of the synthetic images, shown in Fig.‘4, these managed to mimic the general
morphological features of the real images, e.g. shape of the lungs and ribs, with only small errors (blank areas).
A diversity such as that seen in the original set can also be observed. Giving indications of not existing mode
collapse in the cDCGANs evolved what can be derived from more stable training. The visual quality of the
results is slightly better than those obtained by DCGAN-PSO, noting an increase in the quality of the fine
details of the CXR images, e.g. the more defined ribs. The reason for this is because the size of the training
set was tripled by adding two new classes of CXR images. This allowed the evolved cDCGANs to use this extra
amount of data to learn more finely the morphological details common to the three types of images. Hence, a
visual improvement over the use of a single class was obtained when compared with the former version of the
algorithm.

As can be seen in Tab. 2 , the average results of the final quality of FID obtained by each class is slightly
better in the cDCGAN-PSO. The reason for this may be because, as discussed previously, the greater amount
of training data allowed for better results than simply using a single class of CXR images as performed in the
DCGAN-PSO.

Despite the previous observation, the results obtained by the Wilcoxon rank-sum test indicate that the
performances of both algorithms are equal (i.e., there are not significant statistical differences). In this case, the
advantage is obtained by the new version, the cDCGAN-PSO, because it can handle multiple classes in a single
execution, then decreasing the total processing times by avoiding the sequential need the former version requires.
Furthermore, considering the low number of executions due to technical restrictions, further experiments with
more single runs need to be carried out so as to analyze the robustness of the new proposed approach.

Finally, as shown in the Ref. 26, the use of the FID as a metric for evaluating synthetic images obtained
through GANs has proven to be a heuristic that allows for improvements in the quality of the results, as well
as giving a good approximation to which are the best methods and which are the least effective, as shown, by
allowing to improve the synthetic images in both versions of the neuroevolutionary algorithm and its use in
multiple handcrafted CXR GANs10–13 to assess the quality of the results. However, FID it is not always robust
when is used in biomedical imaging because the CNN used a non-medical dataset for their training, so it couldn’t
detect very fine features to aid comparison. An alternative would be to use objective task-based evaluations using
synthetic images, e.g., classification as it has been used in previous CXR GANs9,10,13–15 that use images in a
resolution equal to or less than that used in the present work (2562 px.). This is a future line of work.

6. CONCLUSIONS AND FUTURE WORK

In this work we present cDCGAN-PSO, a new version of DCGAN-PSO, a neuroevolutionary algorithm of GANs
for the synthesis of biomedical images. Our version uses conditional-DCGANs which have the ability to synthesize
multiple classes from CXR images, unlike the original version which can only handle one class at a time. The
results obtained show that our version obtains similar performances compared to the original version of the
algorithm, however, being able to synthesize multiple classes at the same time without a large increase in search
times, i.e. about a week for the first version and a week and a half for our version, provides an attractive
quality for use in scenarios with the need to balance or increase multiple classes with synthetic images for use in
DL-based biomedical applications.

The experimentation carried out also verified the good quality of the synthetic images verified by their low
FID values, statistically equal to those of the original version of the algorithm.

As future work, the proposed version can be used for the synthesis of images in higher resolution that allow to
improve various tasks with CXR images of the biomedical area and that can be analyzed in detail by radiologist
experts as a means of further corroborating their fidelity to real images.

ACKNOWLEDGMENTS

The first author, with CVU number 1001447, acknowledges support from the Mexican National Council of Science
and Technology (CONACyT) through a scholarship to pursue graduate studies at the University of Veracruz. All
UNAM authors gratefuly acknowledge the financial support of DGAPA, UNAM, under grants PAPIIT TA101121
and IV100420.

REFERENCES

[1] Mohapatra, S., Swarnkar, T., and Das, J., “Deep convolutional neural network in medical image processing,”
in [Handbook of Deep Learning in Biomedical Engineering], 25–60, Elsevier (2021).

[2] Guibas, J. T., Virdi, T. S., and Li, P. S., “Synthetic Medical Images from Dual Generative Adversarial
Networks,” arXiv e-prints (Sept. 2017).

[3] Kazeminia, S., Baur, C., Kuijper, A., van Ginneken, B., Navab, N., Albarqouni, S., and Mukhopadhyay, A.,
“Gans for medical image analysis,” Artificial Intelligence in Medicine 109, 101938 (2018).

[4] Costa, V., Lourenço, N., Correia, J., and Machado, P., “Neuroevolution of generative adversarial networks,”
in [Deep Neural Evolution], 293–322, Springer (2020).

[5] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and
Bengio, Y., “Generative Adversarial Networks,” arXiv e-prints (2014).

[6] Mirza, M. and Osindero, S., “Conditional Generative Adversarial Nets,” arXiv e-prints (Nov. 2014).

[7] Loey, M., Smarandache, F., and M Khalifa, N. E., “Within the lack of chest covid-19 x-ray dataset: A novel
detection model based on gan and deep transfer learning,” Symmetry 12(4), 651 (2020).

[8] Shams, M., Elzeki, O., Abd Elfattah, M., Medhat, T., and Hassanien, A. E., “Why are generative adversarial
networks vital for deep neural networks? a case study on covid-19 chest x-ray images,” in [Big Data Analytics
and Artificial Intelligence Against COVID-19: Innovation Vision and Approach], 147–162, Springer (2020).

[9] Waheed, A., Goyal, M., Gupta, D., Khanna, A., Al-Turjman, F., and Pinheiro, P. R., “Covidgan: Data
augmentation using auxiliary classifier gan for improved covid-19 detection,” IEEE Access 8, 91916–91923
(2020).

[10] Karbhari, Y., Basu, A., Geem, Z.-W., Han, G.-T., and Sarkar, R., “Generation of synthetic chest x-ray
images and detection of covid-19: A deep learning based approach,” Diagnostics 11(5), 895 (2021).

[11] Zhang, T., Fu, H., Zhao, Y., Cheng, J., Guo, M., Gu, Z., Yang, B., Xiao, Y., Gao, S., and Liu, J.,
“Skrgan: Sketching-rendering unconditional generative adversarial networks for medical image synthesis,”
in [International Conference on Medical Image Computing and Computer-Assisted Intervention], 777–785,
Springer (2019).

[12] Middel, L., Palm, C., and Erdt, M., “Synthesis of medical images using gans,” in [Uncertainty for Safe Uti-
lization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures], 125–134, Springer
(2019).

[13] Kora Venu, S. and Ravula, S., “Evaluation of deep convolutional generative adversarial networks for data
augmentation of chest x-ray images,” Future Internet 13(1), 8 (2021).

[14] Salehinejad, H., Valaee, S., Dowdell, T., Colak, E., and Barfett, J., “Generalization of deep neural net-
works for chest pathology classification in x-rays using generative adversarial networks,” in [2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP)], 990–994, IEEE (2018).

[15] Khalifa, N. E. M., Taha, M. H. N., Hassanien, A. E., and Elghamrawy, S., “Detection of Coronavirus
(COVID-19) Associated Pneumonia based on Generative Adversarial Networks and a Fine-Tuned Deep
Transfer Learning Model using Chest X-ray Dataset,” arXiv e-prints (Apr. 2020).

[16] Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B., Shahrzad, H.,
Navruzyan, A., Duffy, N., et al., “Evolving deep neural networks,” in [Artificial Intelligence in the Age of
Neural Networks and Brain Computing], 293–312, Elsevier (2019).

[17] Rodŕıguez-de-la Cruz, J.-A., Acosta-Mesa, H.-G., and Mezura-Montes, E., “Evolution of generative ad-
versarial networks using pso for synthesis of covid-19 chest x-ray images,” in [2021 IEEE Congress on
Evolutionary Computation (CEC)], 2226–2233 (2021).

[18] Radford, A., Metz, L., and Chintala, S., “Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks,” arXiv e-prints (Nov. 2015).

[19] Karras, T., Aila, T., Laine, S., and Lehtinen, J., “Progressive Growing of GANs for Improved Quality,
Stability, and Variation,” arXiv e-prints (Oct. 2017).

[20] Junior, F. E. F. and Yen, G. G., “Particle swarm optimization of deep neural networks architectures for
image classification,” Swarm and Evolutionary Computation 49, 62–74 (2019).

[21] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S., “Gans trained by a two time-scale
update rule converge to a local nash equilibrium,” in [Advances in neural information processing systems],
6626–6637 (2017).

[22] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z., “Rethinking the inception architecture
for computer vision,” in [Proceedings of the IEEE conference on computer vision and pattern recognition],
2818–2826 (2016).

[23] Kingma, D. P. and Ba, J., “Adam: A Method for Stochastic Optimization,” arXiv e-prints (Dec. 2014).

[24] Mooney, P., “Chest x-ray images (pneumonia),” kaggle, Marzo (2018).

[25] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L.,
and Lerer, A., “Automatic differentiation in pytorch,” (2017).

[26] Skandarani, Y., Jodoin, P.-M., and Lalande, A., “GANs for Medical Image Synthesis: An Empirical Study,”
arXiv e-prints (May 2021).

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Chapter 1. Introduction
	1.1. Overview
	1.1.1. Deep Learning and Biomedical Imaging
	1.1.2. Data Augmentation
	1.1.3. Generative Adversarial Networks
	1.1.4. Evolutionary Computing and GANs
	1.1.5. Case Study: Chest X-ray Images.

	1.2. Problem Definition
	1.3. Research Proposal
	1.4. Justification
	1.5. Hypothesis
	1.6. Overall Objective
	1.7. Specific Objectives
	1.8. Contributions
	1.9. Thesis Content

	Chapter 2. Theoretical Framework
	2.1. Artificial Neural Networks
	2.2. Convolutional Neural Networks
	2.2.1. Convolutional Layer
	2.2.2. Pooling Layer
	2.2.3. Activation Layers
	2.2.4. Fully Connected Layer
	2.2.5. Batch Normalization Layer
	2.2.6. Transposed Convolutional Layer

	2.3. Generative Adversarial Networks
	2.3.1. GANs Structure
	2.3.2. GANs Training
	2.3.3. GANs Shortcomings

	2.4. Architectures and Implementations to Improve GANs
	2.4.1. Deep Convolutional Generative Adversarial Network
	2.4.2. Conditional GANs
	2.4.3. Wasserstein-GAN
	2.4.4. Weight and Spectral Normalization

	2.5. Fréchet Inception Distance
	2.6. Evolutionary Computing
	2.6.1. Swarm Intelligence
	2.6.2. Particle Swarm Optimization
	2.6.3. Neuroevolution

	2.7. Biomedical Imaging and Data Augmentation
	2.8. Chest X-ray Images
	2.9. Chapter Summary

	Chapter 3. Literature Review
	3.1. Progressive Augmentation of GANs
	3.1.1. Pro-GAN

	3.2. GANs Neuroevolution
	3.3. CXR Synthesis with GANs
	3.4. Chapter Summary

	Chapter 4. Proposed Algorithm
	4.1. DCGAN-PSO
	4.1.1. Base Works

	endcsname {endgroup }0elax global advance count 17@ne elax allocationnumber count 17elax global chardef allocationnumber immediate write m@ne {@outlinefile=write472}xdef 0{1}global edef ReFiCh@0 {107B8065E35037129C0D4CCC27E5B9D9;4096}�egingroup 	oks@ {�egingroup immediate closeout edef {107B8065E35037129C0D4CCC27E5B9D9;4096}protect �egingroup def MessageBreak {
(rerunfilecheck) }let protect immediatewrite @unused {
Package rerunfilecheck Warning: File `output.out' has changed.MessageBreak Rerun to get outlines rightMessageBreak or use package `bookmark'.
}endgroup protect �egingroup def MessageBreak {
(rerunfilecheck) }let protect immediatewrite m@ne {Package rerunfilecheck Info: Checksums for `output.out':MessageBreak Before: ReFiCh@0 MessageBreak After: .}endgroup endgroup }xdef {
oextrasUKenglish let originalTeX @empty �abel@beginsave lefthyphenmin =2elax ighthyphenmin =}endgroup immediate openout =output.outelax elax catcode 10 12elax catcode 33 12elax catcode 34 12elax catcode 36 3elax catcode 38 4elax catcode 39 12elax catcode 40 12elax catcode 41 12elax catcode 42 12elax catcode 43 12elax catcode 44 12elax catcode 45 12elax catcode 46 12elax catcode 47 12elax catcode 58 12elax catcode 59 12elax catcode 60 12elax catcode 61 12elax catcode 62 12elax catcode 63 12elax catcode 91 12elax catcode 93 12elax catcode 94 7elax catcode 95 8elax catcode 96 12elax catcode 124 12elax catcode 126 13elax let

