

Evolución Diferencial Generalizada Inmune para Problemas de Optimización Dinámica Multi-objetivo con Restricciones.

PRESENTADA POR

 L. M. A. Aarón Jiménez Aparicio PARA OBTENER EL GRADO DE Maestro en Inteligencia Artificial DIRECTOR
 Dr. Efrén Mezura Montes CO-DIRECTOR
 Dr. Héctor Gabriel Acosta Mesa Noviembre 2021

Resumen

Los estudios sobre optimización han sido de interés tanto desde el punto de vista teórico como del práctico. La creciente demanda de energía eléctrica, transporte, capacidad de almacenamiento en la nube, servicios de entrega y demás problemas en la industria y comercio, ha incrementado la necesidad de modelar escenarios más realistas y diseñar métodos de optimización afines a ellos.

La alta complejidad de los problemas del mundo real hacen que frecuentemente los métodos tradicionales de optimización fallen. Tal complejidad se relaciona con incluir en los problemas características como: el conflicto entre objetivos, la presencia de restricciones, la dependencia del tiempo y la variabilidad en el número de objetivos y restricciones.

Existen numerosos estudios en lo que se demuestra la utilidad de los algoritmos evolutivos para la obtención de buenas soluciones en problemas de optimización complejos. Dentro de sus ventajas está: una menor dependencia de las propiedades matemáticas del espacio de búsqueda (convexidad, concavidad, continuidad, representación numérica) y la posibilidad de obtener un conjunto de buenas soluciones en una única ejecución.

Los trabajos hechos en Problemas de Optimización Multi-objetivo Dinámica con restricciones son reducidos en comparación con aquellos centrados en problemas estáticos, por lo que no existe una gran variedad de algoritmos evolutivos para este tipo de problemas. Dos de las carencias más importantes en los Algoritmos Evolutivos de Optimización Multi-objetivo con restricciones son las siguientes:

- 1. De acuerdo a la revisión de la literatura realizada para este trabajo, no existe algún algoritmo cuyo proceso de optimización multiobjetivo haga uso de la Evolución Diferencial, todos se basan en el algoritmo NSGA-II.
- 2. No se han hecho estudios particulares de la actuación de manejadores de restricción diferentes a las reglas de factibilidad y funciones de penalización. Si bien en este trabajo no se atiende a eliminar esta problemática, si se identifica una carencia importante en las funciones de penalización.

El algoritmo que se propone en este trabajo, hace uso de: (1) Evolución Diferencial, (2) una reacción al cambio basada en ideas de un Sistema Inmune Artificial (AIS), (3) una función de penalización como mecanismo de manejo de restricciones y (4) un factor de mutación adaptativo.

Para validar la competitividad del algoritmo propuesto, se realizaron experimentos validados estadísticamente sobre:

- 1. El desempeño del algoritmo propuesto a distintas probabilidades de seleccionar una solución no dominada sobre una solución aleatoria como vector *target* en la Evolución Diferencial.
- 2. La comparación con otros algoritmos del estado del arte usando distintas frecuencias de cambio.
- 3. Cualidades de la respuesta inmune como reacción al cambio.

Lo anterior se hizo usando cuatro indicadores de desempeño en total; dos indicadores de diversidad, uno de convergencia y uno para medir la porción de soluciones factibles en la población final.

Los resultados obtenidos muestran el desempeño competitivo del algoritmo propuesto para aproximar el Frente Óptimo de Pareto (POF) con restricciones en un ambiente dinámico, además de ser robusto a la frecuencia de cambio.

Agradecimientos

Agradezco a Irma y Arturo, mis padres, por el esfuerzo hecho a lo largo de los años para hacer de mí una persona de bien.

A mis amigos por la inyección de ánimos que a veces me hacían falta.

Además, doy las gracias a mis profesores de la maestría y licenciatura que se esforzaron por enseñarme sus habilidades profesionales con el objetivo de hacerme capaz de enfrentar el mundo.

Índice general

Íno	dice	general	\mathbf{v}
Íno	dice	de figuras	VII
Íno	dice	de tablas	IX
1.	Intr	roducción	3
	1.1.	Planteamiento del problema	4
	1.2.	Justificación	5
	1.3.	Hipótesis	6
	1.4.	Objetivos	6
		1.4.1. Objetivo general	6
		1.4.2. Objetivos específicos	6
	1.5.	Contribuciones	6
	1.6.	Estructura del documento	6
2.	Ant	tecedentes de optimización	9
	2.1.	Conceptos básicos de optimización	9
	2.2.	Optimización Multi-objetivo	11
	2.3.	Optimización Dinámica Multi-objetivo	12
3.	Ant	tecedentes de los Algoritmos Evolutivos de Optimización Dinámica Multi-Objetiv	vo
	con	restricciones	15
	3.1.	Algunos enfoques para la optimización escalar	16
		3.1.1. Evolución Diferencial (DE)	16
		3.1.2. Sistema Inmune Artificial (AIS)	18
		3.1.3. Optimización por Cúmulo de Partículas (PSO)	19
		3.1.4. Colonia de Abejas Artificiales (ABC)	20
	3.2.	Algoritmos Evolutivos para Optimización Multi-objetivos	21
		3.2.1. NSGA-II	21
		3.2.2. GDE3	23
		3.2.3. MOEA/ D	24
	3.3.	Técnicas de manejo de restricciones	25
		3.3.1. Técnicas que dan prioridad a las soluciones factibles	25

		3.3.2. Técnicas que buscan balance entre convergencia y diversidad	25
		3.3.3. Técnicas combinadas	26
	3.4.	Algoritmos Evolutivos de Optimización Dinámica Multi-objetivo con restricciones	26
		3.4.1. DNSGA-II-A y DNSGA-II-B	26
		3.4.2. DC-NSGA-II	27
		3.4.3. DC-MOEA	27
		3.4.4. d CMOEA	28
4.	Evo	lución Diferencial Generalizada Inmune para la Optimización Dinámica Mul	t i-
	obje	etivo con restricciones.	29
	4.1.	Estructura general de I-CGDE3	30
		4.1.1. Inicializar población	30
		4.1.2. Detección de un cambio	31
		4.1.3. Actualizar memoria	32
	4.2.	Proceso de Optimización Multi-objetivo (CGDE3)	32
		4.2.1. Factor de mutación adaptativo	32
		4.2.2. Técnica de manejo de restricciones	34
		4.2.3. Algoritmo CGDE3	35
	4.3.	Respuesta al cambio	37
	4.4.	Conclusiones	40
5.	Dise	eño experimental y resultados	41
5.	Dise 5.1.	eño experimental y resultados Indicadores de desempeño	41 42
5.	Dise 5.1. 5.2.	eño experimental y resultados Indicadores de desempeño	41 42 43
5.	Dise 5.1. 5.2.	eño experimental y resultados Indicadores de desempeño	41 42 43 43
5.	Dise 5.1. 5.2.	eño experimental y resultados Indicadores de desempeño Conjuntos de problemas de prueba. 5.2.1. DCTP 5.2.2.	41 42 43 43 44
5.	Dise 5.1. 5.2. 5.3.	eño experimental y resultados Indicadores de desempeño Conjuntos de problemas de prueba. 5.2.1. DCTP 5.2.2. FCCD Configuración y parámetros	41 42 43 43 44 45
5.	Dise 5.1. 5.2. 5.3. 5.4.	eño experimental y resultados Indicadores de desempeño Conjuntos de problemas de prueba. 5.2.1. DCTP 5.2.2. FCCD Configuración y parámetros Experimentos y resultados	41 42 43 43 44 45 46
5.	Dise 5.1. 5.2. 5.3. 5.4.	eño experimental y resultados Indicadores de desempeño Conjuntos de problemas de prueba. 5.2.1. DCTP 5.2.2. FCCD Configuración y parámetros . Superimentos y resultados . 5.4.1. Experimento I: Variación de la capacidad de convergencia en I-CGDE3	41 42 43 43 44 45 46 46
5.	Dise 5.1. 5.2. 5.3. 5.4.	eño experimental y resultados Indicadores de desempeño Conjuntos de problemas de prueba. 5.2.1. DCTP 5.2.2. FCCD Configuración y parámetros Configuración y resultados 5.4.1. Experimento I: Variación de la capacidad de convergencia en I-CGDE3 5.4.2. Experimento II: Análisis estadístico comparativo de I-CGDE3 y otros DCMOEAs	41 42 43 43 44 45 46 46
5.	Dise 5.1. 5.2. 5.3. 5.4.	 eño experimental y resultados Indicadores de desempeño Conjuntos de problemas de prueba. 5.2.1. DCTP 5.2.2. FCCD Configuración y parámetros Experimentos y resultados 5.4.1. Experimento I: Variación de la capacidad de convergencia en I-CGDE3 5.4.2. Experimento II: Análisis estadístico comparativo de I-CGDE3 y otros DCMOEAs con distintas frecuencias de cambio 	41 42 43 43 44 45 46 46 46 50
5.	Dise 5.1. 5.2. 5.3. 5.4.	 eño experimental y resultados Indicadores de desempeño Conjuntos de problemas de prueba. 5.2.1. DCTP 5.2.2. FCCD Configuración y parámetros Configuración y parámetros Experimentos y resultados 5.4.1. Experimento I: Variación de la capacidad de convergencia en I-CGDE3 5.4.2. Experimento II: Análisis estadístico comparativo de I-CGDE3 y otros DCMOEAs con distintas frecuencias de cambio 5.4.3. Experimento III: Comparación de la respuesta inmune con otras reacciones al 	41 42 43 43 44 45 46 46 50
5.	Dise 5.1. 5.2. 5.3. 5.4.	 eño experimental y resultados Indicadores de desempeño Conjuntos de problemas de prueba. 5.2.1. DCTP 5.2.2. FCCD Configuración y parámetros Configuración y parámetros Experimentos y resultados 5.4.1. Experimento II: Variación de la capacidad de convergencia en I-CGDE3 5.4.2. Experimento II: Análisis estadístico comparativo de I-CGDE3 y otros DCMOEAs con distintas frecuencias de cambio 5.4.3. Experimento III: Comparación de la respuesta inmune con otras reacciones al cambio 	41 42 43 43 44 45 46 46 46 50 62
5.	Dise 5.1. 5.2. 5.3. 5.4. 5.5.	 eño experimental y resultados Indicadores de desempeño Conjuntos de problemas de prueba. 5.2.1. DCTP 5.2.2. FCCD Configuración y parámetros Experimentos y resultados 5.4.1. Experimento I: Variación de la capacidad de convergencia en I-CGDE3 5.4.2. Experimento II: Análisis estadístico comparativo de I-CGDE3 y otros DCMOEAs con distintas frecuencias de cambio 5.4.3. Experimento III: Comparación de la respuesta inmune con otras reacciones al cambio Aportes al diseño de DCMOEA 	$\begin{array}{c} 41 \\ 42 \\ 43 \\ 43 \\ 44 \\ 45 \\ 46 \\ 46 \\ 50 \\ 62 \\ 70 \end{array}$
5.	Dise 5.1. 5.2. 5.3. 5.4. 5.5. Con	eño experimental y resultados Indicadores de desempeño Conjuntos de problemas de prueba. 5.2.1. DCTP 5.2.2. FCCD Configuración y parámetros Configuración y parámetros Experimentos y resultados 5.4.1. Experimento I: Variación de la capacidad de convergencia en I-CGDE3 5.4.2. Experimento II: Análisis estadístico comparativo de I-CGDE3 y otros DCMOEAs con distintas frecuencias de cambio 5.4.3. Experimento III: Comparación de la respuesta inmune con otras reacciones al cambio Aportes al diseño de DCMOEA	41 42 43 43 44 45 46 46 46 50 62 70 71
5 . 6 .	Dise 5.1. 5.2. 5.3. 5.4. 5.5. 5.5. Con 6.1.	eño experimental y resultados Indicadores de desempeño Conjuntos de problemas de prueba. 5.2.1. DCTP 5.2.2. FCCD Configuración y parámetros Experimentos y resultados 5.4.1. Experimento I: Variación de la capacidad de convergencia en I-CGDE3 5.4.2. Experimento II: Análisis estadístico comparativo de I-CGDE3 y otros DCMOEAs con distintas frecuencias de cambio 5.4.3. Experimento III: Comparación de la respuesta inmune con otras reacciones al cambio Aportes al diseño de DCMOEA Conclusiones Conclusiones Conclusiones	41 42 43 43 44 45 46 46 46 50 62 70 71 71
 6. 	Dise 5.1. 5.2. 5.3. 5.4. 5.5. 5.5. Con 6.1. 6.2.	eño experimental y resultados Indicadores de desempeño Conjuntos de problemas de prueba. 5.2.1. DCTP 5.2.2. FCCD Configuración y parámetros Configuración y parámetros Experimentos y resultados 5.4.1. Experimento I: Variación de la capacidad de convergencia en I-CGDE3 5.4.2. Experimento II: Análisis estadístico comparativo de I-CGDE3 y otros DCMOEAs con distintas frecuencias de cambio 5.4.3. Experimento III: Comparación de la respuesta inmune con otras reacciones al cambio Aportes al diseño de DCMOEA nclusiones y trabajo futuro Conclusiones Trabajo futuro	41 42 43 43 44 45 46 46 46 50 62 70 71 71 71 71
5.	Dise 5.1. 5.2. 5.3. 5.4. 5.5. 5.5. Con 6.1. 6.2. 6.3.	eño experimental y resultados Indicadores de desempeño Conjuntos de problemas de prueba. 5.2.1. DCTP 5.2.2. FCCD Configuración y parámetros Experimentos y resultados 5.4.1. Experimento I: Variación de la capacidad de convergencia en I-CGDE3 5.4.2. Experimento II: Análisis estadístico comparativo de I-CGDE3 y otros DCMOEAs con distintas frecuencias de cambio 5.4.3. Experimento III: Comparación de la respuesta inmune con otras reacciones al cambio Aportes al diseño de DCMOEA Conclusiones Trabajo futuro Anexos	 41 42 43 43 44 45 46 46 50 62 70 71 71 71 79
5.	Dise 5.1. 5.2. 5.3. 5.4. 5.5. 5.5. 6.1. 6.2. 6.3.	eño experimental y resultados Indicadores de desempeño Conjuntos de problemas de prueba. 5.2.1. DCTP 5.2.2. FCCD Configuración y parámetros Experimentos y resultados 5.4.1. Experimento I: Variación de la capacidad de convergencia en I-CGDE3 5.4.2. Experimento II: Análisis estadístico comparativo de I-CGDE3 y otros DCMOEAs con distintas frecuencias de cambio 5.4.3. Experimento III: Comparación de la respuesta inmune con otras reacciones al cambio Aportes al diseño de DCMOEA metusiones y trabajo futuro Conclusiones Trabajo futuro Anexos 6.3.1. DCTP	 41 42 43 43 44 45 46 46 46 50 62 70 71 71 71 79 79

Índice de figuras

2.1.	Representación de la región factible (izquierda) y el espacio de objetivo (derecha) en	
	restricciones reducen la región factible cercana al POF	12
3.1.	Representación de la Evolución Diferencial es un espacio de búsqueda de dos dimensiones.	17
3.2.	Representación de las principales teorías sobre los AIS en un espacio de búsqueda de 2 $$	
	dimensiones	19
3.3.	En la figura, P_{best} y G_{best} representan a la mejor posición obtenida por la partícula actual a lo largo de las generaciones y el mejor global respectivamente. C_1 y C_1 son constantes <i>rand</i> es un valor aleatorio y V_4 es la velocidad de la partícula en el tiempo t	20
3.4.	En la figura, $\phi \in [-1, 1]$ y G_{lim} es el número máximo de generación que puede permanecer sin cambios alguna solución. En este caso, si la nueva partícula generada por B no es	_0
	mejor que B , está se reemplazará por B^* (una solución aleatoria)	21
3.5.	Representación de la Crowding Distance	23
4.1.	Estructura general de I-CGDE3 y diferencias con IGDE3.	31
4.2.	Decrecimiento de el factor de mutación (F) , lineal y sigmoide, usando como valor de	
	referencia el número de generaciones máximas.	33
4.3.	Ejemplificación de la variación del porcentaje de descendientes factibles	34
4.4.	Radio de factibilidad modificado (r^*), cada cuadro representa a un individuo, el color	95
4.5.	Ejemplificación de la respuesta inmune en un problema con dos objetivos y un espacio	55
	de búsqueda de dos dimensiones.	38
5.1.	Contenido del capítulo 5	42
5.2.	Valores normalizados de los indicadores sobre el máximo alcanzado en algún valor de ω	
	para los problemas DCTP	48
5.3.	Valores normalizados de los indicadores sobre el máximo alcanzado en algún valor de ω	
	para los problemas FCCD	48
5.4.	Aproximaciones a los POFs obtenidos por los algoritmos I-CGDE3 y DC-MOEA para el	
	conjunto de problemas de prueba DCTP (color azul) y sus respectivos POFs (color rojo).	56
5.5.	Aproximaciones a los POFs obtenidos por los algoritmos I-CGDE3 y $d\rm CMOEA$ para el	
	conjunto de problemas de prueba FCCD (color azul) y sus respectivos POFs (color rojo).	57

5.6.	Gráficas de convergencia para el indicador $IGD+$ (eje de las ordenas) en el conjunto	
	de problemas de prueba FCCD de I-CGDE3 y los algoritmos comparados usando una	
	frecuencia de cambio de 10000 evaluaciones, donde el eje de las abscisas corresponde al	
	número de generaciones	58
5.7.	Gráficas de convergencia para el indicador $\overline{IGD+}$ (eje de las ordenadas) en el conjunto	
	de problemas de prueba FCCD de los algoritmos I-CGDE3 y $d\mathrm{CMOEA}$ usando una	
	frecuencia de cambio de 4000 evaluaciones, donde el eje de las abscisas corresponde al	
	número de generaciones	59

Índice de tablas

1.	Lista de abreviaciones	1
2.1. 2.2.	Posibles cambios en ambiente dinámico	$12\\13$
3.1.	Versiones de DNSGA-II	27
4.1.	Principales características de I-CGDE3	30
5.1.	Principales características de los conjuntos de problemas de prueba FCCD y DCTP $% \left({{\left({{{{\bf{n}}}} \right)}_{{{\bf{n}}}}} \right)$.	44
5.2. 5.3.	Parámetros para los problemas	45
	Wilcoxon rank-sun con 95 % de confianza	45
5.4.	Parámetros para I-CGDE3 al variar ω	46
5.5.	Media (μ) y desviación estándar (σ) en el formato " $\mu(\sigma)$ " de los resultados en los	
	indicadores \overline{HVR} , $\overline{IGD+}$ y \overline{MS} para las variaciones del parámetro ω en I-CGDE3 en	
	los problemas DCTP. Los mejores resultados se resaltan en negritas. \ldots \ldots \ldots	47
5.6.	Parámetros para I-CGDE3	50
5.7.	Media (μ) y desviación estándar (σ) de los resultados obtenidos en los problemas de	
	prueba DCTP y FCCD en el formato " $\mu(\sigma)$ " para cada DCMOEA considerado usando	
	el indicador \overline{HVR} . El simbolo " τ_t " hace referencia a la frecuencia de cambio medido en	
	un número máximo de evaluaciones. Los mejores resultados se resaltan en negritas $$	51
5.8.	Media (μ) y desviación estándar (σ) de los resultados obtenidos en los problemas de	
	prueba DCTP y FCCD en el formato " $\mu(\sigma)$ " para cada DCMOEA considerado usando	
	el indicador $\overline{IGD+}$. El simbolo " τ_t " hace referencia a la frecuencia de cambio medido	
	en un número máximo de evaluaciones. Los mejores resultados se resaltan en negritas.	52
5.9.	Media (μ) y desviación estándar (σ) de los resultados obtenidos en los problemas de	
	prueba DCTP y FCCD en el formato " $\mu(\sigma)$ " para cada DCMOEA considerado usando	
	el indicador \overline{MS} . El simbolo " τ_t " hace referencia a la frecuencia de cambio medido en	
	un número máximo de evaluaciones. Los mejores resultados se resaltan en negritas $$	53
5.10	. Media (μ) y desviación estándar (σ) de los resultados obtenidos en los problemas de	
	prueba DCTP y FCCD en el formato " $\mu(\sigma)$ " para cada DCMOEA considerado usando	
	el indicador \overline{FR} . El simbolo " τ_t " hace referencia a la frecuencia de cambio medido en	
	un número máximo de evaluaciones. Los mejores resultados se resaltan en negritas	54

5.11.	Resumen de resultados de la prueba Wilcoxon rank-sum con 95 % de confianza para los problemas DCTP (Experimento II). Los símbolos "+", "-" y "=" se entienden como; I-CGDE3 tuvo un comportamiento significativamente superior, inferior o sin diferencias	
	significativas. El simbolo τ_t representa la frecuencia de cambio medida en un número	
	máximo de evaluaciones posibles en cada tiempo t	55
5.12.	Resumen de resultados de la prueba Wilcoxon rank-sum para los problemas FCCD	
	(Experimento II). Los símbolos "+", "-" y "=" se entienden como; I-CGDE3 tuvo	
	un comportamiento significativamente superior, inferior o sin diferencias significativas.	
	El simbolo τ_t representa la frecuencia de cambio medida en un número máximo de	
	evaluaciones posibles en cada tiempo t	55
5.13.	Reacciones al cambio en las variantes de I-CGDE3	62
5.14.	Media (μ) y desviación estándar (σ) en el formato " $\mu(\sigma)$ " de los resultados en los indicadores	
	\overline{HVR} , $\overline{IGD+}$ y \overline{MS} para las variaciones a la reacción al cambio del algoritmo I-CGDE3 en los	
	problemas DCTP y FCCD. Los mejores resultados se resaltan en negritas.	63
5.15.	Resumen de resultados de la prueba Wilcoxon rank-sum con 95% de confianza (Experi-	
	mento III, Parte A). Los símbolos "+", "-" y "=" se entienden como; I-CGDE3 tuvo un	
	comportamiento significativamente superior, inferior o sin diferencias significativas. $\ .$	64
5.16.	Media (μ) y desviación estándar (σ) en el formato " $\mu(\sigma)$ " de los resultados en los	
	indicadores \overline{HVR} , $\overline{IGD+}$ y \overline{MS} para el algoritmo DC-MOEA y su versión IDC-MOEA,	
	la cual usa a la respuesta inmune de I-CGDE3 como reacción al cambio. Los mejores	
	resultados se resaltan en negritas	65
5.17.	Media (μ) y desviación estándar (σ) en el formato " $\mu(\sigma)$ " de los resultados en los indicadores \overline{HVR} , $\overline{IGD+}$ y \overline{MS} para el algoritmo dCMOEA y su versión I-dCMOEA.	
	la cual usa a la respuesta inmune de I-CGDE3 como reacción al cambio. Los mejores	
	resultados se resaltan en negritas.	66
5.18.	Media (μ) y desviación estándar (σ) en el formato " $\mu(\sigma)$ " de los resultados en los	
0.201	indicadores \overline{HVR} , $\overline{IGD+}$ v \overline{MS} para el algoritmo DC-NSGA-II-A v su versión IDC-	
	NSGA-II, la cual usa a la respuesta inmune de I-CGDE3 como reacción al cambio. Los	
	mejores resultados se resaltan en negritas.	67
5.19.	Media (μ) y desviación estándar (σ) en el formato " $\mu(\sigma)$ " de los resultados en los	•••
0.201	indicadores \overline{HVR} , $\overline{IGD+}$ v \overline{MS} para el algoritmo DNSGA-II-A v su versión I-DNSGA-	
	II. la cual usa a la respuesta inmune de I-CGDE3 como reacción al cambio. Los meiores	
	resultados se resaltan en negritas.	68
5.20.	Besumen de resultados de la prueba Wilcoxon rank-sum con 95% de confianza (Experi-	00
0.20.	mento III: Parte B). Los símbolos "+", "-" y "=" se entienden como: I-CGDE3 tuvo un	
	comportamiento significativamente superior, inferior y sin diferencias significativas.	69
	· · · · · · · · · · · · · · · · · · ·	
6.1.	Parámetros para los problemas DCTP de [54]	79
6.2.	Parámetros para los problemas de prueba FCCD	80

Abreviación o	Significado
símbolos	
\prec	Dominancia de Pareto
\prec_{ϵ}	Epsilon dominancia
\prec_r	Dominancia estocástica
Ω	Espacio de búsqueda
V	Violación de restricciones
$ au_t$	Frecuencia de cambio
X^T	Transpuesta de X
CD	Crowding Distance
ABC	Artificial Bee Colony
AIS	Sistema Inmune Artificial
CGDE3	Generalized Differential Evolution Constrained 3
DCMOEA	Algoritmo Evolutivo de Optimización Dinámica Multi-Objetivo con
	restricciones
DCMOP	Problema de Optimización Dinámica Multi-Objetivo con restricciones
DE	Evolución Diferencial
DMOEA	Algoritmo Evolutivo de Optimización Dinámica Multi-objetivo
DMOP	Problema de Optimización Dinámica Multi-objetivo
DNSGA-II	Dinamic Nondominated Sorting Genetic Algoritm II
EA	Algoritmo Evolutivo
FR	Radio de factibilidad
I-CGDE3	Immune Generalized Differential Evolution Constrained 3
MOEA	Algoritmo Evolutivo de Optimización Multi-objetivo
MOEA/D	Multi-objetive Evolutionary Algorithm Based on Descomposition
MOP	Problema de optimización Multi-objetivo
NSGA-II	Nondominated Sorting Genetic Algoritm II
POF	Frente Óptimo de Pareto
POS	Conjunto Óptimo de Pareto
PSO	Particle Swarm Optimization

Tabla 1: Lista de abreviaciones.

La nomenclatura usada es acorde con las siglas de los nombres de cada variable en el idioma inglés.

Capítulo 1

Introducción

En esta sección se introduce al lector al tema central de esta tesis y se describen los objetivos y la hipótesis que guían el trabajo de investigación presentado.

La estructura de este capítulo está dividida por:

Capitulo 1

- 1 Introducción general del tema.
- 1.1 Planteamiento del problema.
- 1.2 Justificación.
- 1.3 Hipótesis.
- 1.4 Objetivo general y específicos.
- 1.5 Contribuciones esperadas.
- 1.6 Estructura de la tesis.

Dentro de la literatura especializada, se pueden identificar múltiples Algoritmos Evolutivos (EAs) para la optimización de problemas con dos o más objetivos que entran en conflicto entre sí (MOPs) [1]-[4]. Estos mismo algoritmos han sufrido diversas modificaciones para considerar el caso en que las funciones objetivo dependen del tiempo, a este tipo de MOPs se les denomina como Problemas de Optimización Dinámica Multi-objetivo (DMOPs).

Por otro lado, las diversas aplicaciones de la optimización de DMOPs [5]-[8], ha generado reciente interés en el diseño de Algoritmos Evolutivos de Optimización Dinámica Multi-objetivo (DMOEAs) cada vez más elaborados. Algunos de estos DMOEAs hacen uso de indicadores para guiar la búsqueda de soluciones óptimas [9], la adaptación dinámica de sus parámetros [10], la predicción de buenas soluciones en cada generación [11], [12] y mecanismos co-evolutivos [13]-[15], por mencionar algunos. Así también, consideran reacciones al cambio que hacen uso de la información proporcionada por la aproximación al POF del tiempo anterior, tal es el caso del uso de la predicción y ajuste de soluciones [16], el concepto de micro y macro cambio [17] e indicadores para definir el porcentaje de diversidad que se deberá añadir a la población [18].

La literatura especializada nos muestra una tendencia en la modificación de MOEAs para ahora tratar con Problemas de Optimización Multi-objetivo con restricciones (CMOPs) o DMOPs. Por ejemplo, para extender la aplicación de los MOEAs a CMOPs existen técnicas clásicas de manejo de restricciones y versiones mejoradas de estas para permitir el mejor aprovechamiento de soluciones competitivas no factibles [10], [19]-[21].

Al desear adaptar un DMOEA para lidiar con restricciones, se debe considerar la inserción al DMOEA de una técnica de manejo de restricciones y una reacción al cambio que guíe la búsqueda a la nueva región factible. La presencia de restricciones en DMOPs modifica el comportamiento de la búsqueda pues el espacio de búsqueda se divide en región factible y región no factible. Este tipo de problemas reciben el nombre de Problemas de Optimización Dinámica Multi-objetivo con restricciones (DCMOPs). Aunque el interés en DMOEAs ha crecido en años recientes, los trabajos en Algoritmos Evolutivos para la optimización de DCMOPs (DCMOEAs), siguen siendo reducidos.

El uso provechoso de la Evolución Diferencial (DE) y una respuesta inmune como reacción al cambio del algoritmo Inmune GDE3 (IGDE3) [22], lo hacen capaz de obtener soluciones cercanas y bien distribuidas a lo largo del POF en cada tiempo en DMOPs, haciendo de él un potencial candidato para ser un DCMOEA competitivo al modificar las reglas de dominancia, en el proceso de optimización, usando alguna técnica de manejo de restricciones.

En este trabajo se propone una adaptación del algoritmo Inmune GDE3, reemplazando las reglas de dominancia por una función de penalización autoadaptativa [23], un factor de mutación adaptativo el cual utiliza información de la población de soluciones factibles para obtener mejores resultados sobre POF discontinuos y la inserción de un sencillo mecanismo elitista.

1.1. Planteamiento del problema

Dentro del diseño de un DCMOEA son identificables tres importantes componentes: un mecanismo de manejo de restricciones, un proceso de optimización multi-objetivo y una detección y reacción al cambio.

En lo referente a los problemas de optimización multi-objetivo estáticos, se tienen algoritmos que los resuelven y se clasifican de la siguiente manera: (1) basados en descomposición, (2) basados en dominancia de Pareto y (3) basados en indicadores [2], [24]. La principal dificultad en el proceso de optimización es la interdependencia de la diversidad y convergencia en el proceso de optimización.

Cuando el problema posee restricciones, el proceso de optimización no solo requiere considerar la minimización o maximización de las funciones objetivo, sino también reducir el valor en la violación de restricciones de cada individuo, así se pretende generar el mayor número de soluciones factibles al final del proceso de optimización. Además, la región factible puede ser afectada por las restricciones de distintas maneras, por ejemplo puede ser muy pequeña, producir discontinuidades en el POF o que solo una reducida fracción de la región factible sea cercana a él [25]. Frecuentemente cuando se usa una técnica de manejo de restricciones que da preferencia a las soluciones factibles, se pierde información de la distribución de las soluciones provocando una convergencia prematura o un estancamiento en

frentes locales. Por este motivo los trabajos recientes en técnicas de manejo de restricciones preservan un porcentaje de soluciones infactibles con bajo valor de violación de restricciones y buena aptitud.

Debido a que un DCMOP se ve afectado por los cambios en el ambiente, en el diseño de un DCMOEA debe considerarse un mecanismo de detección de cambios y reaccionar a ellos. A diferencia de las reacciones al cambio de los DMOEA, en los DCMOEA se debe guiar el proceso de optimización al nuevo POF y, de ser al caso, a la nueva región factible. Otra importante dificultad que comparte con el proceso de optimización estático es la codependencia entre diversidad y convergencia, añadir un mayor grado de diversidad reduce la capacidad de convergencia del algoritmo en el siguiente tiempo y sólo usar soluciones cercanas a las obtenidas en el tiempo anterior limita el poder exploratorio del algoritmo. Trabajos recientes muestran un interés en medir el grado de diversidad conveniente que debe ser añadida a la población después de un cambio [18].

No basta con identificar la mejor técnica de manejo de restricciones, la mejor reacción al cambio o el más competitivo MOEA, para un tipo específico de problemas de prueba, pues sus desempeños cambian de acuerdo a la combinación escogida de ellos al ser procesos dependientes entre sí. Si bien es cierto que no podremos diseñar un algoritmo cuyo desempeño sea el mejor en todos los tipos de problemas de optimización, el objetivo del diseño de algoritmos evolutivos es el construir un algoritmo capaz de obtener soluciones competitivas en el más amplio rango de problemas posibles.

1.2. Justificación

De la mano del crecimiento tecnológico, surgen distintos problemas de optimización para reducir problemáticas de interferencia, sobre posición de actividades, consumo de energía, almacenamiento, entre otros. Los nuevos y tradicionales problemas de optimización presentan distintos grados de complejidad, como: incluir restricciones, dinamismo, alta dimensionalidad y más. Para ellos, los métodos tradicionales frecuentemente no tienen un comportamiento competitivo, además de ser poco generales, mientras que los algoritmos evolutivos han demostrado una buena capacidad en la búsqueda de soluciones óptimas a problemas complejos.

Aun con el creciente interés en tratar con problemas de optimización con restricciones, los trabajos relacionados a la optimización multi-objetivo con restricciones que dependen del tiempo, siguen siendo reducidos. Con el objetivo de contribuir al diseño de algoritmos competitivos para la solución de problemas de optimización, en esta tesis se diseña un Algoritmo Evolutivo de Optimización Dinámica Multi-objetivo basada en Inmune GDE3. Se seleccionó el algoritmo Inmune GDE3 por poseer un enfoque híbrido que combina ideas de un Sistema Inmune Artificial (AIS) y la optimización por Evolución Diferencial (DE), permitiéndole tener un desempeño competitivo respecto a otros algoritmos del estado del arte en DMOPs, además de que se desea explorar el comportamiento de la DE en este tipo de problemas de optimización restringida.

1.3. Hipótesis

Un nuevo algoritmo basado en Inmune GDE3 (IGDE3) que use una técnica de manejo de restricciones, comparado a otros Algoritmos Evolutivos de Optimización Multi- objetivo con restricciones (DCMOEAs) del estado del arte, tendrá significativamente mejores resultados en al menos el 60 % de los problemas de prueba para DCMOEA en los indicadores: *HiperVolume Ratio* (HVR), *Inverted Generational Distance plus* (IGD^+) y Maximum Spread (MS).

1.4. Objetivos

1.4.1. Objetivo general

Diseñar una versión del algoritmo Inmune GDE3 para DCMOPs con un desempeño estadísticamente superior comparándose con otros DCMOEAs representativos del estado del arte.

1.4.2. Objetivos específicos

- 1. Identificar las DCMOEAs, DCMOPs e indicadores de actuación representativas de la literatura especializada.
- 2. Diseñar versiones del Inmune GDE3 con distintos manejadores de restricciones y seleccionar la versión con mejor desempeño sobre los indicadores de actuación previamente identificados.
- 3. Diseñar un factor de mutación adaptativo que le permita a la DE enfocar esfuerzos en la búsqueda local basándose en la información sobre factibilidad de la población.
- 4. Realizar un análisis estadístico comparativo de los resultados obtenidos en el algoritmo propuesto y los DCMOEAs representativos del estado del arte.
- 5. Analizar la sensibilidad al cambio del algoritmo propuesto en DCMOPs variando la frecuencia de cambio.

1.5. Contribuciones

- La adaptación de un algoritmo evolutivo multi-objetivo para espacios dinámicos no restringidos a un espacio restringido.
- Un análisis del desempeño de diferentes técnicas de manejo de restricciones en un algoritmo para optimización dinámica multi-objetivo en espacios restringidos.

1.6. Estructura del documento

El documento esta organizado en 6 capítulos. Los primeros tres capítulos tratan sobre los conceptos necesarios para entender la propuesta de algoritmo y dar soporte teórico a nuestro trabajo.

En el capítulo 2 se introducen las definiciones matemáticas que anteceden a la definición de un DCMOP y demás conceptos necesarios sobre optimización multi-objetivo.

En el capítulo 3, con motivo de sustentar la novedad del presente trabajo, se describen los trabajos clásicos en DMOEA y trabajos recientes en DCMOEA, así como las técnicas de manejo de restricciones adaptadas.

En el capítulo 4 se presenta la contribución de la tesis, un DCMOEA basado en ideas de un AIS y DE. Por otro lado en el capitulo 5 se discuten los resultados estadísticos que validan el desempeño competitivo del algoritmo propuesto y el diseño experimental seguido para llegar a ellos.

Las conclusiones y trabajo futuro se describen en el capítulo 6. Finalmente, en los Anexos se muestran las fórmulas y parámetros de los conjuntos de problemas de prueba utilizados en el análisis experimental.

Capítulo 2

Antecedentes de optimización

En el presente capítulo se explica el conjunto de definiciones y notación útil para entender el contenido de la tesis.

La estructura del capítulo 2 es:

Capítulo 2

2.1 Conceptos básicos de optimización

2.2 Problemas de Optimización Multi-objetivo

2.3 Problemas de Optimización Dinámica Multi-objetivo

2.1. Conceptos básicos de optimización

Definición 1 Vector de decisión

Sea $\vec{X} = [x_1, x_2, \dots, x_d]^T$ cuyas entradas pueden ser continuas o discretas, se le denomina vector de decisión.

Para este trabajo consideramos vectores de decisión con entradas en los reales, R.

Definición 2 Espacio de decisión

Es el espacio d-dimensional cuyas coordenadas corresponden a las componentes de cualquier vector de decisión \vec{X} . El espacio de decisión o espacio de búsqueda se simboliza como Ω .

Definición 3 Función objetivo

Una función objetivo (también llamada función de costo o función de aptitud), denotada por $f: \Omega \to \mathbb{R}$, es una representación matemática que expresa un objetivo a maximizar o minimizar.

Definición 4 Espacio objetivo

Es el espacio m-dimensional cuyas coordenadas corresponde a los valores de las funciones objetivo.

Definición 5 Función de restricción de desigualdad o igualdad

Una función de restricción es una expresión matemática que expresa una condición del problema, se pueden diferenciar dos tipos, las restricciones de igualdad (h_i) y las restricciones de desigualdad (g_i) .

$$g_i: \Omega \to \mathbb{R}, \ g_i(\vec{X}) \le 0, \quad i = 1, 2, \dots p$$

$$h_j: \Omega \to \mathbb{R}, \ h_j(\vec{X}) = 0, \quad j = 1, 2, \dots q$$

$$(2.1)$$

Debido a que la condición de igualdad suele ser muy estricta, se considera un valor δ suficientemente pequeño tal que $|h_i(\vec{X})| < \delta$.

Definición 6 Violación de restricciones

Para un problema de optimización con restricciones, la violación de restricciones de \vec{X} se define por:

$$V(\vec{X}) = \sum_{i=1}^{p} \max(0, g_i(\vec{X})) + \sum_{j=1}^{q} \max(0, |h_j(\vec{X}) - \delta|)$$
(2.2)

donde $g_i y h_i$, son las restricciones de igualdad y desigualdad respectivamente.

Definición 7 Factibilidad

Se dice que \vec{X} es una solución factible si $V(\vec{X}) = 0$. Cuando no es el caso, se dice que \vec{X} es no factible o infactible.

Definición 8 Región factible

Al conjunto de $f(\vec{X})$ en el espacio objetivo, tal que \vec{X} es factible, se le conoce como región factible.

En adelante, se considera la minimización para los problemas de optimización. En caso de la maximización de un problema de optimización $f(\vec{X})$ el problema puede ser convertido a uno de minimización al optimizar $-f(\vec{X})$.

Definición 9 Problema de Optimización Escalar:

En general, un Problema de Optimización Escalar (SOP), puede ser formulado matemáticamente como:

$$\begin{aligned} Minimizar : & f(\vec{X}) \\ Sujeto \ a : & g_i(\vec{X}) \le 0, \ i = 1, \dots p \\ & h_j(\vec{X}) = 0, \ j = 1, \dots, q \\ & x_k^l \le x_k \le x_k^u, \ k = 1, \dots, d \end{aligned}$$

$$(2.3)$$

donde, $\vec{X} = [x_1, x_2, \dots, x_d]'$, con d la dimensión del espacio de búsqueda, $x_k^l y x_k^u$ el respectivo límite inferior y superior de la k-ésima entrada de \vec{X} .

2.2. Optimización Multi-objetivo

En un problema de optimización multi-objetivo (MOP), existen dos o más objetivos que entran en conflicto entre sí, por lo que se busca un conjunto de vectores de decisión que mantengan un compromiso entre las funciones objetivo. Denotamos al vector de las funciones objetivo como $\vec{F} = [f_1, f_2, \dots, f_m]$.

Definición 10 Dominancia de Pareto

Para dos vectores de decisión $\vec{X} = [x_1, x_2, \dots, x_d]^T \ y \ \vec{Y} = [y_1, y_2, \dots, y_d]^T \ y \ el \ conjunto \ de \ funciones$ objetivo $\vec{F} = [f_1, f_2, \dots, f_m], \ \vec{X}$ domina a \vec{Y} (denotado por $\vec{X} \prec \vec{Y}$) si y solo si, $f_i(\vec{X}) \le f_i(\vec{Y})$ para $i = 1, 2, \dots, m \ y \ f_i(\vec{X}) < f_i(\vec{Y}), \ para \ algún \ f_i.$

Definición 11 Optimalidad de Pareto

El vector \vec{X} es un óptimo de Pareto, si no existe otro vector $\vec{Y} \in \Omega$, tal que $\vec{Y} \prec \vec{X}$.

Definición 12 Conjunto Óptimo de Pareto

El Conjunto Óptimo de Pareto (POS) está definido como $POS = \{\vec{X} \in \Omega \mid \not \exists \vec{Y} \in \Omega : \vec{Y} \prec \vec{X}\}$. En otras palabras POS es el conjunto de vectores de decisión no dominados en Ω .

Definición 13 Frente Óptimo de Pareto

Para el vector objetivo $\vec{F}(\vec{X})$, el Frente Óptimo de Pareto está definido como: $POF = \{\vec{F}(\vec{X}) | \vec{X} \in POS\}.$

Definición 14 Problema de Optimización Multi-objetivo:

Un Problema de Optimización Multi-objetivo (MOP), para el caso de la minimización, puede ser formulado matemáticamente como:

$$Minimizar: \vec{F}(\vec{X}) = [f_1(\vec{X}), f_2(\vec{X}), \dots, f_m(\vec{X})]$$

$$x_k^l \le x_k \le x_k^u, \ k = 1, \dots, d$$
(2.4)

donde, $\vec{X} = [x_1, x_2, \dots, x_d]^T$, con d la dimensión del espacio de búsqueda, $x_k^l y x_k^u$ el respectivo límite inferior y superior de la k-ésima entrada de \vec{X} .

Definición 15 Problema de Optimización Multi-objetivo con restricciones:

Un Problema de Optimización Multi-objetivo con restricciones (CMOP), puede ser formulado matemáticamente como:

$$\begin{aligned} Minimizar : \vec{F}(\vec{X}) &= [f_1(\vec{X}), f_2(\vec{X}), \dots, f_m(\vec{X})] \\ Sujeto \ a : \ g_i(\vec{X}) &\leq 0, \ i = 1, \dots, p \\ h_j(\vec{X}) &= 0, \ j = 1, \dots, q \\ x_k^l &\leq x_k \leq x_k^u, \ k = 1, \dots, d \end{aligned}$$
(2.5)

donde, $\vec{X} = [x_1, x_2, \dots, x_d]^T$, con d la dimensión del espacio de búsqueda, $x_k^l y x_k^u$ el respectivo límite inferior y superior de la k-ésima entrada de \vec{X} .

La Figura 2.1 ejemplifica un CMOEA de dos objetivos y dos variables de decisión.

Figura 2.1: Representación de la región factible (izquierda) y el espacio de objetivo (derecha) en un problema de optimización de dos objetivos con restricciones. En este ejemplo, las restricciones reducen la región factible cercana al POF.

2.3. Optimización Dinámica Multi-objetivo

Cuando el problema de optimización depende del tiempo, el POF y POS estas sujetos a cambios, estos cambios pueden darse con distinta frecuencia y severidad.

Definición 16 Frecuencia de cambio

Se denota como τ_t y se entiende como el número de generaciones o el número de evaluaciones en el que ocurre un cambio.

Definición 17 Severidad de cambio

Se denota a la severidad de cambio por ν_t y se entiende como la magnitud del cambio en el ambiente. Una alta severidad de cambio indica una diferencia en el ambiente más significativa.

Los DMOPs pueden presentar alguna de las combinaciones de cambios en el POS y POF mostrados en la Tabla 2.1 y descritos por Farina et al. en [26].

	El POS cambia	El POS no cambia
El POF cambia	Ι	II
El POF no cambia	III	IV

Tabla 2.1: Posibles cambios en ambiente dinámico.

Para los tipos de cambio I, II y II de la Tabla 2.1, comúnmente los cambios se presentan con

distintos grados de severidad y frecuencia. Para aquellos problemas con una alta frecuencia y severidad de cambio, el proceso de optimización suele ser más complicado.

Definición 18 Problema de Optimización Dinámica Multi-objetivo.

Un Problema de Optimización Dinámica Multi-objetivo (DMOP) está formulado matemáticamente como:

$$Minimizar: \vec{F}(\vec{X}) = [f_1(\vec{X}, t), f_2(\vec{X}, t), \dots, f_m(\vec{X}, t)]$$

$$x_k^l \le x_k \le x_k^u, \qquad k = 1, \dots, d$$
(2.6)

donde, $\vec{X} = [x_1, x_2, \dots, x_d]^T$, con d la dimensión del espacio de búsqueda, t el tiempo, $x_k^l y x_k^u$ el respectivo límite inferior y superior de la k-ésima entrada en \vec{X} .

Definición 19 Problema de Optimización Dinámica Multi-objetivo con restricciones.

Un Problema de Optimización Dinámica Multi-objetivo con restricciones (DCMOP) está formulado matemáticamente como:

$$Minimizar: \vec{F}(\vec{X}) = [f_1(\vec{X}, t), f_2(\vec{X}, t), \dots, f_m(\vec{X}, t)]$$

$$Sujeto \ a: \ g_i(\vec{X}, t) \le 0, \ i = 1, \dots, p$$

$$h_j(\vec{X}, t) = 0, \ j = 1, \dots, q$$

$$x_k^l \le x_k \le x_k^u, \ k = 1, \dots, d$$
(2.7)

donde, $\vec{X} = [x_1, x_2, \dots, x_d]^T$, con d la dimensión del espacio de búsqueda, $x_k^l y x_k^u$ el respectivo límite inferior y superior de la k-ésima entrada de \vec{X} .

El problema en la Ecuación 2.7 es el que se pretende solucionar con el algoritmo evolutivo propuesto en este trabajo.

Los problemas DCMOPs no sólo presentan posibles cambios en el ambiente como los mostrados en la Tabla 2.1, también presentan cambios en la región factible que alteran el comportamiento en sus POFs y POSs. Por lo que además de lo descrito por Farina et al. [26], se deben considerar los casos mostrados en la Tabla 2.2, y descritos por Q. Chen en [25].

Tabla 2.2: Posibles cambios POF, POF y la región factible para un DCMOP.

	El POF cambia de continuo a discontinuo y	El POF cambia de discontinuo a continuo y
	regresa a ser continuo	regresa a ser discontinuo
La región factible incre-	Ι	II
menta con t y después de-		
crece		
La región factible decrece	III	IV
con t y después incrementa		

Capítulo 3

Antecedentes de los Algoritmos Evolutivos de Optimización Dinámica Multi-Objetivo con restricciones

En esta sección se presentan algunos de los algoritmos de optimización escalar y multi-objetivo más populares, además de introducir el algoritmo de DE y Evolución Diferencial Generalizada 3 (GDE3), de los cuales se basa el algoritmo propuesto. Así, también se describen las cualidades de otros algoritmos para DCMOPs representativos del estado del arte y que serán usados en el proceso experimental para validar el desempeño del algoritmo propuesto.

La estructura del capítulo 3 es:

Capítulo 3

- 3.1 Algunos enfoques para la optimización escalar.
- 3.1.1 Evolución Diferencial (DE).
- 3.1.2 Sistema Inmune Artificial (AIS).
- 3.1.3 Optimización por Cúmulo de Partículas (PSO).
- 3.1.4 Colonia de Abejas Artificiales (ABC).
- 3.2 Algoritmos Evolutivos de Optimización Multi-objetivo.
- 3.2.1 NSGA-II.
- 3.2.2 GDE3.
- 3.2.3 MOEA/D.
- 3.3 Técnicas de manejo de restricciones.
- 3.4 Algoritmos Evolutivos de Optimización Dinámica Multi-objetivo con restricciones.
- 3.4.1 DNSGA-II-A y DNSGA-II-B.
- 3.4.2 DC-NSGA-II.
- 3.4.3 DC-MOEA.
- 3.4.4 *d*CMOEA.

CAPÍTULO 3. ANTECEDENTES DE LOS ALGORITMOS EVOLUTIVOS DE OPTIMIZACIÓN DINÁMICA MULTI-OBJETIVO CON RESTRICCIONES

3.1. Algunos enfoques para la optimización escalar

Existe una amplia literatura sobre algoritmos evolutivos de optimización escalar, aquí unicamente se describen aquellos que han sido más populares, haciendo hincapié en el algoritmo de DE.

3.1.1. Evolución Diferencial (DE)

La Evolución Diferencial (DE), es un algoritmo de búsqueda estocástico basado en población propuesto por Storn y Price en 1997 [27]. Por su sencillez y robustez al aplicarse en distintos problemas de optimización, se han propuesto diferentes versiones, la más popular es la conocida como DE/rand/1/bin [28] que será explicada a continuación.

Mutación

El proceso de mutación aprovecha la información subyacente en la distribución de los individuos de la población para converger rápidamente a soluciones óptimas sin una reducción drástica de la diversidad. Este proceso es clave en el éxito de la DE, pues en comparación a otros enfoques, no requiere del ajuste de muchos parámetros.

Para una población P de tamaño $N, P = \{\vec{X}_1, \vec{X}_2, \dots, \vec{X}_N\}$ y un factor de mutación $F \in [0, 1]$, se genera un nuevo vector de mutación \vec{V}_i , para cada $\vec{X}_i \in P$ de la Ecuación 3.1, a \vec{X}_i durante el proceso de reproducción se le denomina vector *target*.

$$\vec{V}_i = \vec{X}_{r1} + F * (\vec{X}_{r3} - \vec{X}_{r2}) \qquad (r1 \neq r2 \neq r3 \neq i), \tag{3.1}$$

donde $1 \leq r1, r2, r3 \leq N$.

Se utiliza algún método de manejo de restricciones de límite cuando ocurre que alguna entrada de $\vec{V}_i = [v_{i,1}, v_{i,2}, \dots, v_{i,d}]^T$ viola una restricción de este tipo [29]. Para este trabajo se usa el bien conocido método de proyección, descrito en la Ecuación 3.2.

$$v_{i,j} = \begin{cases} x_j^u & si \ v_{i,j} > x_j^u \\ x_j^l & si \ v_{i,j} < x_j^l \\ v_{i,j} & en \ otro \ caso \end{cases}$$
(3.2)

donde x_l^k y x_k^u son el límite inferior y superior respectivamente, para las k-ésimas entradas de las soluciones en P.

Cruza

Sea \vec{X}_i el vector *target*, se genera su correspondiente vector *trial*, $\vec{U}_i = [u_{i,1}, u_{i,2}, \ldots, u_{i,d}]$ recombinandolo con el vector resultante del proceso de mutación (Ecuación 3.3).

$$u_{i,j} = \begin{cases} v_{i,j} & si \ rand_{i,j}(0,1) \le CR \ o & j = j_{rand} \\ x_{i,j} & otro \ caso \end{cases}$$
(3.3)

donde $rand_{i,j}(0,1)$ es una variable aleatoria generada por una distribución uniforme con valores entre [0,1]. Se escoge la posición $jrand \in [1,d]$ con la intención de que al menos una posición de \vec{X}_i sea de \vec{V}_i

al crear \vec{U}_i y evitar que el vector trial sea una copia del vector target.

Selección

El proceso de selección hace competir únicamente al *target* con su respectivo vector *trial*. Para el caso de un problema multi-objetivo, se reemplaza a $\vec{X_i}$ por $\vec{U_i}$ cuando $U_i \prec X_i$, si lo anterior no ocurre $\vec{X_i}$ permanece sin cambios.

Otras versiones de DE

Adicional a DE/rand/1/bin existen otras versiones de DE que siguen la notación DE/ modo de selección del vector target / vectores usados / tipo de cruza. A continuación mencionamos algunas mutaciones diferenciales populares [30].

- 1. $DE/best/1 : \vec{V_i} = \vec{X_{best}} + F * (\vec{X_{r_1}} \vec{X_{r_2}})$
- 2. $DE/best/2: \vec{V}_i = \vec{X}_{best} + F * (\vec{X}_{r_1} \vec{X}_{r_2}) + F * (\vec{X}_{r_3} \vec{X}_{r_4})$
- 3. $DE/current to best/1 : \vec{V}_i = X_i + F * (\vec{X}_{best} \vec{X}_i) + F * (\vec{X}_{r_1} \vec{X}_{r_2})$
- 4. $DE/pbest/1: \vec{V}_i = \vec{X}_{best}^p + F * (\vec{X}_{r_1} \vec{X}_{r_2}) + F * (\vec{X}_{r_3} \vec{X}_{r_4})$

Donde $\vec{X}_i \vec{X}_{best}$ y \vec{X}_{best}^p son: el vector *target*, un vector seleccionado de manera aleatorio del conjunto de soluciones no dominadas para el caso multi-objetivo y un elemento del conjunto de mejores soluciones con cardinalidad *p*.

La Figura 3.1 representa el proceso de generación de un nuevo vector trial.

3.1.2. Sistema Inmune Artificial (AIS)

Para la optimización muti-objetivo, los sistemas inmunes artificiales se utilizan siguiendo algunas de las siguientes teorías [31]:

Seleccion clonal

Quizá el enfoque más popular cuyo trabajo pionero fue el desarrollo del algoritmo CLONALG [32] inspirado en la teoría de selección clonal que realizan las células B cuando son activadas por la presencia de un antígeno. Las células B más afines al antígeno proliferarán e hipermutarán para después poseer una mayor similitud al antígeno y logran generar anticuerpos. Finalmente, el exceso de células B se eliminará.

Red Inmune

El principal distintivo de este enfoque, es que se logra una memoria inmune por el reforzamiento mutuo dentro de una red de células B, además de poder activar o inhibir a sus vecinos. Una red inmune mantiene una memoria estable al auto-organizarse y auto-regularse. Tras capturar información de algún antígeno, la red inmune atacará a cualquier antígeno similar.

Selección negativa

El proceso de la selección negativa consta de la búsqueda y eliminación de anticuerpos que pueden producir auto inmunidad, es decir, la respuesta inmune de un organismo contra sus propias células y tejidos sanos.

Teoría del peligro

A diferencia de una red inmune y la selección clonal, un antígeno puede no ser considerado una amenaza. La actuación del sistema inmune contra algún antígeno dependerá de la medida de hostilidad que posea, misma que es calculada por la activación o no de las células B presentes.

Comúnmente los AIS's son utilizados para tareas relacionadas a la detección de anomalías, detección de intrusos, reconocimiento de patrones, agrupamiento de datos y diseño electromagnético, por mencionar algunos. Recientemente ha sido aplicado al internet de la cosas por su eficiencia en seguridad de redes [33].

Los distintas teorías de un AIS discutidas anteriormente son representados a continuación por la Figura 3.2.

Figura 3.2: Representación de las principales teorías sobre los AIS en un espacio de búsqueda de 2 dimensiones.

3.1.3. Optimización por Cúmulo de Partículas (PSO)

El algoritmo de Optimización por Cúmulo de partículas (PSO) es una técnica metaheurística inspirada en el comportamiento social de una parvada de aves [34]. Cada individuo tiene asociado dos valores, posición y velocidad de vuelo inicializadas de manera aleatoria. La velocidad de vuelo de cada partícula, define su dirección de búsqueda. Una característica importante del PSO es su capacidad de convergencia acelerada en problemas de optimización escalar. Sus aplicaciones se extienden a MOP y DMOP.

El proceso de obtención de una nueva partícula en PSO es representado en la Figura 3.3.

Figura 3.3: En la figura, P_{best} y G_{best} representan a la mejor posición obtenida por la partícula actual a lo largo de las generaciones y el mejor global respectivamente. C_1 y C_1 son constantes, rand es un valor aleatorio y V_t es la velocidad de la partícula en el tiempo t.

3.1.4. Colonia de Abejas Artificiales (ABC)

El algoritmo de optimización por Colonia Artificial de Abejas (ABC) simula la búsqueda de néctar de una colonia de abejas [35]. En el proceso de optimización no existe una cruza, cada individuo \vec{X} genera un vector mutación \vec{V} en un proceso parecido a la mutación diferencial en DE/ran/bin/1. Si el valor de aptitud de \vec{V} es mejor al de \vec{X} , se reemplaza \vec{X} por \vec{V} . Las soluciones representan a una localización potencial de buenas soluciones, por lo que se seleccionan las regiones que serán exploradas en la siguiente generación de acuerdo a una probabilidad proporcional al buen desempeño de su valor de aptitud. Además, si ocurre que una solución \vec{X} no ha mejorado durante un máximo de L generaciones, los valores de \vec{X} se descartan y se genera una nueva solución de manera aleatoria.

El proceso de obtención de una nueva solución en el algoritmo ABC es representado por la Figura 3.4.

Figura 3.4: En la figura, $\phi \in [-1, 1]$ y G_{lim} es el número máximo de generación que puede permanecer sin cambios alguna solución. En este caso, si la nueva partícula generada por B no es mejor que B, está se reemplazará por B^* (una solución aleatoria).

3.2. Algoritmos Evolutivos para Optimización Multi-objetivos

Los Algoritmos Evolutivos para Optimización Multi-objetivo (MOEA) a diferencia de los Algoritmos Evolutivos para Optimización Escalar (SOEA), requieren lidiar con problemas que tienen objetivos en conflicto entre sí por lo que introducen nuevos mecanismos para definir cuales soluciones son mejores a otras. Aquellos basados en dominancia de Pareto producen un orden parcial estricto sobre el espacio objetivo, cuando las funciones objetivo poseen una alta interdependencia estos algoritmos no tienen un buen desempeño debido que el conjunto de soluciones no dominadas suele ser tan grande como el tamaño de la población [36].

3.2.1. NSGA-II

La popularidad de NSGA-II se debe a la introducción de ideas originales como la *Crowding Distance* (CD) y un rápido ordenamiento basado en la no dominancia [3]. Para la cruza y mutación, hace uso de los operadores de Cruza Binomial Simulada (SBX) y Mutación Polinomial (PM), respectivamente [37]. El Algoritmo 1 muestra la estructura general del NSGA-II.

Ordenamiento rápido por no dominancia

Consiste en dividir a la población en niveles de dominancia. En el nivel 1 se encuentra la subpoblación de individuos no dominados. El nivel 2 esta constituido por aquellas soluciones no dominadas sin considerar a los miembros del nivel 1. En el nivel 3 se encuentran los individuos no dominados, sin

CAPÍTULO 3. ANTECEDENTES DE LOS ALGORITMOS EVOLUTIVOS DE OPTIMIZACIÓN DINÁMICA MULTI-OBJETIVO CON RESTRICCIONES

Algorithm 1: NSGA-II **ENTRADA**: G_{max} (máximo número de generaciones). SALIDA : P (población). 1 G = 0;**2** Crear la población inicial P; **3** Evaluar *P*; 4 Ordenamiento por no dominancia de P; 5 Cálculo de CD; 6 while $G < G_{max}$ do Selección de padres (Q); 7 Aplicar SBX a cada par en Q(H); 8 Aplicar PM a cada individuo en H; 9 Ordenamiento por no dominancia de $(H \cup P)$; 10 Cálculo de las CD's para $H \cup P$; 11 P = Selección $(H \cup P);$ $\mathbf{12}$ G = G + 1; $\mathbf{13}$ 14 return P;

considerar a los niveles 1 y 2, de la misma manera para los siguientes niveles posibles.

Crowding Distance

La Crowindg Distance (CD), es una medida de aglomeración para un individuo respecto al resto de los individuos en la población P en el espacio objetivo. Sea $\vec{F} = [f_1, f_2, \ldots, f_m]$ el vector de funciones objetivos y P cubre una región en el espacio objetivo cuyos límites inferiores y superiores son $L = [L_1, L_2, \ldots, L_m]$ y $U = [U_1, U_2, \ldots, U_m]$. Así, se tiene para $\vec{X} \in P$,

$$CD(\vec{X}) = \sum_{i=1}^{m} \delta^*(\vec{X}) \tag{3.4}$$

$$\delta^*(\vec{X}) = \begin{cases} \frac{N_{2,i} - N_{1,i}}{U_i - L_i} & N_{2,i} \ y \ N_{1,i}, \ estan \ definidos\\ \infty & en \ otro \ caso \end{cases}$$
(3.5)

donde $N_{1,i}$ corresponde al valor menor más cercano en f_i para $f_i(\vec{X})$ obtenido por algún $\vec{Y}_1 \neq \vec{X}$ en P y $N_{2,i}$ el valor mayor más cercano en f_i para $f_i(\vec{X})$ obtenido por algún $\vec{Y}_2 \neq \vec{X}$ en P. Cuando $N_{1,i}$ o $N_{2,i}$ no están definidos, $f_i(\vec{X})$ es igual a U_i o L_i .

La Figura 3.5 representa la actuación de la CD. Para B, los valores mayores más cercano a f(B)son $f_x(C)$ y $f_y(E)$, mientras que sus valores menores más cercanos son $f_x(A)$ y $f_y(F)$, así se tiene que:

$$CD(B) = \frac{f_x(C) - f_x(A)}{f_x(E) - f_x(A)} + \frac{f_y(E) - f_y(F)}{f_y(C) - f_y(A)}$$

= $\frac{7 - 3}{17 - 3} + \frac{13 - 5}{16 - 4}$
= $\frac{20}{21}$ (3.6)

Figura 3.5: Representación de la Crowding Distance

Selección de padres

Se seleccionan a los pares de padres por torneo binario. Entre dos soluciones, se escoge al de menor nivel de dominancia o mayor CD.

Selección

NSGA-II usa una $(\mu + \lambda)$ -selección. Los individuos que pasan a la siguiente generación se obtienen por el Algoritmo 2.

Algorithm 2: Selección del NSGA-II

```
ENTRADA: P (población), N tamaño de la población.
   SALIDA
                 : S (población).
 1 Dividir P en niveles de dominancia (Nivel);
 2 i = 1;
 3 S = \emptyset;
 4 while |S| < |Nivel_i| do
      S = S \cup Nivel_i;
 5
      i = i + 1;
 6
 7 if |S| > N then
      Calcular los CD's para Nivel_i;
 8
      Remover de S los |S| - N individuos con menor CD;
 9
10 return S;
```

3.2.2. GDE3

El algoritmo de Evolución Diferencial Generalizada 3 (GDE3) [1] es la versión mejorada de los algoritmos GDE [38] y GDE2 [39]. Se enfoca en la solución de problemas de optimización multi-objetivo con restricciones usando las reglas de factibilidad y CD (introducidos en GDE2). GDE3 se caracteriza

CAPÍTULO 3. ANTECEDENTES DE LOS ALGORITMOS EVOLUTIVOS DE OPTIMIZACIÓN DINÁMICA MULTI-OBJETIVO CON RESTRICCIONES

por el mecanismo de selección usado (una modificación de las reglas de factibilidad) y explicado a continuación:

- Entre dos soluciones infactibles, se selecciona al vector *target* si posee menor violación de restricciones con respecto al vector *trial*, en otro caso se selecciona al vector *trial*.
- Entre un vector factible y otro infactible, se selecciona al vector factible.
- Entre dos vectores factibles, el vector *target* es seleccionado si domina al vector *trial*. En el caso contrario, se selecciona al vector *target*. Cuando no se dominan entre sí, ambos vectores son temporalmente seleccionados.

El último punto del listado anterior puede hacer crecer el tamaño de la población. GDE3 introduce un proceso de eliminación de individuos con menor aporte de diversidad [40] (Algoritmo 3).

Algorithm 3: Selección de GDE3			
ENTRADA : P^G (población), T (tamaño de la población).			
SALIDA : P^G (población).			
1 while $ P^G > T$ do			
2 Calcular los valores de CD para los miembros de P^G ;			
Biliminar \vec{X} , el individuo con menor CD en P^G ;			
4 return P^G ;			

La línea 2 y 3 del Algoritmo 3 repiten hasta que el tamaño de la población sea igual a su tamaño original. Observe que los valores de CD son actualizados cada vez que un individuo es eliminado.

3.2.3. MOEA/ D

A diferencia de los algoritmos basados en dominancia de Pareto, el algoritmo evolutivo basado en Descomposición (MOEAD/D) [2], como su nombre lo indica, descompone el problema multi-objetivo en un número de subproblemas de optimización escalar. Para un conjunto de problemas, se dice que el subproblema i es vecino de del subproblema j si el vector de peso del problema i es cercano al vector de peso del subproblema j. MOEA/D hace uso de una memoria donde se almacenan a los individuos no dominados encontrados hasta el momento y se actualiza si se encuentran nuevos que dominen a los anteriores.

Muchos de los trabajos recientes en problemas multi-objetivo con restricciones, se basan en el algoritmo MOEA/D donde incorporan técnicas de manejo de restricciones, mejorando la forma en que se definen sus vectores de peso y aumentan la capacidad de aproximación al POF [41]. Otra cualidad importante es que MOEA/D es escalable por lo que suele tener mejor desempeño que NSGA-II en problemas de más de tres objetivos cuyas funciones poseen una alta correlación.

A diferencia de NSGA-II, no requiere de añadir indicadores de diversidad, pues el uso de los vectores de peso le permite identificar las regiones menos densas de la población.

Existen distintas variantes de los algoritmos evolutivos para MOPs, muchos de ellos basados en DE, MOEA/D, NSGA-II y PSO o combinaciones entre ellos [19], [41], [42].
3.3. Técnicas de manejo de restricciones

Las técnicas de manejo de restricciones son fundamentales para que un MOEA o DMOEA pueda lidiar con la información de factibilidad de las soluciones. A lo largo de la historia su clasificación ha cambiado dado el enriquecimiento del área [43]-[45]. En [46] se clasifican de la siguiente manera:

- 1. Aquellas que dan prioridad a soluciones factibles, tal es el caso de las reglas de factibilidad, epsilon-restricción y la función de penalización.
- 2. Los métodos que balancean la diversidad y la convergencia. Dentro de esta categoría se encuentra el ordenamiento estocástico y la conversión de restricciones en objetivos.
- 3. Técnicas combinadas. La técnica de ATM (Adaptive Trade-off Model) y *ensembles* se encuentran dentro de esta categoría que agrupa a los métodos híbridos [47], [48].

3.3.1. Técnicas que dan prioridad a las soluciones factibles

Sea una población P, tal que $\vec{X} y \vec{Y} \in P$

Reglas de factibilidad

Se dice que \vec{X} domina bajo restricciones a \vec{Y} si [49]:

- \vec{X} y \vec{Y} son factibles y \vec{Y} es Pareto dominado por \vec{X} .
- \vec{X} es factible y \vec{Y} no.
- \vec{X} y \vec{Y} son infactibles y \vec{X} posee menor violación de restricciones que \vec{Y} , $V(\vec{X}) < V(\vec{Y})$.

Epsilon-restricción

Las reglas de dominancia suelen ser muy estrictas, por lo que el método de epsilon-restricción define un valor ε que actuá como un factor de tolerancia para la violación de restricciones [50].

$$\vec{X}_i \prec_{\varepsilon} \vec{X}_j = \begin{cases} \vec{X}_i \prec \vec{X}_j & si \ V(\vec{X}_i) \leq \varepsilon, V(\vec{X}_j) \leq \varepsilon \\ \vec{X}_i \prec \vec{X}_j & si \ V(\vec{X}_i) = V(\vec{X}_j) \\ V(\vec{X}_i) < V(\vec{X}_j) & en \ otro \ caso \end{cases}$$
(3.7)

donde $V(\vec{X}_i)$ y $V(\vec{X}_j)$ son los valores de violación de restricciones para \vec{X}_j y \vec{X}_j , respectivamente. De acuerdo a la Ecuación 3.7, se dice que \vec{X}_i epsilon-domina a \vec{X}_j , si $\vec{X}_i \prec \vec{X}_j$ y sus violaciones de restricción son iguales o menores a ε . En otro caso se escoge al de menor violación de restricciones.

3.3.2. Técnicas que buscan balance entre convergencia y diversidad

Función de penalización

Este tipo de método penaliza a los valores de aptitud de aquellos individuos infactibles de acuerdo al grado de violación de restricciones, por lo que aquellas soluciones infactibles con buenos valores de aptitud pueden continuar siendo usadas en el proceso de optimización.

CAPÍTULO 3. ANTECEDENTES DE LOS ALGORITMOS EVOLUTIVOS DE OPTIMIZACIÓN DINÁMICA MULTI-OBJETIVO CON RESTRICCIONES

Ordenamiento estocástico

Similar a las reglas de factibilidad, el ordenamiento estocástico prioritiza a las soluciones factibles bajo cierta probabilidad [51].

- 1. Si \vec{X} es factible y \vec{Y} es infactible, $\vec{X} \prec \vec{Y}$ con un probabilidad (1-p), en otro caso $\vec{Y} \prec \vec{X}$.
- 2. Si \vec{X} y \vec{Y} son soluciones factibles, se respetará la dominancia de Pareto entre \vec{X} y \vec{Y} .
- 3. Para \vec{X} y \vec{Y} infactibles, si es el caso que $V(\vec{X}) < V(\vec{X})$ y \vec{X} tiene mejores valores de aptitud, entonces $\vec{X} \prec \vec{Y}$.
- 4. Si \vec{X} y \vec{Y} son soluciones infactibles, tal que $V(\vec{Y}) < V(\vec{X})$ y \vec{Y} posee mejores valores de aptitud que \vec{X} , entonces $\vec{Y} \prec \vec{X}$ con probabilidad p.

3.3.3. Técnicas combinadas

Adaptive Trade-off Model (ATM)

El método Adaptative Trade-off Model (ATM) consta de tres partes que son reguladas de acuerdo al valor de radio de factibilidad (porcentaje de soluciones factibles en la población actual).

- Si el radio de factibilidad es 1, todas las soluciones son factibles y se utilizan la dominancia de Pareto como si se tratara de un problema sin restricciones.
- Cuando la población esta compuesta por individuos factibles e infactibles, se usa la función de penalización descrita en [52].
- Finalmente, cuando el radio de factibilidad es 0, se selecciona iterativamente entre las soluciones no dominadas y con menor violación de restricciones.

3.4. Algoritmos Evolutivos de Optimización Dinámica Multi-objetivo con restricciones

A continuación se describen las modificaciones hechas sobre NSGA-II en cada uno de los cuatro algoritmos para DCMOPs bien identificados del estado del arte.

3.4.1. DNSGA-II-A y DNSGA-II-B

Una de las virtudes del algoritmo NSGA-II es que puede lidiar con restricciones al reemplazar la dominancia de Pareto por las reglas de factibilidad. Por otro lado, la versión de NSGA-II para DCMOPs (DNSGA-II) considera dos posibles tipos de cambios: cambios severos (1) o lentos (2) en el ambiente [53] (Tabla 3.1).

3.4. ALGORITMOS EVOLUTIVOS DE OPTIMIZACIÓN DINÁMICA MULTI-OBJETIVO CON RESTRICCIONES

(1)	DNSGA-II-A	Si ha ocurrido un cambio, se introduce un porcentaje ξ % de		
		soluciones aleatorias a la población.		
(2)	DNSGA-II-B	Si ha ocurrido un cambio se muta un porcentaj e $\xi\%$ de		
		soluciones en la población.		

Tabla 3.1: Versiones de DNSGA-II

3.4.2. DC-NSGA-II

El trabajo de R. Azzouz [54], consiste en dos importantes modificaciones al algoritmo DNSGA-II.

• Técnica de manejo de restricciones

Reemplazar las reglas de factibilidad de K. Deb por una función de penalización autoadaptativa propuesta en [52]. Así, es posible aprovechar aquellas soluciones con baja violación de restricciones y buen valor de aptitud.

Reacción al cambio

Incorpora una condición de factibilidad para las soluciones aleatorias o mutadas que son introducidas después de haber ocurrido un cambio. Por lo tanto, se itera durante un máximo número de intentos para obtener un porcentaje ξ % de soluciones aleatorias o mutadas que sean factibles o con menor violación de restricciones. Lo anterior permite un control de las soluciones añadidas que deben guiar la búsqueda a la nueva región factible bajo la suposición de que las soluciones infactibles promueve una convergencia más lenta al POF factible.

3.4.3. DC-MOEA

Similar a DC-NSGA-II, el algoritmo DC-MOEA hace uso de una función de penalización como mecanismo de manejo de restricciones y una reacción al cambio que da prioridad a las soluciones factibles [23].

Técnica de manejo de restricciones

Para cada individuo en la población, la función de penalización autoadaptativa usada en DC-MOEA suma un vector de penalización que depende de los valores normalizados de las evaluaciones en las funciones objetivos, el radio de factibilidad y la violación de restricciones normalizada. Con lo anterior se pretende dar prioridad a soluciones factibles o con buenos valores de aptitud con baja violación de restricciones.

Reacción al cambio

Se usa un mecanismo de reparación que consiste en reevaluar la población en el nuevo tiempo y separar la población en soluciones factibles e infactibles. Para cada solución infactible, se determina su individuo factible más cercano para generar dos hijos mediante una Cruza Binaria Simulada (SBX) [37]. Entre el individuo infactible y las dos soluciones obtenidos de la cruza, se selecciona al de menor violación de restricciones. Después se reemplaza un porcentaje ξ % de la población por soluciones aleatorias.

3.4.4. *d*CMOEA

Las principales modificaciones hechas en DC-NSGA-II para generar el algoritmo dCMOEA, son:

• Selección de soluciones no dominadas

Para una solución $X_i \in P$, se mide la calidad de X_i por el número de soluciones en P que lo dominan, $(\mathcal{F}(X_i))$, si $\mathcal{F}(X_i) = 0$ se dice que X_i es no dominada. Este proceso se caracteriza por el uso de un conjunto elitista que almacena soluciones dominadas y factibles y un segundo conjunto con soluciones potencialmente buenas.

• Operador de selección de población

Utiliza un umbral (NF) de soluciones factibles que pueden pasar a la siguiente generación. Si el número de soluciones factibles de la población actual es menor a NF, todas las soluciones factibles pasan a la siguiente generación y las soluciones restantes se obtienen de acuerdo al proceso de selección de NSGA-II, que involucra el cálculo de la CD y el ordenamiento por no dominancia, basándose en los valores respectivos de $\mathcal{F}(X_i)$. Cuando NF es menor al conjunto de soluciones factibles, el proceso es el mismo a la selección de población en NSGA-II.

• Reacción al cambio

La nueva población consiste en soluciones aleatorias, viejas soluciones y soluciones reparadas por un proceso de cruza entre soluciones X_i con $\mathcal{F}(X_i) < 2$ y aquellas soluciones preservadas.

• Selección de padres.

La principal diferencia entre el operador de selección de padres de NSGA-II, consta en reemplazar la jerarquización por no dominancia por el valor de $\mathcal{F}(X_i)$.

De acuerdo a la descripción de los algoritmos para DCMOPs en listados anteriormente, es posible concluir con los siguientes puntos:

- DC-NSGA-II, DC-MOEA y *d*CMOEA, no favorecen el uso de las soluciones infactibles con buen valor de aptitud en el proceso de reacción al cambio.
- No se han elaborado estudios sobre la actuación de PSO o DE en DCMOPs, aunque existen distintas versiones para la solución de DMOPs y CMOPs, con un desempeño competitivo.
- Los únicos mecanismos de manejo de restricciones usadas en los cuatro algoritmos mencionados anteriormente son las reglas de factibilidad y dos funciones de penalización.
- Existe una tendencia del aumento en la complejidad de los algoritmos para DCMOPs en términos de diseño.

Capítulo 4

Evolución Diferencial Generalizada Inmune para la Optimización Dinámica Multi-objetivo con restricciones.

Mientras que en DMOEA se han diseñado diversas versiones de DE y algunas pocas inspiradas en AIS, en DCMOPs se ha preferido generar distintas versiones del algoritmo NSGA-II, produciendo una reducida diversidad de las características de los DCMOEAs. El algoritmo Inmune GDE3 (IGDE3) [22] es un algoritmo completo y competitivo para DMOPs que incorpora ideas del principio de selección clonal y la DE, lo que le permite poseer un buen desempeño en el proceso de optimización y reaccionar rápidamente a los cambios en el ambiente sin una pérdida sustancial de la diversidad. Basado en lo anterior, en este capítulo proponemos un nuevo algoritmo basado en IGDE3 para DCMOPs, que incorpora como técnica de manejo de restricciones, la función de penalización propuesta por R. Azzouz en [23]. Además, se incluye la validación estadística de los resultados que muestran el comportamiento competitivo del algoritmo propuesto comparado con otros DCMOEAs.

La estructura del capítulo 4 es:

Capítulo 4

- 4.1 Estructura general de I-CGDE3.
- 4.1.1 Inicializar población.
- 4.1.2 Detección de un cambio.
- 4.1.3 Actualizar memoria.
- 4.2 Proceso de Optimización Multi-objetivo (CGDE3).
- 4.2.1 Factor de mutación adaptativo.
- 4.2.2 Técnica de manejo de restricciones
- 4.2.3 Algoritmo CGDE3.
- 4.3 Respuesta al cambio.
- 4.4 Conclusiones.

4.1. Estructura general de I-CGDE3

El proceso de optimización multi-objetivo diseñado en este trabajo, fue nombrado como I-CGDE3 (Evolución Diferencial Generalizada Inmune Restringida 3).

La estructura general de I-CGDE3 se muestra en el Algoritmo 4.

La Tabla 5.1 resume las principales características del algoritmo I-CGDE3 para DCMOPs. Se nombró como CGDE3 al proceso de optimización multi-objetivo estático en I-CGDE3.

	1. Factor de mutación: adaptativo y sensible al porcentaje de soluciones factibles en la población de vectores <i>trials</i> .		
Proceso de optimización multi-objetivo estático (CGDE3).	2. Función de penalización: ligera modificación a la función de penalización propuesta por R. Azzouz [23].		
	3. Mecanismo elitista: considera usar $DE/best/1/bin$ sobre $DE/-rand/1/bin$ con una probabilidad ω .		
Reacción al cambio	1. Basado en el principio de selección clonal.		
(Respuesta inmune).	2. Favorece la preservación de diversidad al basarse en un proceso de hipermutación.		

Tabla 4.1: Principales características de I-CGDE3.

La Figura 4.1 muestra las diferencias existentes entre Inmune GDE3 (IGDE3 [22]) y la adaptación del mismo para DCMOEAs, propuesta en este trabajo (I-CGDE3), donde los colores verde, purpura y azul se entienden como aquellos procesos preservados, modificados e introducidos en IGDE3, respectivamente.

4.1.1. Inicializar población

La población P se inicializa con individuos \vec{X} cuyas entradas se encuentran uniformemente distribuidas entre mínimos (\vec{X}_u) y máximos (\vec{X}_l) preestablecidos, por lo que la i-ésima entrada de \vec{X} esta definida por la Ecuación 4.1, con $\rho \in [0, 1]$ un número real aleatorio entre 0 y 1.

Figura 4.1: Estructura general de I-CGDE3 y diferencias con IGDE3.

$$\vec{X}_{i} = X_{l,i} + \rho * (X_{u,i} - X_{l,i})$$
(4.1)

4.1.2. Detección de un cambio

Tradicionalmente los algoritmos de optimización dinámica revalúan un porcentaje ϕ de individuos escogidos aleatoriamente de la población. Se dice que ha ocurrido un cambio entre el tiempo t y t + 1, si para al menos un individuo de la subpoblación seleccionada, han variado sus valores de aptitud o las restricciones.

En los últimos años, distintos trabajos pretenden usar la información obtenida de la reevaluación del ϕ de los individuos para mejorar su respuesta al cambio, un ejemplo es el elaborado en [18]. Por simplicidad en el diseño del algoritmo propuesto, en este trabajo se usa el enfoque tradicional con $\phi = 10\%$.

4.1.3. Actualizar memoria

Con una memoria secundaria, se busca almacenar soluciones no dominadas y bien distribuidas a lo largo del POF. En problemas con POF discontinuos, frecuentemente la soluciones no dominadas convergen a puntos aislados. Por lo anterior, a diferencia del enfoque original de IGDE3, no se usa la memoria adaptativa de PAES [55], sino que se consideran a las soluciones no dominadas y mejor distribuidas usando el indicador Crowding Distance (CD) [24], ver Algoritmo 5.

Algorithm 5: Actualizar_Memoria				
ENTRADA : M (memoria), P (población), N (tamaño de la población).				
SALIDA : M (memoria).				
1 if Cambio then				
2 Reevaluar funciones de objetivos y restricciones M ;				
3 Eliminar soluciones infactibles y dominadas de M ;				
4 Copiar a M los individuos factibles y no dominados de P ;				
5 if $ M > N$ then				
6 Seleccionar N individuos de M usando no dominancia y CD ;				
7 return M ;				

4.2. Proceso de Optimización Multi-objetivo (CGDE3)

La estructura general del proceso de optimización multi-objetivo estática presente en I-CGDE3, CGDE3, se describe en el Algoritmo 7.

CGDE3 se caracteriza por usar un factor de mutación adaptativa (F), una función de penalización autoadaptativa y el uso alterno de dos versiones de DE; DE/rand/1/bin y DE/best/1/bin.

4.2.1. Factor de mutación adaptativo

Una de las versiones más populares hechas para el algoritmo de DE es JADE [56], el cual incluye un factor de mutación adaptativo que utiliza una memoria y la distribución normal. Similar a JADE, existen diversas versiones de DE con factores de mutación más completos [42], [57]-[59]. Pero cuando nos referimos a optimización multi-objetivo, son pocos los algoritmos que hacen uso de un factor de mutación dinámico o adaptativo [19], y más aún, la DE siendo una algoritmo robusto para optimización mono-objetivo, su uso no es tan popular en optimización multi-objetivo.

Considere que un factor de mutación constante puede no generar buenos resultados, pues la transición a búsqueda local le permita refinar los resultados y así obtener nuevas soluciones potencialmente mejores y más cercanas entre sí.

Esta transición intuitivamente puede ser modelada por un decrecimiento lineal entre un factor de mutación máximo (F_{max}) y mínimo (F_{min}) (Figura 4.2), pero tal decrecimiento lineal puede ser agresivo durante las primeras generaciones pues se reduce drásticamente el valor de F, por lo que se prefiere usar la función sigmoide como función de decrecimiento (Ecuación 4.2).

$$sigm^{*}(G) = \frac{F_{max}}{1 + \exp(12 * \frac{G}{G_{max}} - 6)} + F_{min}$$
(4.2)

Figura 4.2: Decrecimiento de el factor de mutación (F), lineal y sigmoide, usando como valor de referencia el número de generaciones máximas.

donde G es la generación actual. Las constantes 6 y 12 aproximan el valor de la función sigmoide (sigm(x)) al rango [0,1] cuando $x \in [0,1]$, en nuestro caso, nos permitirán definir un nuevo factor de mutación entre $[F_{min}, F_{max}]$ bajo la variación de G.

Observe que en la ecuación anterior es necesario predefinir un número de generaciones máximas. Para prescindir de ella se reemplaza $\frac{G}{G_{max}}$ por $(1 - r_G)$ y f_{max} por 1, con r_G el radio de factibilidad de la población de hijos en la generación G. Así, el factor de mutación para la generación G está definida por las Ecuaciones 4.3 y 4.4.

$$\delta_r = r_{max} - r_G \tag{4.3}$$

$$F_{G+1} = \begin{cases} F_0 * sigm^*(G) & si & \delta_r > 0 \\ F_0 * (2 - r_0) * (sigm^*(G) + 1) & si & \delta < 0 \\ F_G & otro & caso \end{cases}$$
(4.4)

donde r_{max} es el radio de factibilidad máximo alcanzado por la población de hijos, r_0 es el radio de factibilidad inicial y F_0 es el factor de mutación inicial predefinido. Consideramos que un valor suficientemente pequeño para F es 0.01 por lo que éste actuará como límite inferior, así $F_{min} = 0.01$.

Los siguientes casos se consideran en las Ecuaciones 4.3 y 4.4.

- Caso 1: $\delta_r > 0$. Hay un decrecimiento en el número de hijos factibles generados, se reacciona reduciendo F para buscar soluciones cercanas a los vectores *targets*.
- Caso 2: $\delta_r < 0$. El algoritmo fue capaz de encontrar más soluciones factibles por lo que se le permite explorar más.
- Caso 3: $\delta_r = 0$. Indica que se continúa obteniendo el mismo porcentaje de soluciones factibles en la población de hijos que en el mejor de los casos existentes durante el proceso de optimización.

CAPÍTULO 4. EVOLUCIÓN DIFERENCIAL GENERALIZADA INMUNE PARA LA OPTIMIZACIÓN DINÁMICA MULTI-OBJETIVO CON RESTRICCIONES.

El valor de δ_r se define usando r_{max} para resaltar la pérdida o el aumento en la capacidad de obtención de nuevas soluciones factibles. Los casos 1, 2 y 3 son ejemplificados por las Figuras 4.3 (b), (c) y (d) respectivamente.

Figura 4.3: Ejemplificación de la variación del porcentaje de descendientes factibles.

El factor de mutación propuesto depender de las variaciones en el radio de factibilidad durante el proceso de optimización, por lo que es susceptible a no mostrar un buen desempeño cuando el radio de factibilidad de la población de vectores *trials* no posee variaciones o estas variaciones son muy severas.

4.2.2. Técnica de manejo de restricciones

Se seleccionó y modificó ligeramente la función de penalización propuesta por R. Azzouz et al. [23] como técnica de manejo de restricciones para ser usada en I-CGDE3.

Para obtener los valores de aptitud penalizados se requiere que previamente se calcule la violación en cada restricción de igualdad (h_i) y desigualdad (g_i) para todo \vec{X} en la población P (Ecuación 4.5), se divida por el máximo en cada entrada (Ecuación 4.6) y se promedien (Ecuación 4.7). Los promedios resultantes son normalizados usando la Ecuación 4.8. De manera similar se normalizan las evaluaciones de las funciones objetivo, para todo $\vec{X} \in P$, obteniendo así su correspondiente vector de aptitud normalizado, $F'(\vec{X})$.

$$C_{i}(\vec{X}) = \begin{cases} max(0, g_{i}(\vec{X})) \\ max(0, |h_{i}(\vec{X}) - \delta|)) \end{cases}$$
(4.5)

$$C_i'(\vec{X}) = \frac{C_i(\vec{X})}{\max_{\vec{X} \in P} C_i(\vec{X})}$$

$$(4.6)$$

$$V(\vec{X}) = \frac{1}{p+q} \sum_{i=1}^{p+q} C'_i(\vec{X})$$
(4.7)

$$V(\vec{X})' = \frac{V(\vec{X}) - \min_{\vec{X} \in P} V(\vec{X})}{\max_{\vec{X} \in P} V(\vec{X}) - \min_{\vec{X} \in P} V(\vec{X})}$$
(4.8)

El valor de δ se usa como una acota de decrecimiento en la severidad de las restricciones de igualdad.

Considere un caso simple en que el problema de optimización tiene dos restricciones, C_1 y C_2 . Suponga que la restricción C_1 no es satisfecha por ningún $\vec{X} \in P$ durante T generaciones, pero durante estas T generaciones el número de soluciones que satisfacen C_2 puede variar, aun así el radio de factibilidad será cero y se favorecerá la búsqueda sobre soluciones con menor violación de restricciones en lugar de realizar un proceso de balanceo entre funciones objetivos y restricciones, ocasionando una pérdida de diversidad.

Este sencillo ejemplo muestra la necesidad de incluir dentro de la función de penalización un indicador de sensibilidad a las restricciones. Para el cálculo de los valores de penalización se opta por reemplazar el radio de factibilidad tradicional por el promedio de los radios de factibilidad para cada restricción. La Figura 4.4 muestra un ejemplo del cálculo de r^* .

Figura 4.4: Radio de factibilidad modificado (r^*), cada cuadro representa a un individuo, el color purpura indica si tal individuo viola la restricción C_1 o C_2 .

Finalmente, se definen los parámetros α y β (Ecuaciones 4.9 y 4.10) usados en la función de penalización de la Ecuación 4.11. Una descripción más detallada de la influencia de α y β puede ser consultada en el artículo original [23].

$$\alpha = \begin{cases} 0 & si \ \vec{X} \ es \ factible \\ r^* & si \ \vec{X} \ es \ infactible \ y \ (1 - F'_j(\vec{X})) < (1 - V'(\vec{X})) \\ 1 & otro \ caso \end{cases}$$
(4.9)

$$\beta = \begin{cases} 0 & si \ (1 - F'_j(\vec{X})) < (1 - V'(\vec{X})) \\ 1 & otro \ caso \end{cases}$$
(4.10)

$$F_j^*(\vec{X}) = F_j'(\vec{X}) + \alpha * [V(\vec{X}) * (1 - F_j'(\vec{X}))] + \beta$$
(4.11)

4.2.3. Algoritmo CGDE3

En este trabajo se usan las versiones de DE, DE/best/1/bin y DE/rand/1/bin, y su frecuencia de aplicación depende del tamaño del conjunto de soluciones no dominadas en la población P(ND) y del parámetro ω que actúa como un parámetro de transición entre una búsqueda enfocada a la preservación de diversidad y una búsqueda elitista (Algoritmo 6). Si |ND| = 1, es posible que ocurra una pérdida drástica de la diversidad en P, cuando ésto ocurre siempre se opta por el uso de DE/rand/1/bin.

Refiriéndonos a CGDE3 descrito por el Algoritmo 4.1, éste usa el factor de mutación descrito en la Sección 4.2.1 que se autoadapta con la información proporcionada por los radios de factibilidad de la población de entrada P (línea 2) y la descendencia generada por P (línea 4-6). Por este motivo se prefiere guardar en el conjunto U a los vectores trials generados por DE y después aplicar la selección por dominancia usual de GDE3 (líneas 7-8) entre trials y target, lo cual se muestra en el Algoritmo 8.

CAPÍTULO 4. EVOLUCIÓN DIFERENCIAL GENERALIZADA INMUNE PARA LA OPTIMIZACIÓN DINÁMICA MULTI-OBJETIVO CON RESTRICCIONES.

Algorithm 6: Generar_descendencia

	ENTRADA : P (población), F_0 (factor de mutación), CR (coeficiente de cruza).
	SALIDA : U (descendencia).
1	$U = \emptyset;$
2	for $(\vec{X}_i, \vec{U}_i) \in (P, U)$ do
3	if $ ND > 1$ y rand() < ω then
4	Obtener U_i por DE/best/1/bin;
5	else
6	\Box Obtener U_i por DE/rand/1/bin;
7	return U ;

Algorithm 7: CGDE3

ENTRADA : P (población), M (memoria), N (tamaño total de la población), G_{max} (máximo			
número de generaciones), F (factor de mutación inicial), CR (coeficiente de			
cruza).			
SALIDA : P (población), M (memoria).			
1 $G = 0;$			
2 r_{max} = Radio de factibilidad de P ;			
3 while !parar do			
4 $U = \text{Generar}_{\text{descendencia}}(P, F, CR) \text{ (Algoritmo 6)};$			
5 Evaluar restricciones y funciones objetivos de U ;			
6 $r = $ Radio de factibilidad de $U;$			
7 Evaluar función de penalización en $P \cup U$;			
8 Target_vs_trials (P, U) (Algoritmo 8);			
9 Seleccionar N individuos de P por no dominancia y CD ;			
10 $M = \text{Actualizar_memoria}(M, U)$ (Algoritmo 5);			
11 $F = $ Calcular el factor de mutación adaptativo F (Ecuación 4.3 y 4.4);			
$12 r_{max} = max(r, r_{max});$			
13 $G = G + 1;$			
14 return P, M;			

A diferencia de GDE3, el proceso de selección de individuos que pasan a la siguiente generación, no depende de un proceso iterativo donde se elimina al individuo de menor CD en P hasta haber reducido P a su tamaño original, sino que se prefiere seleccionar a los individuos que pasan a la siguiente generación por no dominancia y CD, como se hace en NSGA-II [24].

Puede ocurrir que si se utiliza a la población P para actualizar M, los individuos no dominados y factibles sean los mismo que ya fueron introducidos en M y sea necesario definir un proceso adicional para evitar duplicados. Por lo anterior se prefiere no usar P para actualizar M, sino usar a U.

Algorithm 8: Target_vs_trials **ENTRADA**: P (población), U (descendencia). : P (población).SALIDA 1 for $(\vec{X}_i, \vec{U}_i) \in (P, U)$ do if $\vec{U}_i \prec \vec{X}_i$ then $\mathbf{2}$ Reemplazar \vec{X}_i por U_i ; 3 else 4 if $\vec{X}_i \not\prec \vec{U}_i$ then 5 $P = P \cup \vec{U}_i;$ 6 7 return P;

4.3. Respuesta al cambio

La parte central de la respuesta inmune en IGDE3 [22] subyace en el principio de selección clonal [60] y el trabajo de N. Cruz y C. Coello [61].

La estructura del proceso de la respuesta inmune es descrito en el Algoritmo 9 y ejemplificado en la Figura 4.5.

```
Algorithm 9: Respuesta inmune
   ENTRADA: P (población).
                 : P \text{ (población)}.
   SALIDA
 1 Inicializar memoria auxiliar en vacío;
 2 Reemplazar el 50 \% de los individuos en P por soluciones aleatorias;
 3 Reevaluar functiones objetivo y restricciones para P;
 4 Evaluar función de penalización en P;
 5 Dividir P en antígenos (AG) y anticuerpos (AB);
 6 Mem_AB = Clonar anticuerpos y guardarlos en la memoria auxiliar ;
 7 for ag \in AG do
      AB_k = \text{Escoger aleatoriamente } k \text{ individuos de } Mem\_AB;
 8
       Aff = Calcular afinidades entre ag y AB_k;
 9
       M = \emptyset;
10
      for aff \in Aff do
11
          ag^* = \text{Clonar } ag;
\mathbf{12}
          Hipermutación de ag^* basada en aff;
13
         M = M \cup ag^*;
\mathbf{14}
      Seleccionar m \in M más afín a AB_k;
15
      Remplazar ag por m en P;
16
17 Evaluar la función de penalización para P;
18 return P;
```

CAPÍTULO 4. EVOLUCIÓN DIFERENCIAL GENERALIZADA INMUNE PARA LA OPTIMIZACIÓN DINÁMICA MULTI-OBJETIVO CON RESTRICCIONES.

Figura 4.5: Ejemplificación de la respuesta inmune en un problema con dos objetivos y un espacio de búsqueda de dos dimensiones.

- 1. Se usa una memoria auxiliar de tamaño igual al 60% del tamaño de P, donde se guardarán los anticuerpos y sus clones en cada iteración durante el proceso de hipermutación.
- 2. Se reemplaza el 50 % de los individuos en P por soluciones aleatorias.
- 3. Reevaluar P.

- 4. Evaluar función de penalización en P.
- 5. Para los fines de este trabajo, se divide P entre antígenos y anticuerpos por lo siguiente:
 - Anticuerpos: soluciones no dominadas.
 - Antígenos: soluciones dominadas.

Debido a que la relación de dominancia se obtiene tras el cálculo de las funciones de aptitud penalizadas, se espera que los anticuerpos tengan buenos valores de aptitud y baja violación de restricciones.

- 6. Se clonan los anticuerpos bajo las siguientes consideraciones:
 - Cada miembro de *AB* se clona el mismo número de veces en la memoria auxiliar.
 - Sea \overline{CD} el promedio de las CD's de los individuos en AB, a los individuos con $CD < \overline{CD}$ se les reduce el número de clones a la mitad, caso contrario cuando $CD > \overline{CD}$.
- 7. Para cada antígeno $ag \in AG$.
- 8. Cada antígeno será expuesto a un subconjunto $AB_k \subset Mem_AB$ escogido de manera aleatoria, en este trabajo se define k = 5, el cual es igual al mismo número de intentos para generar soluciones factibles en los algoritmos DC-NSGA-II y DC-MOEA.
- 9. Calcular afinidades entre el antígeno ag y cada miembro de AB_k (distancia euclidiana en el espacio de búsqueda).
- 10. M guardará los antígenos mutados.
- 11. Para cada afinidad aff entre ag y ab, se siguen los siguientes pasos.
- 12. Para evitar una hipermutación sobre ag por mutaciones continuas en él, se clona ag.
- 13. Se considera que ag es muy afín si su valor actual de aff es menor o igual a la mediana de Aff, en cualquier otro caso se dice que ag es poco afín. Así, el clon de ag (ag^*) sufrirá una mutación polinomial con perturbación igual a 2 y probabilidad μ .

$$\mu = \begin{cases} 0.3 + 0.2 * \frac{t}{t_{max}} & si \ ag \ es \ muy \ afin \ a \ AB_k \\ 0.5 + 0.4 * \frac{t}{t_{max}} & si \ ag \ es \ poco \ afin \ a \ AB_k \end{cases}$$
(4.12)

Con t el tiempo actual y t_{max} los tiempos totales en el proceso de optimización dinámico.

- 14. Se actualiza el conjunto M.
- 15. Tras obtener k antígenos mutados de ag, se selecciona al antígeno mutado más afín al conjunto $AB_k(m)$, la afinidad se calcula en el espacio de búsqueda por lo que no es necesario evaluar cada antígeno mutado.
- 16. Reemplazar $ag \in P$ por m.

17. Se evalúa la función de penalización para P.

Sea ND el conjunto de soluciones no dominadas de P y |P| = N, la respuesta inmune realizará N + (N - |ND|) nuevas evaluaciones. Observe que únicamente se usan a las soluciones no dominadas de P para mutar por si solas a las soluciones dominadas, permitiendo preservar diversidad.

4.4. Conclusiones

Se diseñó un nuevo algoritmo para DCMOPs basado en el algoritmo IGDE3, que destaca de los trabajos ya presentes en la literatura especializada en lo siguiente:

- No requiere de soluciones factibles después de que ha ocurrido un cambio, para guiar la búsqueda a la nueva región factible.
- El proceso de hipermutación, en la respuesta inmune genera individuos bien distribuidos y más cercanos al nuevo POF acelerando la convergencia sin una reducción abrupta de la diversidad de la población, además de no requerir un parámetro que indique cuándo se considera a un antígeno muy afín o no.
- Considera la necesidad de introducir un mecanismo de sensibilidad a las restricciones que modifique los valores de penalización para cada solución. Aquí se introduce un mecanismo muy sencillo que se espera sea mejorado con los trabajos futuros de esta propuesta.
- Se usan dos versiones de DE para un balanceo entre diversidad y convergencia durante el proceso de optimización.
- El factor de mutación definido usa las variaciones en los radios de factibilidad en la población de *trials* para obtener información sobre la región factible y adaptarse a ella.

Capítulo 5

Diseño experimental y resultados

Esta sección describe los parámetros del algoritmo propuesto, los problemas de prueba e indicadores de desempeño usados para la validación estadística en cada experimento realizado. Así también, se resumen los resultados obtenidos de dichas pruebas y se describen las bondades y carencias del algoritmo ante distintas formas de la región factible y el POF.

Capítulo 5

- 5.1 Indicadores de desempeño.
- 5.2 Conjuntos de problemas de prueba.
- 5.2.1 DCTP.
- 5.2.2 FCCD.
- 5.3 Configuración y parámetros.
- 5.4 Experimentos.
- 5.4.1 Experimento I: Variación de la capacidad de convergencia en I-CGDE3.

5.4.2 Experimento II: Análisis estadístico comparativo de I-CGDE3 y otros DCMOEAs con distintas frecuencias de cambio.

5.4.3 Experimento III: Comparación de la respuesta inmune con otras reacciones al cambio.

El contenido del presente capítulo es descrito por la Figura 5.1.

Figura 5.1: Contenido del capítulo 5.

5.1. Indicadores de desempeño

Los indicadores de desempeño usuales en DCMOEA permiten medir la diversidad de las soluciones, su cercanía al verdadero POF, su distribución y el porcentaje de soluciones factibles de la población tras el proceso de optimización. Denotaremos como POF^* a la aproximación obtenida por el algoritmo del POF.

HyperVolume Ratio

El indicador HyperVolume (HV) [62] mide el hipervolumen cubierto por un conjunto de soluciones usando un vector de referencia (R), mientras que el HyperVolume Ratio (HVR) mide la porción del volumen cubierto por POF que también es cubierto por POF^* . Comúnmente se asocia a HVR como una medida de diversidad.

$$HVR = \frac{HV(POF^*, R)}{HV(POF, R)}$$
(5.1)

Un valor más cercano a 1 indica una mejor diversidad de las soluciones en POF^* .

Inverted Generational Distance Plus

A diferencia de IGD, IGD+ posee la propiedad de ser débilmente *Pareto-compliant* [63]. Se define formalmente para el caso de un problema de minimización como:

$$IGD + = \frac{1}{|POF|} \sum_{z \in POF} \min(d^+(z, a)^{1/2})$$
(5.2)

donde $a = (a_1, a_2, \dots, a_m) \in POF^*, \ z = (z_1, z_2, \dots, z_m) \in POF$ y $d^+(a, z) = \sum_{i=1}^m max\{a_i - z_i, 0\}^2.$

Un valor más pequeño de IGD+ indica una mejor aproximación del POF.

Maximun Spread

El indicador de desempeño Maximun Spread (MS) [64], mide qué tan bien el POF^* cubre el POF.

$$MS = \sqrt{\sum_{j=1}^{m} \left(\frac{\min(PF_{j,u}, PF_{j,u}) - \max(PF_{j,l}, PF_{j,l})}{PF_{j,u} - PF_{j,l}} \right)}$$
(5.3)

donde $PF_{j,u}$ y $PF_{j,l}$ son respectivamente el máximo y mínimo valor de el j-ésimo objetivo en POF. $PF_{j,u}^*$ y $PF_{j,l}^*$ son respectivamente el máximo y mínimo valor de el j-ésimo objetivo en POF^* . Un valor cercano a 1 indica mejor desempeño en el algoritmo.

Radio de factibilidad

Cuando se tratan problemas con restricciones, un punto importante a considerar es el porcentaje de soluciones factibles que se obtienen al final del proceso de optimización. A la porción de soluciones factibles existentes en POF^* , se le conoce como radio de factibilidad, denotado por FR.

Para cada una de los indicadores antes mencionadas (θ), se calculan los promedios sobre todos los valores obtenidos cuando ocurre un cambio ($\bar{\theta}$).

$$\overline{\theta} = \frac{1}{n} \sum_{t=1}^{n} \theta_t \tag{5.4}$$

donde θ_t es el valor del indicador θ en el tiempo t y n es el número total de cambios ocurridos en el proceso de optimización.

5.2. Conjuntos de problemas de prueba.

Los conjunto de problemas de prueban guían el diseño de los algoritmos evolutivos al permitir identificar sus carencias y bondades. En este trabajo se consideraron dos conjuntos de problemas de prueba para DCMOPs: DCTP y FCCD, cuyas principales propiedades se resumen en la Tabla 5.1

5.2.1. DCTP

Los problemas DCTP [54] son la versión para DCMOPs del conjunto de prueba CTP, propuesto por K. Deb en [65].

Características	DCTP	FCCD
Las regiones factibles pueden moverse con el dinamismo.		×
Las regiones factibles pueden crecer.		×
Las regiones factibles que pueden ser conexas o disconexas.	×	
Posee problemas de prueba con distintos porcentajes de	×	
región factible cercana a los POFs.		
Los POFs se alternan entre ser continuos y discontinuos.		×
Consideran a POFs sin restricciones que incluyen convexidad		×
y concavidad.		
Incluye POFs que oscilan sus concavidades y convexidades		×
con el tiempo.		
Considera a falsos POFs producidos por las restricciones.	×	
Algunos problemas poseen POFs discretos.	×	
Heterogeneidad de las formas de los POFs entre los problemas	×	
de prueba.		
Poseen cambios severos.		×
Son escalables.	×	×

Tabla 5.1: Principales características de los conjuntos de problemas de prueba FCCD y DCTP

Para DCTP 1 a DCTP 5, la región factible cercana al POF es reducida. Mientras que para DCTP 6 a DCTP 8, las restricciones producen distintas discontinuidades en el espacio objetivo y por tanto también en la región factible.

DCTP 2 a DCTP 5 presentan distintos grados de discretización en sus POFs, en especial DCTP 5 combina regiones alargadas del POF y partes donde su POF se ve reducido a un punto (POF discretos).

Las funciones y sus parámetros son descritos en las Ecuaciones 6.1 y 6.2 y la Tabla 6.1 en este documento.

Estos problemas son criticados por que los cambios de un tiempo a otro son pequeños, por lo que viejas soluciones conservarán una buena aptitud respecto a un conjunto de soluciones aleatorias generadas.

5.2.2. FCCD

Los problemas FCCD, propuestos por Q. Chen et al. [25], se caracterizan por dificultar el proceso de optimización al incluir los posibles cambios en la región factible, POS y POF que pueden pasar de continuos a discontinuos y decrecer o crecer.

Además, consideran dos casos para la forma del POF sin restricciones:

- Caso 1: un solo modo que considera concavidad y convexidad para el POF sin restricciones.
- Caso 2: las funciones objetivo oscilan entre distintos modos que pueden incluir concavidad y convexidad.

Así, el conjunto de prueba FCCD posee 8 DCMOPs, cada uno corresponde a una combinación entre los dos casos anteriores y los presentados en la Tabla 2.2. La tabla de parámetros y funciones para el conjunto de pruebas son descritas por la Tabla 6.2 y la Ecuación 6.3.

5.3. Configuración y parámetros

En cada experimento se usan los tiempos descritos en la Tabla 5.2.

Tabla 5.2: Parámetros para los problemas

Tiempos (t)	DCTP	$t = 1, 2 \dots 4$
1 lempos(t)	FCCD	$t = 0, 1, 2 \dots 21$

Se usa un máximo número de evaluaciones permitidas como criterio de paro definidos en cada experimento. Las evaluaciones hechas durante las reacciones al cambio, propias de cada algoritmo utilizado en los experimentos, también son consideradas por lo que después de un cambio, el contador de evaluaciones ascenderá de acuerdo a cuantas evaluaciones fueron requeridas en la reacción al cambio.

Cada algoritmo fue ejecutado 30 veces, calculando sus valores promedio y desviación estándar para cada uno de los indicadores de desempeño considerados. Para diferenciar aquellos resultados promedios de cada indicador como: significativamente mejores, significativamente peores o sin diferencia significativa, se realizó la prueba estadística no paramétrica de Wilcoxon rank-sum con un nivel de significancia igual a 0.05 (con 95 % de confianza). La prueba consta de probar la hipótesis nula de que un conjunto de muestras es estocásticamente mayor a otra.

Se prefiere la prueba Wilcoxon rank-sum sobre otras por su robustez a datos atípicos, al hecho de que las ejecuciones de los algoritmos son eventos independientes y aceptabilidad en la literatura especializada,

La Tabla 5.3 define los colores utilizados para distinguir cada caso antes mencionado, así para cualquier celda (col, fil), de alguna tabla de resultados, es posible interpretar lo siguiente: el comportamiento definido por el color de la celda (col, fil) es el que siguen los resultados del algoritmo en la columna *col* respecto al algoritmo en la primera columna, para el indicador de desempeño o frecuencia de cambio correspondiente a la fila *fil*.

Tabla 5.3: Guía cromática, basada en los resultados estadísticos de la prueba no paramétrica Wilcoxon rank-sun con 95% de confianza.

Los resultados son significativamente mejores
Los resultados son significativamente peores
No existe diferencia significativa

Las condiciones de paro y tamaño de población en cada problema de prueba fueron seleccionados de acuerdo a la literatura previa para DCMOEAs. Los valores para el factor de mutación inicial (F_0) y el coeficiente de cruza (CR) usados en este trabajo (Tabla 5.6) fueron refinados usando Irace [66] bajo la metodología propuesta en [67].

Los algoritmos seleccionados fueron implementados usando la biblioteca Deap 1.3.1 de Python 3.7.3. La ejecuciones fueron realizadas en una computadora con un procesador Core i7-9750H CPU 2.60GHz \times 12 y 8 GB RAM con Ubuntu 19.04.

5.4. Experimentos y resultados

5.4.1. Experimento I: Variación de la capacidad de convergencia en I-CGDE3

Para analizar el comportamiento de I-CGDE3 al variar el parámetro ω (probabilidad de uso de la versión DE/best/1/bin sobre la versión DE/rand/1/bin) usando los indicadores de desempeño \overline{HVR} , $\overline{IGD+}$ y \overline{MS} y así entender el comportamiento de I-CGDE3 al aumentar la frecuencia de uso de DE/best/1/bin en la generación de vectores trials, se utilizan los parámetros descritos en las Tablas 5.2 y 5.4 y los mencionados a continuación.

- DCTP: frecuencia de cambio de 10000 evaluaciones y un criterio de paro de 40000 evaluaciones.
- FCCD: frecuencia de cambio de 2000 evaluaciones con 8000 evaluaciones únicamente para el tiempo t = 0 y un criterio de paro de 50000 evaluaciones.
- Para ω , $\omega = 0$, 0.25, 0.5, 0.75 y 1.

Parámetros	DCTP	FCCD
Tamaño de la población	100	200
Tamaño de la memoria	100	200
Factor de mutación inicial (F_0)	0.3	
Coeficiente de cruza (CR)	0.8	

Tabla 5.4: Parámetros para I-CGDE3 al variar ω .

Tabla 5.5: Media (μ) y desviación estándar (σ) en el formato " $\mu(\sigma)$ " de los resultados en los indicadores \overline{HVR} , $\overline{IGD+}$ y \overline{MS} para las variaciones del parámetro ω en I-CGDE3 en los problemas DCTP. Los mejores resultados se resaltan en negritas.

	ГР М.	0	0.25	0.5	0.75	1
1	\overline{HVR}	0.9915(0.0003)	0.9915(0.0007)	0.9911(0.0015)	0.9907(0.002)	0.9857(0.0151)
1	$\overline{IGD+}$	0.007(0.0002)	0.0072(0.0011)	0.0077(0.0024)	0.0087(0.0037)	0.0226(0.0413)
	\overline{MS}	0.9993(0.0008)	0.9916(0.0243)	0.986(0.0367)	0.9728(0.0433)	0.9619(0.083)
	\overline{HVR}	0.9964(0.0003)	0.9965(0.0005)	0.9968(0.0002)	0.9964(0.0014)	0.9957(0.0043)
2	$\overline{IGD+}$	0.0032(0.0001)	0.0034(0.0019)	0.003(0.0001)	0.0042(0.0051)	0.0069(0.0134)
	\overline{MS}	0.9986(0.0006)	0.9961(0.0138)	0.9988(0.0005)	0.9918(0.0265)	0.981(0.0442)
	\overline{HVR}	0.9754(0.0016)	0.9785(0.0017)	0.9823(0.0019)	0.9852(0.0014)	0.9864(0.0024)
ა	$\overline{IGD+}$	0.0258(0.0023)	0.0226(0.0022)	0.0188(0.0017)	0.0156(0.0017)	0.015(0.0049)
	\overline{MS}	0.9923(0.0018)	0.9939(0.0013)	0.9947(0.001)	0.9953(0.0035)	0.9891(0.0257)
	\overline{HVR}	0.8001(0.0193)	0.7825(0.0262)	0.7464(0.0427)	0.7057(0.0623)	0.6676(0.0623)
4	$\overline{IGD+}$	0.1525(0.0148)	0.1596(0.0214)	0.1996(0.0477)	0.2773(0.1371)	0.3626(0.1443)
	\overline{MS}	0.9312(0.02)	0.8998(0.0484)	0.862(0.0565)	0.7953(0.1086)	0.7401(0.1498)
5	\overline{HVR}	0.9756(0.002)	0.9758(0.0025)	0.9757(0.0019)	0.9766(0.0024)	0.9637(0.0353)
9	$\overline{IGD+}$	0.0047(0.0003)	0.0045(0.0003)	0.0043(0.0003)	0.0041(0.0003)	0.0072(0.01)
	\overline{MS}	0.9804(0.0071)	0.9793(0.007)	0.9755(0.0149)	0.9723(0.0293)	0.9207(0.1277)
6	\overline{HVR}	0.9762(0.0445)	0.9848(0.0004)	0.9849(0.0004)	0.9849(0.0004)	0.9849(0.0005)
0	$\overline{IGD+}$	0.0471(0.2085)	0.0082(0.0002)	0.0082(0.0002)	0.0082(0.0002)	0.0082(0.0002)
	\overline{MS}	0.9999(0.0034)	0.9995(0.0002)	0.9994(0.0002)	0.9994(0.0003)	0.9994(0.0002)
7	\overline{HVR}	0.9916(0.0062)	0.9894(0.005)	0.9882(0.0066)	0.9873(0.0072)	0.9832(0.0152)
1	IGD+	0.0163(0.0183)	0.0216(0.013)	0.0246(0.0164)	0.0276(0.0178)	0.0434(0.0536)
	\overline{MS}	0.9852(0.0484)	0.9871(0.0143)	0.9851(0.0161)	0.9744(0.0254)	0.9579(0.055)
8	\overline{HVR}	0.9884(0.0136)	0.9682(0.0492)	0.9693(0.0458)	0.9414(0.0933)	0.9741(0.0325)
0	$\overline{IGD+}$	0.0063(0.0075)	0.039(0.0798)	0.0317(0.0526)	0.0728(0.1533)	0.0415(0.0763)
	MS	0.9965(0.0022)	0.9679(0.0727)	0.9766(0.0475)	0.9543(0.0946)	0.9614(0.0773)
FCC	CD M.	0	0.25	0.5	0.75	1
1	\overline{HVR}	0.6431(0.0178)	0.887(0.0108)	0.9356(0.0066)	0.9528(0.0045)	0.9606(0.0048)
1			()	()		· · · · · · · · · · · · · · · · · · ·
	$\overline{IGD+}$	0.3342(0.0314)	0.1(0.0098)	0.0573(0.0048)	0.0431(0.0039)	0.0365(0.0044)
	$\frac{\overline{IGD+}}{\overline{MS}}$	$0.3342(0.0314) \\ 0.8763(0.008)$	$\begin{array}{c} 0.1 (0.0098) \\ 0.958 (0.0055) \end{array}$	$\begin{array}{c} 0.0573(0.0048) \\ 0.9777(0.0036) \end{array}$	$\begin{array}{c} 0.0431 (0.0039) \\ 0.9823 (0.0027) \end{array}$	0.0365(0.0044) 0.9847(0.0031)
	$\frac{\overline{IGD+}}{\overline{MS}}$ \overline{HVR}	$\begin{array}{r} 0.3342 (0.0314) \\ 0.8763 (0.008) \\ \hline 0.7754 (0.0153) \end{array}$	$\begin{array}{r} 0.1(0.0098) \\ \hline 0.958(0.0055) \\ \hline 0.935(0.0043) \end{array}$	$\begin{array}{c} 0.0573(0.0048) \\ \hline 0.9777(0.0036) \\ \hline 0.9597(0.0039) \end{array}$	$\begin{array}{c} 0.0431 (0.0039) \\ \hline 0.9823 (0.0027) \\ \hline 0.9716 (0.0025) \end{array}$	$\begin{array}{c} 0.0365(0.0044)\\ \hline 0.9847(0.0031)\\ \hline 0.9769(0.0023)\end{array}$
2	$ \frac{\overline{IGD+}}{\overline{MS}} \frac{\overline{HVR}}{\overline{IGD+}} $	$\begin{array}{c} 0.3342 (0.0314) \\ \hline 0.8763 (0.008) \\ \hline 0.7754 (0.0153) \\ 0.2723 (0.0191) \end{array}$	$\begin{array}{c} 0.1(0.0098)\\ \hline 0.958(0.0055)\\ \hline 0.935(0.0043)\\ 0.0868(0.0057)\\ \end{array}$	$\begin{array}{c} 0.0573(0.0048)\\ \hline 0.9777(0.0036)\\ \hline 0.9597(0.0039)\\ \hline 0.0556(0.0051) \end{array}$	$\begin{array}{c} 0.0431(0.0039)\\ \hline 0.9823(0.0027)\\ \hline 0.9716(0.0025)\\ \hline 0.0399(0.0035)\\ \end{array}$	$\begin{array}{c} 0.0365(0.0044)\\ 0.9847(0.0031)\\ \hline 0.9769(0.0023)\\ 0.0329(0.0032) \end{array}$
2	$ \overline{IGD+} \overline{MS} \overline{IGD+} \overline{IGD+} \overline{MS} $	$\begin{array}{c} 0.3342(0.0314)\\ \hline 0.8763(0.008)\\ \hline 0.7754(0.0153)\\ \hline 0.2723(0.0191)\\ \hline 0.8991(0.0064)\\ \end{array}$	$\begin{array}{c} 0.1(0.0098)\\ \hline 0.958(0.0055)\\ 0.935(0.0043)\\ 0.0868(0.0057)\\ 0.9736(0.0031)\\ \end{array}$	$\begin{array}{c} 0.0573(0.0048)\\ \hline 0.9777(0.0036)\\ \hline 0.9597(0.0039)\\ \hline 0.0556(0.0051)\\ \hline 0.9853(0.0025) \end{array}$	$\begin{array}{c} 0.0431(0.0039)\\ \hline 0.9823(0.0027)\\ \hline 0.9716(0.0025)\\ \hline 0.0399(0.0035)\\ \hline 0.9911(0.0018)\\ \end{array}$	$\begin{array}{c} 0.0365(0.0044)\\ 0.9847(0.0031)\\ 0.9769(0.0023)\\ 0.0329(0.0032)\\ 0.9918(0.0034)\\ \end{array}$
2	$ \overline{IGD+} \\ \overline{MS} \\ \overline{HVR} \\ \overline{IGD+} \\ \overline{MS} \\ \overline{HVR} \\ \overline{HVR} $	$\begin{array}{c} 0.3342(0.0314)\\ 0.8763(0.008)\\ \hline 0.7754(0.0153)\\ 0.2723(0.0191)\\ 0.8991(0.0064)\\ \hline 0.6309(0.0203)\\ \end{array}$	$\begin{array}{c} 0.1(0.0098)\\ \hline 0.958(0.0055)\\ 0.935(0.0043)\\ 0.0868(0.0057)\\ \hline 0.9736(0.0031)\\ \hline 0.893(0.0106)\\ \end{array}$	$\begin{array}{c} 0.0573(0.0048)\\ \hline 0.9777(0.0036)\\ \hline 0.9597(0.0039)\\ \hline 0.0556(0.0051)\\ \hline 0.9853(0.0025)\\ \hline 0.9377(0.0059)\\ \end{array}$	$\begin{array}{c} 0.0431(0.0039)\\ \hline 0.9823(0.0027)\\ \hline 0.9716(0.0025)\\ \hline 0.0399(0.0035)\\ \hline 0.9911(0.0018)\\ \hline 0.9553(0.0043)\\ \end{array}$	$\begin{array}{c} 0.0365(0.0044)\\ 0.9847(0.0031)\\ 0.9769(0.0023)\\ 0.0329(0.0032)\\ 0.9918(0.0034)\\ 0.9631(0.005)\\ \end{array}$
2	$ \overline{IGD+} \\ \overline{MS} \\ \overline{IGD+} \\ \overline{IGD+} \\ \overline{MS} \\ \overline{IGD+} \\ $	$\begin{array}{c} 0.3342(0.0314)\\ 0.8763(0.008)\\ \hline 0.7754(0.0153)\\ 0.2723(0.0191)\\ 0.8991(0.0064)\\ \hline 0.6309(0.0203)\\ 0.3286(0.0256)\\ \end{array}$	$\begin{array}{c} 0.1(0.0098)\\ \hline 0.958(0.0055)\\ \hline 0.935(0.0043)\\ 0.0868(0.0057)\\ \hline 0.9736(0.0031)\\ \hline 0.893(0.0106)\\ 0.0958(0.0091)\\ \end{array}$	$\begin{array}{c} 0.0573(0.0048)\\ \hline 0.9777(0.0036)\\ \hline 0.9597(0.0039)\\ \hline 0.0556(0.0051)\\ \hline 0.9853(0.0025)\\ \hline 0.9377(0.0059)\\ \hline 0.0572(0.0057)\\ \end{array}$	$\begin{array}{c} 0.0431(0.0039)\\ \hline 0.9823(0.0027)\\ \hline 0.9716(0.0025)\\ \hline 0.0399(0.0035)\\ \hline 0.9911(0.0018)\\ \hline 0.9553(0.0043)\\ \hline 0.0418(0.0041)\\ \end{array}$	$\begin{array}{c} 0.0365(0.0044)\\ 0.9847(0.0031)\\ 0.9769(0.0023)\\ 0.0329(0.0032)\\ 0.9918(0.0034)\\ 0.9631(0.005)\\ 0.0347(0.0039)\\ \end{array}$
2		$\begin{array}{c} 0.3342(0.0314)\\ \hline 0.8763(0.008)\\ \hline 0.7754(0.0153)\\ \hline 0.2723(0.0191)\\ \hline 0.8991(0.0064)\\ \hline 0.6309(0.0203)\\ \hline 0.3286(0.0256)\\ \hline 0.8718(0.009)\\ \end{array}$	$\begin{array}{c} 0.1(0.0098)\\ \hline 0.958(0.0055)\\ \hline 0.935(0.0043)\\ 0.0868(0.0057)\\ \hline 0.9736(0.0031)\\ \hline 0.893(0.0106)\\ 0.0958(0.0091)\\ \hline 0.9615(0.0049)\\ \end{array}$	$\begin{array}{c} 0.0573(0.0048)\\ \hline 0.9777(0.0036)\\ \hline 0.9597(0.0039)\\ \hline 0.0556(0.0051)\\ \hline 0.9853(0.0025)\\ \hline 0.9377(0.0059)\\ \hline 0.0572(0.0057)\\ \hline 0.9773(0.003)\\ \end{array}$	$\begin{array}{c} 0.0431(0.0039)\\ \hline 0.9823(0.0027)\\ \hline 0.9716(0.0025)\\ \hline 0.0399(0.0035)\\ \hline 0.9911(0.0018)\\ \hline 0.9553(0.0043)\\ \hline 0.0418(0.0041)\\ \hline 0.9836(0.0021)\\ \end{array}$	$\begin{array}{c} 0.0365(0.0044)\\ 0.9847(0.0031)\\ \hline 0.9769(0.0023)\\ 0.0329(0.0032)\\ 0.9918(0.0034)\\ \hline 0.9631(0.005)\\ 0.0347(0.0039)\\ \hline 0.986(0.0028)\\ \end{array}$
2 3 4		$\begin{array}{c} 0.3342(0.0314)\\ \hline 0.8763(0.008)\\ \hline 0.7754(0.0153)\\ \hline 0.2723(0.0191)\\ \hline 0.8991(0.0064)\\ \hline 0.6309(0.0203)\\ \hline 0.3286(0.0256)\\ \hline 0.8718(0.009)\\ \hline 0.7707(0.0175)\\ \hline \end{array}$	$\begin{array}{c} 0.1(0.0098)\\ \hline 0.958(0.0055)\\ \hline 0.935(0.0043)\\ \hline 0.0868(0.0057)\\ \hline 0.9736(0.0031)\\ \hline 0.893(0.0106)\\ \hline 0.0958(0.0091)\\ \hline 0.9615(0.0049)\\ \hline 0.934(0.0045)\\ \end{array}$	$\begin{array}{c} 0.0573(0.0048)\\ \hline 0.9777(0.0036)\\ \hline 0.9597(0.0039)\\ \hline 0.0556(0.0051)\\ \hline 0.9853(0.0025)\\ \hline 0.9377(0.0059)\\ \hline 0.0572(0.0057)\\ \hline 0.9773(0.003)\\ \hline 0.9599(0.0047)\\ \hline \end{array}$	$\begin{array}{c} 0.0431(0.0039)\\ 0.9823(0.0027)\\ 0.9716(0.0025)\\ 0.0399(0.0035)\\ 0.9911(0.0018)\\ 0.9553(0.0043)\\ 0.0418(0.0041)\\ 0.9836(0.0021)\\ 0.9714(0.0022)\\ \end{array}$	$\begin{array}{c} 0.0365(0.0044)\\ 0.9847(0.0031)\\ 0.9769(0.0023)\\ 0.0329(0.0032)\\ 0.9918(0.0034)\\ 0.9631(0.005)\\ 0.0347(0.0039)\\ 0.986(0.0028)\\ 0.9767(0.0019)\\ \end{array}$
$\begin{array}{c} \\ 2 \\ \\ \\ 3 \\ \\ 4 \end{array}$		$\begin{array}{c} 0.3342(0.0314)\\ \hline 0.8763(0.008)\\ \hline 0.7754(0.0153)\\ \hline 0.2723(0.0191)\\ \hline 0.8991(0.0064)\\ \hline 0.6309(0.0203)\\ \hline 0.3286(0.0256)\\ \hline 0.8718(0.009)\\ \hline 0.7707(0.0175)\\ \hline 0.2826(0.0218)\\ \hline \end{array}$	$\begin{array}{c} 0.1(0.0098)\\ \hline 0.958(0.0055)\\ \hline 0.935(0.0043)\\ 0.0868(0.0057)\\ \hline 0.9736(0.0031)\\ \hline 0.893(0.0106)\\ \hline 0.0958(0.0091)\\ \hline 0.9615(0.0049)\\ \hline 0.934(0.0045)\\ \hline 0.0887(0.006)\\ \hline \end{array}$	$\begin{array}{c} 0.0573(0.0048)\\ 0.9777(0.0036)\\ \hline 0.9597(0.0039)\\ 0.0556(0.0051)\\ 0.9853(0.0025)\\ \hline 0.9377(0.0059)\\ 0.0572(0.0057)\\ 0.9773(0.003)\\ \hline 0.9599(0.0047)\\ 0.0553(0.0058)\\ \hline \end{array}$	$\begin{array}{c} 0.0431(0.0039)\\ 0.9823(0.0027)\\ 0.9716(0.0025)\\ 0.0399(0.0035)\\ 0.9911(0.0018)\\ 0.9553(0.0043)\\ 0.0418(0.0041)\\ 0.9836(0.0021)\\ 0.9714(0.0022)\\ 0.0403(0.0031)\\ \end{array}$	$\begin{array}{c} 0.0365(0.0044)\\ 0.9847(0.0031)\\ 0.9769(0.0023)\\ 0.0329(0.0032)\\ 0.9918(0.0034)\\ 0.9631(0.005)\\ 0.0347(0.0039)\\ 0.986(0.0028)\\ 0.9767(0.0019)\\ 0.033(0.0027)\\ \end{array}$
2 3 4	$\begin{array}{c} IGD+\\ \overline{MS}\\ \hline HVR\\ \overline{IGD+}\\ \overline{MS}\\ \hline \overline{HVR}\\ \overline{IGD+}\\ \overline{MS}\\ \hline \overline{HVR}\\ \overline{IGD+}\\ \overline{MS}\\ \hline \overline{HVR}\\ \overline{IGD+}\\ \overline{MS}\\ \hline \end{array}$	$\begin{array}{c} 0.3342(0.0314)\\ 0.8763(0.008)\\ \hline 0.7754(0.0153)\\ 0.2723(0.0191)\\ 0.8991(0.0064)\\ \hline 0.6309(0.0203)\\ 0.3286(0.0256)\\ 0.8718(0.009)\\ \hline 0.7707(0.0175)\\ 0.2826(0.0218)\\ 0.8962(0.009)\\ \hline \end{array}$	$\begin{array}{c} 0.1(0.0098)\\ \hline 0.958(0.0055)\\ \hline 0.935(0.0043)\\ 0.0868(0.0057)\\ \hline 0.9736(0.0031)\\ \hline 0.893(0.0106)\\ 0.0958(0.0091)\\ \hline 0.9615(0.0049)\\ \hline 0.934(0.0045)\\ \hline 0.0887(0.006)\\ \hline 0.9727(0.0048)\\ \end{array}$	$\begin{array}{c} 0.0573(0.0048)\\ \hline 0.9777(0.0036)\\ \hline 0.9597(0.0039)\\ \hline 0.0556(0.0051)\\ \hline 0.9853(0.0025)\\ \hline 0.9377(0.0059)\\ \hline 0.0572(0.0057)\\ \hline 0.9773(0.003)\\ \hline 0.9599(0.0047)\\ \hline 0.0553(0.0058)\\ \hline 0.9857(0.0025)\\ \end{array}$	$\begin{array}{c} 0.0431(0.0039)\\ 0.9823(0.0027)\\ 0.9716(0.0025)\\ 0.0399(0.0035)\\ 0.9911(0.0018)\\ 0.9553(0.0043)\\ 0.0418(0.0041)\\ 0.9836(0.0021)\\ 0.9714(0.0022)\\ 0.0403(0.0031)\\ 0.9906(0.0014)\\ \end{array}$	$\begin{array}{c} 0.0365(0.0044)\\ 0.9847(0.0031)\\ 0.9769(0.0023)\\ 0.0329(0.0032)\\ 0.9918(0.0034)\\ 0.9631(0.005)\\ 0.0347(0.0039)\\ 0.986(0.0028)\\ 0.9767(0.0019)\\ 0.033(0.0027)\\ 0.993(0.0015)\\ \end{array}$
2 3 4 5	$\begin{array}{c} IGD+\\ \overline{MS}\\ \hline HVR\\ \overline{IGD+}\\ \overline{MS}\\ \hline HVR\\ \overline{IGD+}\\ \overline{MS}\\ \hline HVR\\ \overline{IGD+}\\ \overline{MS}\\ \hline HVR\\ \overline{IGD+}\\ \overline{MS}\\ \hline HVR\\ \hline HVR\\ \hline \end{array}$	$\begin{array}{c} 0.3342(0.0314)\\ 0.8763(0.008)\\ \hline 0.7754(0.0153)\\ 0.2723(0.0191)\\ 0.8991(0.0064)\\ \hline 0.6309(0.0203)\\ 0.3286(0.0256)\\ 0.8718(0.009)\\ \hline 0.7707(0.0175)\\ 0.2826(0.0218)\\ 0.8962(0.009)\\ \hline 0.6564(0.0204)\\ \hline \end{array}$	$\begin{array}{c} 0.1(0.0098)\\ \hline 0.958(0.0055)\\ \hline 0.935(0.0043)\\ 0.0868(0.0057)\\ \hline 0.9736(0.0031)\\ \hline 0.893(0.0106)\\ 0.0958(0.0091)\\ \hline 0.9615(0.0049)\\ \hline 0.934(0.0045)\\ \hline 0.0887(0.006)\\ \hline 0.9727(0.0048)\\ \hline 0.8936(0.0088)\\ \hline \end{array}$	$\begin{array}{c} 0.0573(0.0048)\\ 0.9777(0.0036)\\ 0.9597(0.0039)\\ 0.0556(0.0051)\\ 0.9853(0.0025)\\ 0.9377(0.0059)\\ 0.0572(0.0057)\\ 0.9773(0.003)\\ 0.9599(0.0047)\\ 0.0553(0.0058)\\ 0.9857(0.0025)\\ 0.9386(0.0084)\\ \end{array}$	$\begin{array}{c} 0.0431(0.0039)\\ \hline 0.9823(0.0027)\\ \hline 0.9716(0.0025)\\ \hline 0.0399(0.0035)\\ \hline 0.9911(0.0018)\\ \hline 0.9553(0.0043)\\ \hline 0.0418(0.0041)\\ \hline 0.9836(0.0021)\\ \hline 0.9714(0.0022)\\ \hline 0.0403(0.0031)\\ \hline 0.9906(0.0014)\\ \hline 0.9536(0.0068)\\ \hline \end{array}$	$\begin{array}{c} 0.0365(0.0044)\\ 0.9847(0.0031)\\ 0.9769(0.0023)\\ 0.0329(0.0032)\\ 0.9918(0.0034)\\ 0.9631(0.005)\\ 0.0347(0.0039)\\ 0.986(0.0028)\\ 0.9767(0.0019)\\ 0.033(0.0027)\\ 0.993(0.0015)\\ 0.9638(0.0043)\\ \end{array}$
2 3 4 5	$ \begin{array}{c} IGD+\\ \overline{MS} \\ \hline HVR\\ \overline{IGD+}\\ \overline{IGD+} \\ \hline \end{array} $	$\begin{array}{c} 0.3342(0.0314)\\ 0.8763(0.008)\\ \hline 0.7754(0.0153)\\ 0.2723(0.0191)\\ 0.8991(0.0064)\\ \hline 0.6309(0.0203)\\ 0.3286(0.0256)\\ 0.8718(0.009)\\ \hline 0.7707(0.0175)\\ 0.2826(0.0218)\\ 0.8962(0.009)\\ \hline 0.6564(0.0204)\\ 0.3329(0.0249)\\ \hline \end{array}$	$\begin{array}{c} 0.1(0.0098)\\ \hline 0.958(0.0055)\\ \hline 0.935(0.0043)\\ 0.0868(0.0057)\\ \hline 0.9736(0.0031)\\ \hline 0.893(0.0106)\\ 0.0958(0.0091)\\ \hline 0.9615(0.0049)\\ \hline 0.934(0.0045)\\ 0.0887(0.006)\\ \hline 0.9727(0.0048)\\ \hline 0.8936(0.0088)\\ 0.0961(0.0085)\\ \end{array}$	$\begin{array}{c} 0.0573(0.0048)\\ \hline 0.9777(0.0036)\\ \hline 0.9597(0.0039)\\ \hline 0.0556(0.0051)\\ \hline 0.9853(0.0025)\\ \hline 0.9377(0.0059)\\ \hline 0.0572(0.0057)\\ \hline 0.9773(0.003)\\ \hline 0.9799(0.0047)\\ \hline 0.0553(0.0058)\\ \hline 0.9857(0.0025)\\ \hline 0.9386(0.0084)\\ \hline 0.0562(0.0076)\\ \hline \end{array}$	$\begin{array}{c} 0.0431(0.0039)\\ 0.9823(0.0027)\\ 0.9716(0.0025)\\ 0.0399(0.0035)\\ 0.9911(0.0018)\\ 0.9553(0.0043)\\ 0.0418(0.0041)\\ 0.9836(0.0021)\\ 0.9714(0.0022)\\ 0.0403(0.0031)\\ 0.9906(0.0014)\\ 0.9536(0.0068)\\ 0.0429(0.0056)\\ \end{array}$	$\begin{array}{c} 0.0365(0.0044)\\ 0.9847(0.0031)\\ 0.9769(0.0023)\\ 0.0329(0.0032)\\ 0.9918(0.0034)\\ 0.9631(0.005)\\ 0.0347(0.0039)\\ 0.986(0.0028)\\ 0.9767(0.0019)\\ 0.033(0.0027)\\ 0.993(0.0015)\\ 0.9638(0.0043)\\ 0.0342(0.0039)\\ \end{array}$
2 3 4 5	$\begin{array}{c} IGD+\\ \overline{MS}\\ \hline HVR\\ \overline{IGD+}\\ \overline{MS}\\ \hline \end{array}$	$\begin{array}{c} 0.3342(0.0314)\\ 0.8763(0.008)\\ \hline 0.7754(0.0153)\\ 0.2723(0.0191)\\ 0.8991(0.0064)\\ \hline 0.6309(0.0203)\\ 0.3286(0.0256)\\ 0.8718(0.009)\\ \hline 0.7707(0.0175)\\ 0.2826(0.0218)\\ 0.8962(0.009)\\ \hline 0.6564(0.0204)\\ 0.3329(0.0249)\\ 0.8801(0.0083)\\ \hline \end{array}$	$\begin{array}{c} 0.1(0.0098)\\ \hline 0.958(0.0055)\\ \hline 0.935(0.0043)\\ \hline 0.0868(0.0057)\\ \hline 0.9736(0.0031)\\ \hline 0.893(0.0106)\\ \hline 0.0958(0.0091)\\ \hline 0.9615(0.0049)\\ \hline 0.934(0.0045)\\ \hline 0.0887(0.006)\\ \hline 0.9727(0.0048)\\ \hline 0.8936(0.0088)\\ \hline 0.0961(0.0085)\\ \hline 0.959(0.0055)\\ \hline \end{array}$	$\begin{array}{c} 0.0573(0.0048)\\ \hline 0.9777(0.0036)\\ \hline 0.9597(0.0039)\\ \hline 0.0556(0.0051)\\ \hline 0.9853(0.0025)\\ \hline 0.9377(0.0059)\\ \hline 0.0572(0.0057)\\ \hline 0.9773(0.003)\\ \hline 0.9599(0.0047)\\ \hline 0.0553(0.0058)\\ \hline 0.9857(0.0025)\\ \hline 0.9386(0.0084)\\ \hline 0.0562(0.0076)\\ \hline 0.9766(0.0052)\\ \end{array}$	$\begin{array}{c} 0.0431(0.0039)\\ 0.9823(0.0027)\\ 0.9716(0.0025)\\ 0.0399(0.0035)\\ 0.9911(0.0018)\\ 0.9553(0.0043)\\ 0.0418(0.0041)\\ 0.9836(0.0021)\\ 0.9714(0.0022)\\ 0.0403(0.0031)\\ 0.9906(0.0014)\\ 0.9536(0.0068)\\ 0.0429(0.0056)\\ 0.9813(0.005)\\ \end{array}$	$\begin{array}{c} 0.0365(0.0044)\\ 0.9847(0.0031)\\ 0.9769(0.0023)\\ 0.0329(0.0032)\\ 0.9918(0.0034)\\ 0.9631(0.005)\\ 0.0347(0.0039)\\ 0.986(0.0028)\\ 0.9767(0.0019)\\ 0.033(0.0027)\\ 0.993(0.0015)\\ 0.9638(0.0043)\\ 0.0342(0.0039)\\ 0.9855(0.0045)\\ \end{array}$
	$\begin{array}{c} IGD+\\ \overline{MS}\\ \hline HVR\\ \overline{IGD+}\\ \overline{MS}\\ \hline HVR\\ \hline HVR\\ \hline MS\\ \hline HVR\\ \hline \end{array}$	$\begin{array}{c} 0.3342(0.0314)\\ 0.8763(0.008)\\ \hline 0.7754(0.0153)\\ 0.2723(0.0191)\\ 0.8991(0.0064)\\ \hline 0.6309(0.0203)\\ 0.3286(0.0256)\\ 0.8718(0.009)\\ \hline 0.7707(0.0175)\\ 0.2826(0.0218)\\ 0.8962(0.009)\\ \hline 0.6564(0.0204)\\ 0.3329(0.0249)\\ 0.8801(0.0083)\\ \hline 0.7851(0.0146)\\ \hline \end{array}$	$\begin{array}{c} 0.1(0.0098)\\ \hline 0.958(0.0055)\\ \hline 0.935(0.0043)\\ 0.0868(0.0057)\\ \hline 0.9736(0.0031)\\ \hline 0.893(0.0106)\\ 0.0958(0.0091)\\ \hline 0.9615(0.0049)\\ \hline 0.934(0.0045)\\ \hline 0.0887(0.006)\\ \hline 0.9727(0.0048)\\ \hline 0.8936(0.0088)\\ \hline 0.0961(0.0085)\\ \hline 0.9385(0.004)\\ \hline \end{array}$	$\begin{array}{c} 0.0573(0.0048)\\ \hline 0.9777(0.0036)\\ \hline 0.9597(0.0039)\\ \hline 0.0556(0.0051)\\ \hline 0.9853(0.0025)\\ \hline 0.9377(0.0059)\\ \hline 0.0572(0.0057)\\ \hline 0.9773(0.003)\\ \hline 0.9773(0.003)\\ \hline 0.9599(0.0047)\\ \hline 0.0553(0.0058)\\ \hline 0.9857(0.0025)\\ \hline 0.9386(0.0084)\\ \hline 0.0562(0.0076)\\ \hline 0.9766(0.0052)\\ \hline 0.9635(0.0025)\\ \hline \end{array}$	$\begin{array}{c} 0.0431(0.0039)\\ 0.9823(0.0027)\\ 0.9716(0.0025)\\ 0.0399(0.0035)\\ 0.9911(0.0018)\\ 0.9553(0.0043)\\ 0.0418(0.0041)\\ 0.9836(0.0021)\\ 0.9714(0.0022)\\ 0.0403(0.0031)\\ 0.9906(0.0014)\\ 0.9536(0.0068)\\ 0.0429(0.0056)\\ 0.9813(0.005)\\ 0.9725(0.0028)\\ \end{array}$	$\begin{array}{c} 0.0365(0.0044)\\ 0.9847(0.0031)\\ 0.9769(0.0023)\\ 0.0329(0.0032)\\ 0.9918(0.0034)\\ 0.9631(0.005)\\ 0.0347(0.0039)\\ 0.986(0.0028)\\ 0.9767(0.0019)\\ 0.033(0.0027)\\ 0.993(0.0015)\\ 0.9638(0.0043)\\ 0.0342(0.0039)\\ 0.9855(0.0045)\\ 0.978(0.002)\\ \end{array}$
	$\begin{array}{c} IGD+\\ \overline{MS}\\ \hline HVR\\ \overline{IGD+}\\ \overline{MS}\\ \hline \end{array}$	$\begin{array}{c} 0.3342(0.0314)\\ 0.8763(0.008)\\ \hline 0.7754(0.0153)\\ 0.2723(0.0191)\\ 0.8991(0.0064)\\ \hline 0.6309(0.0203)\\ 0.3286(0.0256)\\ 0.8718(0.009)\\ \hline 0.7707(0.0175)\\ 0.2826(0.0218)\\ 0.8962(0.009)\\ \hline 0.6564(0.0204)\\ 0.3329(0.0249)\\ \hline 0.8801(0.0083)\\ \hline 0.7851(0.0146)\\ 0.2758(0.0198)\\ \hline 0.8502(0.0198)\\ \hline 0.8502(0$	$\begin{array}{c} 0.1(0.0098)\\ \hline 0.958(0.0055)\\ \hline 0.935(0.0043)\\ \hline 0.0868(0.0057)\\ \hline 0.9736(0.0031)\\ \hline 0.9736(0.0031)\\ \hline 0.993(0.0106)\\ \hline 0.0958(0.0091)\\ \hline 0.9615(0.0049)\\ \hline 0.934(0.0045)\\ \hline 0.0887(0.006)\\ \hline 0.9727(0.0048)\\ \hline 0.8936(0.0088)\\ \hline 0.0961(0.0085)\\ \hline 0.9385(0.004)\\ \hline 0.0833(0.0053)\\ \hline 0.0833(0.0053)\\ \hline \end{array}$	$\begin{array}{c} 0.0573(0.0048)\\ \hline 0.9777(0.0036)\\ \hline 0.9597(0.0039)\\ \hline 0.0556(0.0051)\\ \hline 0.9853(0.0025)\\ \hline 0.9377(0.0059)\\ \hline 0.0572(0.0057)\\ \hline 0.9773(0.003)\\ \hline 0.9773(0.003)\\ \hline 0.9599(0.0047)\\ \hline 0.0553(0.0058)\\ \hline 0.9857(0.0025)\\ \hline 0.9386(0.0084)\\ \hline 0.0562(0.0076)\\ \hline 0.9766(0.0052)\\ \hline 0.9635(0.0025)\\ \hline 0.9635(0.0025)\\ \hline 0.0511(0.0035)\\ \hline 0.0511($	$\begin{array}{c} 0.0431(0.0039)\\ 0.9823(0.0027)\\ 0.9716(0.0025)\\ 0.0399(0.0035)\\ 0.9911(0.0018)\\ 0.9553(0.0043)\\ 0.0418(0.0041)\\ 0.9836(0.0021)\\ 0.9714(0.0022)\\ 0.0403(0.0031)\\ 0.9906(0.0014)\\ 0.9536(0.0068)\\ 0.0429(0.0056)\\ 0.9813(0.005)\\ 0.9725(0.0028)\\ 0.0392(0.0038)\\ 0.0392(0.0038)\\ 0.0038(0.0038)\\ 0.0$	$\begin{array}{c} 0.0365(0.0044)\\ 0.9847(0.0031)\\ 0.9769(0.0023)\\ 0.0329(0.0032)\\ 0.9918(0.0034)\\ 0.9631(0.005)\\ 0.0347(0.0039)\\ 0.986(0.0028)\\ 0.9767(0.0019)\\ 0.033(0.0027)\\ 0.993(0.0015)\\ 0.9638(0.0043)\\ 0.0342(0.0039)\\ 0.9855(0.0045)\\ 0.978(0.002)\\ 0.0316(0.0027)\\ 0.0316(0.0027)\\ 0.0000\\ 0.0$
	$\begin{array}{c} IGD+\\ \overline{MS}\\ \hline HVR\\ \overline{IGD+}\\ \overline{MS}\\ \hline \end{array}$	$\begin{array}{c} 0.3342(0.0314)\\ 0.8763(0.008)\\ \hline 0.7754(0.0153)\\ 0.2723(0.0191)\\ 0.8991(0.0064)\\ \hline 0.6309(0.0203)\\ 0.3286(0.0256)\\ 0.8718(0.009)\\ \hline 0.7707(0.0175)\\ 0.2826(0.0218)\\ 0.8962(0.009)\\ \hline 0.6564(0.0204)\\ 0.3329(0.0249)\\ 0.8801(0.0083)\\ \hline 0.7851(0.0146)\\ 0.2758(0.0198)\\ 0.8932(0.0081)\\ \hline \end{array}$	$\begin{array}{c} 0.1(0.0098)\\ 0.958(0.0055)\\ 0.935(0.0043)\\ 0.0868(0.0057)\\ 0.9736(0.0031)\\ 0.893(0.0106)\\ 0.0958(0.0091)\\ 0.9615(0.0049)\\ 0.934(0.0045)\\ 0.0887(0.006)\\ 0.9727(0.0048)\\ 0.8936(0.0088)\\ 0.0961(0.0085)\\ 0.959(0.0055)\\ 0.9385(0.004)\\ 0.0833(0.0053)\\ 0.9722(0.0036)\\ \end{array}$	$\begin{array}{c} 0.0573(0.0048)\\ 0.9777(0.0036)\\ 0.9597(0.0039)\\ 0.0556(0.0051)\\ 0.9853(0.0025)\\ 0.9377(0.0059)\\ 0.0572(0.0057)\\ 0.9773(0.003)\\ 0.9599(0.0047)\\ 0.0553(0.0058)\\ 0.9857(0.0025)\\ 0.9386(0.0084)\\ 0.0562(0.0076)\\ 0.9766(0.0052)\\ 0.9635(0.0025)\\ 0.0511(0.0035)\\ 0.9843(0.0025)\\ \end{array}$	$\begin{array}{c} 0.0431(0.0039)\\ 0.9823(0.0027)\\ 0.9716(0.0025)\\ 0.0399(0.0035)\\ 0.9911(0.0018)\\ 0.9553(0.0043)\\ 0.0418(0.0041)\\ 0.9836(0.0021)\\ 0.9714(0.0022)\\ 0.0403(0.0031)\\ 0.9906(0.0014)\\ 0.9536(0.0068)\\ 0.0429(0.0056)\\ 0.9813(0.005)\\ 0.9725(0.0028)\\ 0.0392(0.0038)\\ 0.9882(0.0022)\\ \end{array}$	$\begin{array}{c} 0.0365(0.0044)\\ 0.9847(0.0031)\\ 0.9769(0.0023)\\ 0.0329(0.0032)\\ 0.9918(0.0034)\\ 0.9631(0.005)\\ 0.0347(0.0039)\\ 0.986(0.0028)\\ 0.9767(0.0019)\\ 0.033(0.0027)\\ 0.993(0.0015)\\ 0.9638(0.0043)\\ 0.0342(0.0039)\\ 0.9855(0.0045)\\ 0.978(0.002)\\ 0.0316(0.0027)\\ 0.9918(0.0018)\\ \end{array}$
	$\begin{array}{c} IGD+\\ \overline{MS}\\ \hline HVR\\ \overline{IGD+}\\ \overline{MS}\\ \hline HVR\\ \hline \overline{IGD+}\\ \overline{MS}\\ \hline \overline{HVR}\\ \hline \overline{HVR}\\ \overline{HVR}\\$	$\begin{array}{c} 0.3342(0.0314)\\ 0.8763(0.008)\\ \hline 0.7754(0.0153)\\ 0.2723(0.0191)\\ 0.8991(0.0064)\\ \hline 0.6309(0.0203)\\ 0.3286(0.0256)\\ 0.8718(0.009)\\ \hline 0.7707(0.0175)\\ 0.2826(0.0218)\\ 0.8962(0.009)\\ \hline 0.6564(0.0204)\\ 0.3329(0.0249)\\ \hline 0.8801(0.0083)\\ \hline 0.7851(0.0146)\\ 0.2758(0.0198)\\ \hline 0.8932(0.0081)\\ \hline 0.6599(0.0206)\\ \hline 0.2000(0.0006)\\ \hline 0.6599(0.0206)\\ \hline 0.02000(0.0006)\\ \hline 0.6599(0.0206)\\ \hline 0.02000(0.0006)\\ \hline 0.00000(0.0006)\\ \hline 0.0000(0.0006)\\ \hline 0.00000(0.0006)\\ \hline 0.00000(0.0006)\\ \hline 0.00000(0.0006)\\ \hline 0.0000(0.0006)\\ \hline 0.0000(0.0006)\\ \hline 0.0000(0.0006)\\ \hline 0.00000(0.0006)\\ \hline 0.0000(0.0006)\\ \hline 0.000(0.0006)\\ \hline 0.000(0.0006)\\ \hline 0.000(0.0006)\\ \hline 0.000(0.00$	$\begin{array}{c} 0.1(0.0098)\\ 0.958(0.0055)\\ 0.935(0.0043)\\ 0.0868(0.0057)\\ 0.9736(0.0031)\\ 0.893(0.0106)\\ 0.0958(0.0091)\\ 0.9615(0.0049)\\ 0.934(0.0045)\\ 0.0887(0.006)\\ 0.9727(0.0048)\\ 0.8936(0.0088)\\ 0.0961(0.0085)\\ 0.959(0.0055)\\ 0.9385(0.004)\\ 0.0833(0.0053)\\ 0.9722(0.0036)\\ 0.8991(0.0075)\\ \end{array}$	$\begin{array}{c} 0.0573(0.0048)\\ 0.9777(0.0036)\\ 0.9597(0.0039)\\ 0.0556(0.0051)\\ 0.9853(0.0025)\\ 0.9377(0.0059)\\ 0.0572(0.0057)\\ 0.9773(0.003)\\ 0.9599(0.0047)\\ 0.0553(0.0058)\\ 0.9857(0.0025)\\ 0.9386(0.0084)\\ 0.0562(0.0076)\\ 0.9766(0.0052)\\ 0.9635(0.0025)\\ 0.9635(0.0025)\\ 0.9843(0.0025)\\ 0.9404(0.005)$	$\begin{array}{c} 0.0431(0.0039)\\ 0.9823(0.0027)\\ 0.9716(0.0025)\\ 0.0399(0.0035)\\ 0.9911(0.0018)\\ 0.9553(0.0043)\\ 0.0418(0.0041)\\ 0.9836(0.0021)\\ 0.9714(0.0022)\\ 0.0403(0.0031)\\ 0.9906(0.0014)\\ 0.9536(0.0068)\\ 0.0429(0.0056)\\ 0.9813(0.005)\\ 0.9725(0.0028)\\ 0.0392(0.0038)\\ 0.9882(0.0022)\\ 0.956(0.0049)$	$\begin{array}{c} 0.0365(0.0044)\\ 0.9847(0.0031)\\ 0.9769(0.0023)\\ 0.0329(0.0032)\\ 0.9918(0.0034)\\ 0.9631(0.005)\\ 0.0347(0.0039)\\ 0.986(0.0028)\\ 0.9767(0.0019)\\ 0.033(0.0027)\\ 0.993(0.0015)\\ 0.9638(0.0043)\\ 0.0342(0.0039)\\ 0.9855(0.0045)\\ 0.978(0.002)\\ 0.0316(0.0027)\\ 0.9918(0.0018)\\ 0.9641(0.005)\\ \end{array}$
	$\begin{array}{c} IGD+\\ \overline{MS}\\ \hline HVR\\ \overline{IGD+}\\ \overline{MS}\\ \hline \overline{MS}\\ \hline HVR\\ \overline{IGD+}\\ \overline{MS}\\ \hline \overline{MS}\\ \hline \overline{MS}\\ \hline HVR\\ \overline{IGD+}\\ \overline{MS}\\ \hline \overline{MS}\\ MS$	$\begin{array}{c} 0.3342(0.0314)\\ 0.8763(0.008)\\ \hline 0.7754(0.0153)\\ 0.2723(0.0191)\\ 0.8991(0.0064)\\ \hline 0.6309(0.0203)\\ 0.3286(0.0256)\\ 0.8718(0.009)\\ \hline 0.7707(0.0175)\\ 0.2826(0.0218)\\ \hline 0.8962(0.009)\\ \hline 0.6564(0.0204)\\ 0.3329(0.0249)\\ \hline 0.8801(0.0083)\\ \hline 0.7851(0.0146)\\ 0.2758(0.0198)\\ \hline 0.8932(0.0081)\\ \hline 0.6599(0.0206)\\ \hline 0.3204(0.0242)\\ \hline 0.3204(0.0242)\\ \hline 0.6564(0.0242)\\ \hline 0.8204(0.0242)\\ \hline 0.8204$	$\begin{array}{c} 0.1(0.0098)\\ 0.958(0.0055)\\ 0.935(0.0043)\\ 0.0868(0.0057)\\ 0.9736(0.0031)\\ 0.893(0.0106)\\ 0.0958(0.0091)\\ 0.9615(0.0049)\\ 0.934(0.0045)\\ 0.0887(0.006)\\ 0.9727(0.0048)\\ 0.8936(0.0088)\\ 0.0961(0.0085)\\ 0.959(0.0055)\\ 0.9385(0.004)\\ 0.0833(0.0053)\\ 0.9722(0.0036)\\ 0.8991(0.0075)\\ 0.092(0.0073)\\ 0.092(0.0073)\\ 0.092(0.0073)\\ 0.0958(0.004)\\ 0.00050(0.0073)\\ 0.092(0.0073)\\ 0.00000000000000000000000000000000000$	$\begin{array}{c} 0.0573(0.0048)\\ 0.9777(0.0036)\\ 0.9597(0.0039)\\ 0.0556(0.0051)\\ 0.9853(0.0025)\\ 0.9377(0.0059)\\ 0.0572(0.0057)\\ 0.9773(0.003)\\ 0.9773(0.003)\\ 0.9599(0.0047)\\ 0.0553(0.0058)\\ 0.9857(0.0025)\\ 0.9386(0.0084)\\ 0.0562(0.0076)\\ 0.9766(0.0052)\\ 0.9635(0.0025)\\ 0.9843(0.0025)\\ 0.9404(0.005)\\ 0.9563(0.0041)\\ 0.0563(0.0$	$\begin{array}{c} 0.0431(0.0039)\\ 0.9823(0.0027)\\ 0.9716(0.0025)\\ 0.0399(0.0035)\\ 0.9911(0.0018)\\ 0.9553(0.0043)\\ 0.0418(0.0041)\\ 0.9836(0.0021)\\ 0.9714(0.0022)\\ 0.0403(0.0031)\\ 0.9906(0.0014)\\ 0.9906(0.0014)\\ 0.9536(0.0068)\\ 0.0429(0.0056)\\ 0.9813(0.005)\\ 0.9725(0.0028)\\ 0.0392(0.0038)\\ 0.9882(0.0022)\\ 0.956(0.0049)\\ 0.0418(0.0048)\\ 0.0418(0.$	$\begin{array}{c} 0.0365(0.0044)\\ 0.9847(0.0031)\\ 0.9769(0.0023)\\ 0.0329(0.0032)\\ 0.9918(0.0034)\\ 0.9631(0.005)\\ 0.0347(0.0039)\\ 0.986(0.0028)\\ 0.9767(0.0019)\\ 0.033(0.0027)\\ 0.993(0.0015)\\ 0.993(0.0015)\\ 0.9638(0.0043)\\ 0.0342(0.0039)\\ 0.9855(0.0045)\\ 0.978(0.002)\\ 0.0316(0.0027)\\ 0.9918(0.0018)\\ 0.9641(0.005)\\ 0.035(0.0049)\\ 0.035(0.0049)\\ 0.035(0.0049)\\ 0.035(0.0049)\\ 0.0035(0.0049)\\ 0.00000000000000000000000000000000000$
	$\begin{array}{c} IGD+\\ \overline{MS}\\ \hline HVR\\ \overline{IGD+}\\ \overline{MS}\\ \overline{MS}\\ \hline HVR\\ \overline{IGD+}\\ \overline{MS}\\ \overline{MS}\\ \hline HVR\\ \overline{IGD+}\\ \overline{MS}\\ $	$\begin{array}{c} 0.3342(0.0314)\\ 0.8763(0.008)\\ \hline 0.7754(0.0153)\\ 0.2723(0.0191)\\ 0.8991(0.0064)\\ \hline 0.6309(0.0203)\\ 0.3286(0.0256)\\ 0.8718(0.009)\\ \hline 0.7707(0.0175)\\ 0.2826(0.0218)\\ \hline 0.8962(0.009)\\ \hline 0.6564(0.0204)\\ 0.3329(0.0249)\\ \hline 0.8801(0.0083)\\ \hline 0.7851(0.0146)\\ 0.2758(0.0198)\\ \hline 0.8932(0.0081)\\ \hline 0.6599(0.0206)\\ \hline 0.3204(0.0242)\\ \hline 0.8747(0.0083)\\ \hline 0.8747$	$\begin{array}{c} 0.1(0.0098)\\ \hline 0.958(0.0055)\\ \hline 0.935(0.0043)\\ \hline 0.0868(0.0057)\\ \hline 0.9736(0.0031)\\ \hline 0.9736(0.0031)\\ \hline 0.9736(0.0031)\\ \hline 0.993(0.0106)\\ \hline 0.0958(0.0091)\\ \hline 0.9615(0.0049)\\ \hline 0.934(0.0045)\\ \hline 0.0887(0.006)\\ \hline 0.9727(0.0048)\\ \hline 0.936(0.0088)\\ \hline 0.0961(0.0085)\\ \hline 0.9385(0.004)\\ \hline 0.09385(0.004)\\ \hline 0.0833(0.0053)\\ \hline 0.9722(0.0036)\\ \hline 0.8991(0.0075)\\ \hline 0.09615(0.0053)\\ \hline 0.9615(0.0053)\\ \hline 0.959(0.0053)\\ \hline 0.950(0.0053)\\ \hline 0.9$	$\begin{array}{c} 0.0573(0.0048)\\ 0.9777(0.0036)\\ 0.9597(0.0039)\\ 0.0556(0.0051)\\ 0.9853(0.0025)\\ 0.9377(0.0059)\\ 0.0572(0.0057)\\ 0.9773(0.003)\\ 0.9773(0.003)\\ 0.9599(0.0047)\\ 0.0553(0.0058)\\ 0.9857(0.0025)\\ 0.9386(0.0084)\\ 0.0562(0.0076)\\ 0.9766(0.0052)\\ 0.9635(0.0025)\\ 0.9635(0.0025)\\ 0.9843(0.0025)\\ 0.9843(0.0025)\\ 0.9404(0.005)\\ 0.9765(0.0045)\\ 0.975(0.0045)\\ $	$\begin{array}{c} 0.0431(0.0039)\\ 0.9823(0.0027)\\ 0.9716(0.0025)\\ 0.0399(0.0035)\\ 0.9911(0.0018)\\ 0.9553(0.0043)\\ 0.0418(0.0041)\\ 0.9836(0.0021)\\ 0.9714(0.0022)\\ 0.0403(0.0031)\\ 0.9906(0.0014)\\ 0.9536(0.0068)\\ 0.0429(0.0056)\\ 0.9813(0.005)\\ 0.9725(0.0028)\\ 0.0392(0.0038)\\ 0.9882(0.0022)\\ 0.956(0.0049)\\ 0.0418(0.0048)\\ 0.9823(0.0055)\\ \end{array}$	$\begin{array}{c} 0.0365(0.0044)\\ 0.9847(0.0031)\\ 0.9769(0.0023)\\ 0.0329(0.0032)\\ 0.9918(0.0034)\\ 0.9631(0.005)\\ 0.0347(0.0039)\\ 0.986(0.0028)\\ 0.9767(0.0019)\\ 0.033(0.0027)\\ 0.993(0.0015)\\ 0.993(0.0015)\\ 0.9638(0.0043)\\ 0.0342(0.0039)\\ 0.9855(0.0045)\\ 0.978(0.002)\\ 0.0316(0.0027)\\ 0.9918(0.0018)\\ 0.9918(0.0018)\\ 0.9641(0.005)\\ 0.035(0.0049)\\ 0.9839(0.0073)\\ $
	$\begin{array}{c} IGD+\\ \overline{MS}\\ \hline HVR\\ \overline{IGD+}\\ \overline{MS}\\ \hline HVR\\ \overline{IGD+}\\ \overline{MS}\\ \hline HVR\\ \overline{IGD+}\\ \overline{MS}\\ \hline HVR\\ \overline{IGD+}\\ \overline{MS}\\ \hline \overline{HVR}\\ HV$	$\begin{array}{c} 0.3342(0.0314)\\ 0.8763(0.008)\\ \hline 0.7754(0.0153)\\ 0.2723(0.0191)\\ 0.8991(0.0064)\\ \hline 0.6309(0.0203)\\ 0.3286(0.0256)\\ 0.8718(0.009)\\ \hline 0.7707(0.0175)\\ 0.2826(0.0218)\\ \hline 0.8962(0.009)\\ \hline 0.6564(0.0204)\\ 0.3329(0.0249)\\ \hline 0.8801(0.0083)\\ \hline 0.7851(0.0146)\\ 0.2758(0.0198)\\ \hline 0.8932(0.0081)\\ \hline 0.6599(0.0206)\\ \hline 0.3204(0.0242)\\ \hline 0.8747(0.0083)\\ \hline 0.7854(0.0127)\\ \hline \end{array}$	$\begin{array}{c} 0.1(0.0098)\\ 0.958(0.0055)\\ 0.935(0.0043)\\ 0.0868(0.0057)\\ 0.9736(0.0031)\\ 0.893(0.0106)\\ 0.0958(0.0091)\\ 0.9615(0.0049)\\ 0.934(0.0045)\\ 0.0887(0.006)\\ 0.9727(0.0048)\\ 0.8936(0.0088)\\ 0.0961(0.0085)\\ 0.959(0.0055)\\ 0.9385(0.004)\\ 0.0833(0.0053)\\ 0.9722(0.0036)\\ 0.8991(0.0075)\\ 0.092(0.0073)\\ 0.9377(0.005)\\ \end{array}$	$\begin{array}{c} 0.0573(0.0048)\\ 0.9777(0.0036)\\ 0.9597(0.0039)\\ 0.0556(0.0051)\\ 0.9853(0.0025)\\ 0.9377(0.0059)\\ 0.0572(0.0057)\\ 0.9773(0.003)\\ 0.9773(0.003)\\ 0.9599(0.0047)\\ 0.0553(0.0058)\\ 0.9857(0.0025)\\ 0.9386(0.0084)\\ 0.0562(0.0076)\\ 0.9766(0.0052)\\ 0.9635(0.0025)\\ 0.9635(0.0025)\\ 0.9843(0.0025)\\ 0.9843(0.0025)\\ 0.9843(0.0025)\\ 0.9404(0.005)\\ 0.9628(0.0041)\\ 0.9628(0.0033)\\ \end{array}$	$\begin{array}{c} 0.0431(0.0039)\\ 0.9823(0.0027)\\ 0.9716(0.0025)\\ 0.0399(0.0035)\\ 0.9911(0.0018)\\ 0.9553(0.0043)\\ 0.0418(0.0041)\\ 0.9836(0.0021)\\ 0.9714(0.0022)\\ 0.0403(0.0031)\\ 0.9906(0.0014)\\ 0.9536(0.0068)\\ 0.0429(0.0056)\\ 0.9813(0.005)\\ 0.9725(0.0028)\\ 0.0392(0.0038)\\ 0.9822(0.0022)\\ 0.956(0.0049)\\ 0.0418(0.0048)\\ 0.9823(0.0055)\\ 0.9741(0.0021)\\ \end{array}$	$\begin{array}{c} 0.0365(0.0044)\\ 0.9847(0.0031)\\ 0.9769(0.0023)\\ 0.0329(0.0032)\\ 0.9918(0.0034)\\ 0.9631(0.005)\\ 0.0347(0.0039)\\ 0.986(0.0028)\\ 0.9767(0.0019)\\ 0.033(0.0027)\\ 0.993(0.0015)\\ 0.993(0.0015)\\ 0.9638(0.0043)\\ 0.0342(0.0039)\\ 0.9855(0.0045)\\ 0.978(0.002)\\ 0.0316(0.0027)\\ 0.9918(0.0018)\\ 0.9918(0.0018)\\ 0.9641(0.005)\\ 0.035(0.0049)\\ 0.9839(0.0073)\\ 0.9785(0.002)\\ 0$
	$\begin{array}{c} IGD+\\ \overline{MS}\\ \hline\\ \overline{HVR}\\ \overline{IGD+}\\ \overline{MS}\\ \hline\\ \overline{HVR}\\ \overline{IGD+}\\ \overline{MS}\\ \hline\\ \overline{HVR}\\ \overline{IGD+}\\ \overline{MS}\\ \hline\\ \overline{HVR}\\ \hline\\ \overline{IGD+}\\ \overline{MS}\\ \hline\\ \overline{HVR}\\ \overline{IGD+}\\ \overline{MS}\\ \hline\\ \overline{MS}\\ \hline\\ \overline{HVR}\\ \overline{IGD+}\\ \overline{MS}\\ \hline\\ \overline{MS}\\ \hline\\ \overline{HVR}\\ \overline{IGD+}\\ \overline{MS}\\ \overline{MS}\\ \hline\\ \overline{HVR}\\ \overline{IGD+}\\ \overline{MS}\\ \overline{MS}\\ \overline{HVR}\\ \overline{IGD+}\\ \overline{MS}\\ \overline{MS}\\ \overline{HVR}\\ \overline{IGD+}\\ \overline{MS}\\ M$	$\begin{array}{c} 0.3342(0.0314)\\ 0.8763(0.008)\\ \hline 0.7754(0.0153)\\ 0.2723(0.0191)\\ 0.8991(0.0064)\\ \hline 0.6309(0.0203)\\ 0.3286(0.0256)\\ \hline 0.8718(0.009)\\ \hline 0.7707(0.0175)\\ 0.2826(0.0218)\\ 0.8962(0.009)\\ \hline 0.6564(0.0204)\\ 0.3329(0.0249)\\ \hline 0.8801(0.0083)\\ \hline 0.7851(0.0146)\\ 0.2758(0.0198)\\ \hline 0.8932(0.0081)\\ \hline 0.6599(0.0206)\\ 0.3204(0.0242)\\ 0.8747(0.0083)\\ \hline 0.7854(0.0127)\\ 0.2755(0.0158)\\ \hline \end{array}$	$\begin{array}{c} 0.1(0.0098)\\ 0.958(0.0055)\\ 0.935(0.0043)\\ 0.0868(0.0057)\\ 0.9736(0.0031)\\ 0.9736(0.0031)\\ 0.893(0.0106)\\ 0.0958(0.0091)\\ 0.9615(0.0049)\\ 0.934(0.0045)\\ 0.0887(0.006)\\ 0.9727(0.0048)\\ 0.8936(0.0088)\\ 0.0961(0.0085)\\ 0.959(0.0055)\\ 0.9385(0.004)\\ 0.0833(0.0053)\\ 0.9722(0.0036)\\ 0.8991(0.0075)\\ 0.092(0.0073)\\ 0.9377(0.005)\\ 0.0851(0.0067)\\ \end{array}$	$\begin{array}{c} 0.0573(0.0048)\\ 0.9777(0.0036)\\ 0.9597(0.0039)\\ 0.0556(0.0051)\\ 0.9853(0.0025)\\ 0.9377(0.0059)\\ 0.0572(0.0057)\\ 0.9773(0.003)\\ 0.9773(0.003)\\ 0.9599(0.0047)\\ 0.0553(0.0058)\\ 0.9857(0.0025)\\ 0.9386(0.0084)\\ 0.0562(0.0076)\\ 0.9766(0.0052)\\ 0.9635(0.0025)\\ 0.9635(0.0025)\\ 0.9843(0.0025)\\ 0.9843(0.0025)\\ 0.9843(0.0025)\\ 0.9843(0.0041)\\ 0.9765(0.0045)\\ 0.9628(0.0033)\\ 0.0518(0.0045)\\ \end{array}$	$\begin{array}{c} 0.0431(0.0039)\\ 0.9823(0.0027)\\ 0.9716(0.0025)\\ 0.0399(0.0035)\\ 0.9911(0.0018)\\ 0.9553(0.0043)\\ 0.0418(0.0041)\\ 0.9836(0.0021)\\ 0.9714(0.0022)\\ 0.0403(0.0031)\\ 0.9906(0.0014)\\ 0.9536(0.0068)\\ 0.0429(0.0056)\\ 0.9813(0.005)\\ 0.9813(0.005)\\ 0.9822(0.0022)\\ 0.9882(0.0022)\\ 0.986(0.0049)\\ 0.0418(0.0048)\\ 0.9823(0.0055)\\ 0.9741(0.0021)\\ 0.0368(0.0031)\\ 0.008(0.0031)\\ 0.008(0.008$	$\begin{array}{c} 0.0365(0.0044)\\ 0.9847(0.0031)\\ 0.9769(0.0023)\\ 0.0329(0.0032)\\ 0.9918(0.0034)\\ 0.9631(0.005)\\ 0.0347(0.0039)\\ 0.986(0.0028)\\ 0.9767(0.0019)\\ 0.033(0.0027)\\ 0.993(0.0015)\\ 0.993(0.0015)\\ 0.9638(0.0043)\\ 0.0342(0.0039)\\ 0.9855(0.0045)\\ 0.978(0.002)\\ 0.0316(0.0027)\\ 0.9918(0.0018)\\ 0.9918(0.0018)\\ 0.9641(0.005)\\ 0.035(0.0049)\\ 0.9785(0.002)\\ 0.9785(0.002)\\ 0.9785(0.002)\\ 0.0307(0.0027)\\ 0.90307(0.0027)\\ 0.0307(0.0027)\\ 0.000020\\ 0.00000000000000000000000000$

Figura 5.2: Valores normalizados de los indicadores sobre el máximo alcanzado en algún valor de ω para los problemas DCTP

Figura 5.3: Valores normalizados de los indicadores sobre el máximo alcanzado en algún valor de ω para los problemas FCCD.

Las Figuras $5.2 ext{ y } 5.3$ resumen los resultados estadísticos proporcionados por la Tabla 5.5. De lo anterior se puede concluir con lo siguiente:

- El aumento del valor de ω , en los problemas DCTP, produce una reducción en \overline{MS} aún en problemas con buenos valores de \overline{HVR} y $\overline{IGD+}$, por lo que se entiende que usar un enfoque elitista puede ocasionar la pérdida de los extremos de los POFs con I-CGDE3.
- Aun cuando los valores de IGD+ sean muy similares entre sí para todos los problemas en FCCD al variar ω, esto no ocurre en los indicadores HVR y MS, ya que para los problemas FCCD 2, 4, 6 y 8 es más complicado obtener buenas aproximaciones a sus POFs cuando no se considera un enfoque elitista.
- Un mecanismo elitista en I-CGDE3 permite obtener resultados significativamente mejores en problemas que priorizaran la convergencia, pero este mismo enfoque puede ocasionar pérdida de diversidad en el proceso de optimización. De lo anterior, se sugiere usar junto a I-CGDE3

una reacción al cambio con alta capacidad de preservación diversidad y un factor de mutación que proporcione una capacidad exploratoria conveniente dada la porción de soluciones factibles presentes en la población.

De manera particular, un valor grande de ω permite obtener resultados estadísticamente mejores con diferencias significativas en problemas con POFs discretos y regiones factibles cercanas a ellos (DCTP 3), debido a que el proceso de optimización se beneficia de la búsqueda alrededor de soluciones no dominadas al ser cierto que las soluciones óptimas son un conjunto de puntos aislados. El mismo efecto se presenta en problemas diseñados para medir la capacidad de convergencia de un algoritmo cuando el número de generaciones es reducido (FCCD), caso contrario para problemas de optimización en los que la preservación de diversidad juega un papel fundamental (DCTP 1, 4, 7 y 8).

Como es de esperarse, un balanceo entre diversidad y convergencia (valores de ω cercanos a 0.5) le permite a I-CGDE3 obtener mejores resultados en problemas de optimización cuyas restricciones generan espacios de búsqueda complejos y que pueden dar como resultado: POF's discontinuos y cercanos al POF no restringido (DCTP 2 y 7), POFs compuestos por partes continuas y discretas (DCTP 5) y problemas que debido a las restricciones poseen una región factible disconexa (DCTP 6 y 8).

5.4.2. Experimento II: Análisis estadístico comparativo de I-CGDE3 y otros DC-MOEAs con distintas frecuencias de cambio

Para los algoritmos DNSGA-II-A [53], DC-NSGA-II-A [54], DC-MOEA [23] y dCMOE[25] se usan los parámetros originales de cada artículo en el que fueron propuestos. Cada uno de los cuatro algoritmos mencionados anteriormente, fueron presentados en la Sección 3.4. No se incluyen las versiones B de DC-NSGA-II y DNSGA-II debido a que sus resultados fueron superados por aquellos de la versión A en ambos algoritmos.

Para mostrar la competitividad del algoritmo I-CGDE3 al resolver DCMOPs, se comparó la actuación de I-CGDE3 con los antes mencionados DCMOEAs, bajo distintas frecuencias de cambio. El conjunto de valores para los parámetros utilizados por I-GCDE3 en cada problema de prueba son descritos en a Tabla 5.6, en los tiempos mostrados por la Tabla 5.2

Las frecuencias de cambio y condiciones de paro para cada conjunto de problemas de prueba son las siguientes:

- DCTP: frecuencia de cambio de 2500, 5000 y 10000 evaluaciones con sus respectivas condiciones de paro de 10000, 20000 y 40000 evaluaciones.
- FCCD: frecuencia de cambio de 2000, 3000 y 4000 con 8000 evaluaciones únicamente para el tiempo t = 0, así las condiciones de paro son 50000, 71000 y 92000 evaluaciones respectivamente.

Las conclusiones obtenidas sobre el desempeño del algoritmo se basan en los resultados expuestos en las Tablas 5.7, 5.8, 5.9 y 5.10 y resumidas en las Tablas 5.11 y 5.12.

Parámetros	DCTP	FCCD
Tamaño de la población	100	200
Tamaño de la memoria	100	200
Factor de mutación inicial (F_0)	0.3	
Coeficiente de cruza (CR)	0.8	
ω	0.	.5

Tabla 5.6: Parámetros para I-CGDE3

Tabla 5.7: Media (μ) y desviación estándar (σ) de los resultados obtenidos en los problemas de prueba DCTP y FCCD en el formato " $\mu(\sigma)$ " para cada DCMOEA considerado usando el indicador \overline{HVR} . El simbolo " τ_t " hace referencia a la frecuencia de cambio medido en un número máximo de evaluaciones. Los mejores resultados se resaltan en negritas.

DC	fp $ au_t$	I-CGDE3	DCMOEA	dCMOEA	DC-NSGA-II-A	DNSGA-II-A
1	2500	0.9606(0.009)	0.9318(0.0083)	0.9398(0.0098)	0.9311(0.012)	0.9357(0.0129)
	5000	0.985(0.0031)	0.9783(0.0013)	0.9832(0.0029)	0.9782(0.0014)	0.9789(0.0005)
	10000	0.9911(0.0015)	0.9887(0.0006)	0.989(0.0006)	0.9875(0.0007)	0.9864(0.0014)
2	2500	0.9837(0.0024)	0.9693(0.0054)	0.9707(0.0056)	0.9701(0.0058)	0.9666(0.0045)
	5000	0.9939(0.0005)	0.9935(0.0092)	0.9907(0.0006)	0.9908(0.0008)	0.9867(0.003)
	10000	0.9968(0.0002)	0.9959(0.0004)	0.993(0.0008)	0.9954(0.0005)	0.9941(0.0008)
3	2500	0.9453(0.0038)	0.9073(0.063)	0.9321(0.0052)	0.9278(0.0046)	0.8955(0.049)
	5000	0.9658(0.003)	0.9507(0.0031)	0.9598(0.0028)	0.952(0.005)	0.9307(0.0282)
	10000	0.9823(0.0019)	0.9703(0.0027)	0.9735(0.0015)	0.9665(0.0028)	0.9619(0.0029)
4	2500	0.6881(0.0253)	0.7352(0.0828)	0.6463(0.0259)	0.7658(0.0883)	0.6671(0.0432)
	5000	0.7226(0.0336)	0.7686(0.1359)	0.7612(0.0164)	0.7756(0.0552)	0.695(0.0401)
	10000	0.7464(0.0427)	0.7831(0.1437)	0.7824(0.0158)	0.7815(0.0862)	0.7805(0.0303)
5	2500	0.9496(0.0037)	0.9346(0.0054)	0.9371(0.0053)	0.9342(0.0062)	0.9236(0.0373)
	5000	0.9665(0.0029)	0.959(0.0028)	0.9632(0.0022)	0.9588(0.0031)	0.9564(0.0031)
	10000	0.9757(0.0019)	0.9714(0.0024)	0.9727(0.0019)	0.9715(0.0029)	0.9718(0.0026)
6	2500	0.968(0.0022)	0.9578(0.0102)	0.4978(0.1754)	0.8399(0.1558)	0.4245(0.2242)
	5000	0.9803(0.0005)	0.9777(0.0023)	0.6365(0.2236)	0.9194(0.138)	0.484(0.1962)
	10000	0.9849(0.0004)	0.9844(0.0004)	0.5737(0.2554)	0.963(0.064)	0.4446(0.2083)
7	2500	0.9175(0.0236)	0.854(0.0248)	0.8352(0.0282)	0.8606(0.0265)	0.775(0.0536)
	5000	0.9725(0.0104)	0.9669(0.0075)	0.9788(0.0111)	0.9706(0.0059)	0.9764(0.0054)
	10000	0.9882(0.0066)	0.9956(0.0007)	0.9911(0.0026)	0.9947(0.002)	0.9927(0.0007)
8	2500	0.9498(0.035)	0.2893(0.199)	0.3664(0.2537)	0.1853(0.1032)	0.1119(0.1694)
	5000	0.9459(0.0765)	0.3662(0.1983)	0.4186(0.2913)	0.3118(0.2455)	0.1461(0.1501)
	10000	0.9693(0.0458)	0.4133(0.2705)	0.4939(0.2421)	0.3423(0.2192)	0.2605(0.2279)
						· · · · · ·
FCC	CD $ au_t$	I-CGDE3	DCMOEA	dCMOEA	DC-NSGA-II-A	DNSGA-II-A
FCC	$\frac{\text{CD } au_t}{2000}$	I-CGDE3 0.9356(0.0066)	DCMOEA 0.6376(0.0205)	dCMOEA 0.8846(0.0133)	DC-NSGA-II-A 0.4502(0.0372)	DNSGA-II-A 0.3935(0.0284)
FCC	$\frac{\text{CD} \ \tau_t}{2000}$	I-CGDE3 0.9356(0.0066) 0.9766(0.0026)	DCMOEA 0.6376(0.0205) 0.8025(0.0125)	dCMOEA 0.8846(0.0133) 0.9412(0.005)	DC-NSGA-II-A 0.4502(0.0372) 0.6599(0.0359)	DNSGA-II-A 0.3935(0.0284) 0.5471(0.0365)
FCC	$\begin{array}{c c} \text{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \end{array}$	I-CGDE3 0.9356(0.0066) 0.9766(0.0026) 0.9906(0.0006)	DCMOEA 0.6376(0.0205) 0.8025(0.0125) 0.913(0.007)	dCMOEA 0.8846(0.0133) 0.9412(0.005) 0.9533(0.003)	DC-NSGA-II-A 0.4502(0.0372) 0.6599(0.0359) 0.813(0.03)	DNSGA-II-A 0.3935(0.0284) 0.5471(0.0365) 0.8015(0.0258)
FC0 1 2	$\begin{array}{c c} \text{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \end{array}$	I-CGDE3 0.9356(0.0066) 0.9766(0.0026) 0.9906(0.0006) 0.9597(0.0039)	DCMOEA 0.6376(0.0205) 0.8025(0.0125) 0.913(0.007) 0.7732(0.0127)	dCMOEA 0.8846(0.0133) 0.9412(0.005) 0.9533(0.003) 0.9366(0.0047)	DC-NSGA-II-A 0.4502(0.0372) 0.6599(0.0359) 0.813(0.03) 0.5978(0.0358)	DNSGA-II-A 0.3935(0.0284) 0.5471(0.0365) 0.8015(0.0258) 0.5346(0.0378)
FC0 1 2	$\begin{array}{c c} \hline \text{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \end{array}$	I-CGDE3 0.9356(0.0066) 0.9766(0.0026) 0.9906(0.0006) 0.9597(0.0039) 0.9859(0.001)	DCMOEA 0.6376(0.0205) 0.8025(0.0125) 0.913(0.007) 0.7732(0.0127) 0.886(0.007)	$\begin{array}{c} d{\rm CMOEA} \\ \hline 0.8846(0.0133) \\ 0.9412(0.005) \\ 0.9533(0.003) \\ \hline 0.9366(0.0047) \\ 0.9663(0.0023) \end{array}$	$\begin{array}{c} \hline \text{DC-NSGA-II-A}\\ \hline 0.4502(0.0372)\\ \hline 0.6599(0.0359)\\ \hline 0.813(0.03)\\ \hline 0.5978(0.0358)\\ \hline 0.7775(0.0339) \end{array}$	DNSGA-II-A 0.3935(0.0284) 0.5471(0.0365) 0.8015(0.0258) 0.5346(0.0378) 0.7027(0.0309)
FC0 1 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I-CGDE3 0.9356(0.0066) 0.9766(0.0026) 0.9906(0.0006) 0.9597(0.0039) 0.9859(0.001) 0.9938(0.0006)	DCMOEA 0.6376(0.0205) 0.8025(0.0125) 0.913(0.007) 0.7732(0.0127) 0.886(0.007) 0.9524(0.0027)	$\begin{array}{c} d{\rm CMOEA} \\ \hline 0.8846(0.0133) \\ 0.9412(0.005) \\ 0.9533(0.003) \\ \hline 0.9366(0.0047) \\ 0.9663(0.0023) \\ 0.9727(0.0011) \end{array}$	$\begin{array}{c} \hline \text{DC-NSGA-II-A}\\ \hline 0.4502(0.0372)\\ 0.6599(0.0359)\\ \hline 0.813(0.03)\\ \hline 0.5978(0.0358)\\ 0.7775(0.0339)\\ \hline 0.8918(0.0213)\\ \hline \end{array}$	DNSGA-II-A 0.3935(0.0284) 0.5471(0.0365) 0.8015(0.0258) 0.5346(0.0378) 0.7027(0.0309) 0.8893(0.0204)
FC0 1 2 3	$\begin{array}{c c} \hline \textbf{D} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \end{array}$	I-CGDE3 0.9356(0.0066) 0.9766(0.0026) 0.9906(0.0006) 0.9597(0.0039) 0.9859(0.001) 0.9938(0.0006) 0.9377(0.0059)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.8846(0.0133) \\ 0.9412(0.005) \\ 0.9533(0.003) \\ 0.9366(0.0047) \\ 0.9663(0.0023) \\ 0.9727(0.0011) \\ 0.8927(0.0088) \end{array}$	$\begin{array}{c} \hline \text{DC-NSGA-II-A}\\ \hline 0.4502(0.0372)\\ 0.6599(0.0359)\\ \hline 0.813(0.03)\\ \hline 0.5978(0.0358)\\ \hline 0.7775(0.0339)\\ \hline 0.8918(0.0213)\\ \hline 0.4374(0.0381)\\ \hline \end{array}$	DNSGA-II-A 0.3935(0.0284) 0.5471(0.0365) 0.8015(0.0258) 0.5346(0.0378) 0.7027(0.0309) 0.8893(0.0204) 0.4069(0.0281)
FC0 1 2 3	$\begin{array}{c c} \hline \text{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 3000 \\ \end{array}$	I-CGDE3 0.9356(0.0066) 0.9766(0.0026) 0.9906(0.0006) 0.9597(0.0039) 0.9859(0.001) 0.9938(0.0006) 0.9377(0.0059) 0.9769(0.0029)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.8846(0.0133) \\ 0.9412(0.005) \\ 0.9533(0.003) \\ \hline 0.9366(0.0047) \\ 0.9663(0.0023) \\ 0.9727(0.0011) \\ \hline 0.8927(0.0088) \\ 0.9435(0.0033) \end{array}$	$\begin{array}{r} \hline \text{DC-NSGA-II-A}\\ \hline 0.4502(0.0372)\\ 0.6599(0.0359)\\ \hline 0.813(0.03)\\ \hline 0.5978(0.0358)\\ \hline 0.7775(0.0339)\\ \hline 0.8918(0.0213)\\ \hline 0.4374(0.0381)\\ \hline 0.6483(0.0325)\\ \hline \end{array}$	DNSGA-II-A 0.3935(0.0284) 0.5471(0.0365) 0.8015(0.0258) 0.5346(0.0378) 0.7027(0.0309) 0.8893(0.0204) 0.4069(0.0281) 0.5572(0.0438)
FC0 1 2 3	$\begin{array}{c c} \hline \textbf{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline \end{array}$	I-CGDE3 0.9356(0.0066) 0.9766(0.0026) 0.9906(0.0006) 0.9597(0.0039) 0.9859(0.001) 0.9938(0.0006) 0.9377(0.0059) 0.9769(0.0029) 0.9904(0.0008)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} \hline d{\rm CMOEA} \\ \hline 0.8846(0.0133) \\ 0.9412(0.005) \\ 0.9533(0.003) \\ \hline 0.9366(0.0047) \\ 0.9663(0.0023) \\ 0.9727(0.0011) \\ \hline 0.8927(0.0088) \\ 0.9435(0.0033) \\ 0.9523(0.0021) \\ \hline \end{array}$	$\begin{array}{c} \hline \text{DC-NSGA-II-A}\\ \hline 0.4502(0.0372)\\ \hline 0.6599(0.0359)\\ \hline 0.813(0.03)\\ \hline 0.5978(0.0358)\\ \hline 0.7775(0.0339)\\ \hline 0.8918(0.0213)\\ \hline 0.4374(0.0381)\\ \hline 0.6483(0.0325)\\ \hline 0.8159(0.0293)\\ \hline \end{array}$	DNSGA-II-A 0.3935(0.0284) 0.5471(0.0365) 0.8015(0.0258) 0.5346(0.0378) 0.7027(0.0309) 0.8893(0.0204) 0.4069(0.0281) 0.5572(0.0438) 0.8125(0.0292)
FCC 1 2 3 4	$\begin{array}{c c} \hline \textbf{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline 2000 \\ \hline 2000 \\ \hline \end{array}$	$\begin{array}{r} \mbox{I-CGDE3} \\ \hline 0.9356(0.0066) \\ 0.9766(0.0026) \\ 0.9906(0.0006) \\ 0.9597(0.0039) \\ 0.9859(0.001) \\ 0.9938(0.0006) \\ 0.9377(0.0059) \\ 0.9769(0.0029) \\ 0.9904(0.0008) \\ 0.9599(0.0047) \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.8846(0.0133) \\ 0.9412(0.005) \\ 0.9533(0.003) \\ \hline 0.9366(0.0047) \\ 0.9663(0.0023) \\ 0.9727(0.0011) \\ \hline 0.8927(0.0088) \\ 0.9435(0.0033) \\ 0.9523(0.0021) \\ \hline 0.9387(0.0077) \\ \hline \end{array}$	$\begin{array}{c} \hline \text{DC-NSGA-II-A}\\ \hline 0.4502(0.0372)\\ \hline 0.6599(0.0359)\\ \hline 0.813(0.03)\\ \hline 0.5978(0.0358)\\ \hline 0.7775(0.0339)\\ \hline 0.8918(0.0213)\\ \hline 0.4374(0.0381)\\ \hline 0.6483(0.0325)\\ \hline 0.8159(0.0293)\\ \hline 0.5891(0.0447)\\ \hline \end{array}$	DNSGA-II-A 0.3935(0.0284) 0.5471(0.0365) 0.8015(0.0258) 0.5346(0.0378) 0.7027(0.0309) 0.8893(0.0204) 0.4069(0.0281) 0.5572(0.0438) 0.8125(0.0292) 0.5349(0.0398)
FCC 1 2 3 4	$\begin{array}{c c} \hline \textbf{D} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 3000 \\ \hline \end{array}$	I-CGDE3 0.9356(0.0066) 0.9766(0.0026) 0.9906(0.0006) 0.9597(0.0039) 0.9859(0.001) 0.9938(0.0006) 0.9377(0.0059) 0.9769(0.0029) 0.9904(0.0008) 0.9599(0.0047) 0.9856(0.0014)	$\begin{tabular}{ c c c c c c c } \hline DCMOEA \\ \hline 0.6376(0.0205) \\ \hline 0.8025(0.0125) \\ \hline 0.913(0.007) \\ \hline 0.9732(0.0127) \\ \hline 0.886(0.007) \\ \hline 0.9524(0.0027) \\ \hline 0.6334(0.0196) \\ \hline 0.8051(0.0111) \\ \hline 0.9149(0.0041) \\ \hline 0.7693(0.0116) \\ \hline 0.886(0.0054) \\ \hline \end{tabular}$	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.8846(0.0133) \\ 0.9412(0.005) \\ 0.9533(0.003) \\ 0.9366(0.0047) \\ 0.9663(0.0023) \\ 0.9727(0.0011) \\ 0.8927(0.0088) \\ 0.9435(0.0033) \\ 0.9523(0.0021) \\ 0.9387(0.0077) \\ 0.9672(0.0018) \end{array}$	$\begin{array}{c} \hline \text{DC-NSGA-II-A}\\ \hline 0.4502(0.0372)\\ 0.6599(0.0359)\\ 0.813(0.03)\\ \hline 0.5978(0.0358)\\ 0.7775(0.0339)\\ 0.8918(0.0213)\\ \hline 0.4374(0.0381)\\ 0.6483(0.0325)\\ 0.8159(0.0293)\\ \hline 0.5891(0.0447)\\ 0.7771(0.0352)\\ \end{array}$	DNSGA-II-A 0.3935(0.0284) 0.5471(0.0365) 0.8015(0.0258) 0.5346(0.0378) 0.7027(0.0309) 0.8893(0.0204) 0.4069(0.0281) 0.5572(0.0438) 0.8125(0.0292) 0.5349(0.0398) 0.6872(0.033)
FCC 1 2 3 4	$\begin{array}{c c} \hline {\rm CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline \end{array}$	I-CGDE3 0.9356(0.0066) 0.9766(0.0026) 0.9906(0.0006) 0.9597(0.0039) 0.9859(0.001) 0.9938(0.0006) 0.9377(0.0059) 0.9769(0.0029) 0.9599(0.0047) 0.9856(0.0014) 0.9939(0.0004)	$\begin{tabular}{ c c c c c c c } \hline DCMOEA \\ \hline 0.6376(0.0205) \\ \hline 0.8025(0.0125) \\ \hline 0.913(0.007) \\ \hline 0.7732(0.0127) \\ \hline 0.886(0.007) \\ \hline 0.9524(0.0027) \\ \hline 0.6334(0.0196) \\ \hline 0.8051(0.0111) \\ \hline 0.9149(0.0041) \\ \hline 0.7693(0.0116) \\ \hline 0.886(0.0054) \\ \hline 0.9518(0.004) \\ \hline \end{tabular}$	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.8846(0.0133) \\ 0.9412(0.005) \\ 0.9533(0.003) \\ \hline 0.9366(0.0047) \\ 0.9663(0.0023) \\ 0.9727(0.0011) \\ \hline 0.8927(0.0088) \\ 0.9435(0.0033) \\ 0.9523(0.0021) \\ \hline 0.9387(0.0077) \\ 0.9672(0.0018) \\ 0.9729(0.0011) \\ \hline \end{array}$	$\begin{array}{c} \hline \text{DC-NSGA-II-A}\\ \hline 0.4502(0.0372)\\ \hline 0.6599(0.0359)\\ \hline 0.813(0.03)\\ \hline 0.5978(0.0358)\\ \hline 0.7775(0.0339)\\ \hline 0.8918(0.0213)\\ \hline 0.4374(0.0381)\\ \hline 0.6483(0.0325)\\ \hline 0.8159(0.0293)\\ \hline 0.5891(0.0447)\\ \hline 0.7771(0.0352)\\ \hline 0.8982(0.0192)\\ \hline \end{array}$	DNSGA-II-A 0.3935(0.0284) 0.5471(0.0365) 0.8015(0.0258) 0.5346(0.0378) 0.7027(0.0309) 0.8893(0.0204) 0.4069(0.0281) 0.5572(0.0438) 0.8125(0.0292) 0.5349(0.0398) 0.6872(0.033) 0.8875(0.0249)
FCC 1 2 3 4 5	$\begin{array}{c c} \hline \text{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline 2000 \\ \hline \end{array}$	I-CGDE3 0.9356(0.0066) 0.9766(0.0026) 0.9906(0.0006) 0.9597(0.0039) 0.9859(0.001) 0.9938(0.0006) 0.9377(0.0059) 0.9769(0.0029) 0.9599(0.0047) 0.9856(0.0014) 0.9938(0.0004) 0.9386(0.0084)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.8846(0.0133) \\ 0.9412(0.005) \\ 0.9533(0.003) \\ \hline 0.9366(0.0047) \\ 0.9663(0.0023) \\ 0.9727(0.0011) \\ \hline 0.8927(0.0088) \\ 0.9435(0.0033) \\ 0.9523(0.0021) \\ \hline 0.9387(0.0077) \\ 0.9672(0.0018) \\ 0.9729(0.0011) \\ \hline 0.8921(0.0106) \end{array}$	$\begin{array}{r} \hline \text{DC-NSGA-II-A}\\ \hline 0.4502(0.0372)\\ \hline 0.6599(0.0359)\\ \hline 0.813(0.03)\\ \hline 0.5978(0.0358)\\ \hline 0.7775(0.0339)\\ \hline 0.8918(0.0213)\\ \hline 0.4374(0.0381)\\ \hline 0.6483(0.0325)\\ \hline 0.8159(0.0293)\\ \hline 0.5891(0.0447)\\ \hline 0.7771(0.0352)\\ \hline 0.8982(0.0192)\\ \hline 0.4701(0.0307)\\ \hline \end{array}$	DNSGA-II-A 0.3935(0.0284) 0.5471(0.0365) 0.8015(0.0258) 0.5346(0.0378) 0.7027(0.0309) 0.8893(0.0204) 0.4069(0.0281) 0.5572(0.0438) 0.8125(0.0292) 0.5349(0.0398) 0.6872(0.033) 0.8939(0.0249)
FCC 1 2 3 4 5	$\begin{array}{c c} \hline \textbf{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 3000 \\ \hline 2000 \\ 3000 \\ \hline \end{array}$	I-CGDE3 0.9356(0.0066) 0.9766(0.0026) 0.9906(0.0006) 0.9597(0.0039) 0.9859(0.001) 0.9938(0.0006) 0.9377(0.0059) 0.9769(0.0029) 0.9904(0.0008) 0.9599(0.0047) 0.9856(0.0014) 0.9386(0.0084) 0.9784(0.0018)	$\begin{tabular}{ c c c c c c c } \hline DCMOEA \\ \hline 0.6376(0.0205) \\ 0.8025(0.0125) \\ 0.913(0.007) \\ \hline 0.7732(0.0127) \\ 0.886(0.007) \\ 0.9524(0.0027) \\ \hline 0.6334(0.0196) \\ 0.8051(0.0111) \\ 0.9149(0.0041) \\ \hline 0.7693(0.0116) \\ 0.886(0.0054) \\ 0.9518(0.004) \\ \hline 0.6446(0.0173) \\ 0.8138(0.0109) \\ \hline \end{tabular}$	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.8846(0.0133) \\ 0.9412(0.005) \\ 0.9533(0.003) \\ \hline 0.9366(0.0047) \\ 0.9663(0.0023) \\ 0.9727(0.0011) \\ \hline 0.8927(0.0088) \\ 0.9435(0.0033) \\ 0.9523(0.0021) \\ \hline 0.9387(0.0077) \\ 0.9672(0.0018) \\ 0.9729(0.0011) \\ \hline 0.8921(0.0106) \\ 0.9282(0.0049) \\ \end{array}$	$\begin{array}{r} \hline \text{DC-NSGA-II-A}\\ \hline 0.4502(0.0372)\\ \hline 0.6599(0.0359)\\ \hline 0.813(0.03)\\ \hline 0.5978(0.0358)\\ \hline 0.7775(0.0339)\\ \hline 0.8918(0.0213)\\ \hline 0.4374(0.0381)\\ \hline 0.6483(0.0325)\\ \hline 0.8159(0.0293)\\ \hline 0.5891(0.0447)\\ \hline 0.7771(0.0352)\\ \hline 0.8982(0.0192)\\ \hline 0.4701(0.0307)\\ \hline 0.6568(0.0312)\\ \hline \end{array}$	DNSGA-II-A 0.3935(0.0284) 0.5471(0.0365) 0.8015(0.0258) 0.5346(0.0378) 0.7027(0.0309) 0.8893(0.0204) 0.4069(0.0281) 0.5572(0.0438) 0.8125(0.0292) 0.5349(0.0398) 0.6872(0.033) 0.8875(0.0249) 0.3939(0.0308) 0.5459(0.042)
FCC 1 2 3 4 5	$\begin{array}{c c} \hline {\rm CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline \end{array}$	$\begin{tabular}{ l-CGDE3 }\hline & $l-CGDE3 \\\hline 0.9356(0.0066)\\ 0.9766(0.0026)\\ 0.9906(0.0006)\\\hline 0.9597(0.0039)\\ 0.9859(0.001)\\ 0.9938(0.0006)\\\hline 0.9377(0.0059)\\ 0.9769(0.0029)\\ 0.9769(0.0029)\\\hline 0.9904(0.0008)\\\hline 0.9599(0.0047)\\\hline 0.9856(0.0014)\\ 0.9386(0.0084)\\\hline 0.9784(0.0018)\\\hline 0.9907(0.0007)\\\hline \end{tabular}$	$\begin{tabular}{ c c c c c c c } \hline DCMOEA \\ \hline 0.6376(0.0205) \\ \hline 0.8025(0.0125) \\ \hline 0.913(0.007) \\ \hline 0.913(0.007) \\ \hline 0.913(0.007) \\ \hline 0.886(0.007) \\ \hline 0.9524(0.0027) \\ \hline 0.6334(0.0196) \\ \hline 0.8051(0.0111) \\ \hline 0.9149(0.0041) \\ \hline 0.7693(0.0116) \\ \hline 0.886(0.0054) \\ \hline 0.9518(0.004) \\ \hline 0.6446(0.0173) \\ \hline 0.8138(0.0109) \\ \hline 0.9159(0.0053) \\ \hline \end{tabular}$	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.8846(0.0133) \\ 0.9412(0.005) \\ 0.9533(0.003) \\ \hline 0.9533(0.003) \\ \hline 0.9366(0.0047) \\ 0.9663(0.0023) \\ 0.9727(0.0011) \\ \hline 0.8927(0.0088) \\ 0.9435(0.0033) \\ 0.9523(0.0021) \\ \hline 0.9387(0.0077) \\ 0.9672(0.0018) \\ 0.9729(0.0011) \\ \hline 0.8921(0.0106) \\ 0.9282(0.0049) \\ 0.9454(0.0033) \\ \hline \end{array}$	$\begin{array}{c} \hline \text{DC-NSGA-II-A}\\ \hline 0.4502(0.0372)\\ \hline 0.6599(0.0359)\\ \hline 0.813(0.03)\\ \hline 0.5978(0.0358)\\ \hline 0.7775(0.0339)\\ \hline 0.8918(0.0213)\\ \hline 0.4374(0.0381)\\ \hline 0.4374(0.0381)\\ \hline 0.6483(0.0325)\\ \hline 0.8159(0.0293)\\ \hline 0.5891(0.0447)\\ \hline 0.7771(0.0352)\\ \hline 0.8982(0.0192)\\ \hline 0.4701(0.0307)\\ \hline 0.6568(0.0312)\\ \hline 0.8306(0.0278)\\ \hline \end{array}$	DNSGA-II-A 0.3935(0.0284) 0.5471(0.0365) 0.8015(0.0258) 0.5346(0.0378) 0.7027(0.0309) 0.8893(0.0204) 0.4069(0.0281) 0.5572(0.0438) 0.8125(0.0292) 0.5349(0.0398) 0.6872(0.033) 0.8875(0.0249) 0.3939(0.0308) 0.5459(0.042) 0.7967(0.0318)
FCC 1 2 3 4 5 6	$\begin{array}{c c} \hline \textbf{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 4000 \\ \hline 2000 \\ \hline 2000 \\ \hline 2000 \\ \hline 3000 \\ \hline 4000 \\ \hline 2000 \\ \hline 20$	$\begin{tabular}{ l-CGDE3 }\hline $I-CGDE3$\\\hline $0.9356(0.0066)$\\ $0.9766(0.0026)$\\ $0.9906(0.0006)$\\\hline $0.9597(0.0039)$\\ $0.9859(0.001)$\\ $0.9938(0.0006)$\\\hline $0.9377(0.0059)$\\ $0.9377(0.0059)$\\\hline $0.9769(0.0029)$\\\hline $0.9904(0.0008)$\\\hline $0.9904(0.0008)$\\\hline $0.9599(0.0047)$\\\hline $0.9386(0.0044)$\\\hline $0.9386(0.0084)$\\\hline $0.9784(0.0018)$\\\hline $0.9907(0.0007)$\\\hline $0.9635(0.0025)$\\\hline \end{tabular}$	$\begin{tabular}{ c c c c c c } \hline DCMOEA \\ \hline 0.6376(0.0205) \\ \hline 0.8025(0.0125) \\ \hline 0.913(0.007) \\ \hline 0.913(0.007) \\ \hline 0.913(0.007) \\ \hline 0.913(0.007) \\ \hline 0.886(0.007) \\ \hline 0.8051(0.0111) \\ \hline 0.8051(0.0111) \\ \hline 0.8051(0.0116) \\ \hline 0.8051(0.0116) \\ \hline 0.886(0.0054) \\ \hline 0.9518(0.004) \\ \hline 0.6446(0.0173) \\ \hline 0.8138(0.0109) \\ \hline 0.9159(0.0053) \\ \hline 0.7792(0.016) \\ \hline \end{tabular}$	dCMOEA 0.8846(0.0133) 0.9412(0.005) 0.9533(0.003) 0.9533(0.003) 0.9663(0.0023) 0.9727(0.0011) 0.8927(0.0088) 0.9435(0.0033) 0.9523(0.0021) 0.9387(0.0077) 0.9672(0.0018) 0.9729(0.0011) 0.8921(0.0106) 0.9282(0.0049) 0.9454(0.0033) 0.9372(0.0053)	$\begin{array}{r} \hline \text{DC-NSGA-II-A}\\ \hline 0.4502(0.0372)\\ \hline 0.6599(0.0359)\\ \hline 0.813(0.03)\\ \hline 0.5978(0.0358)\\ \hline 0.7775(0.0339)\\ \hline 0.8918(0.0213)\\ \hline 0.4374(0.0381)\\ \hline 0.6483(0.0325)\\ \hline 0.8159(0.0293)\\ \hline 0.5891(0.0447)\\ \hline 0.7771(0.0352)\\ \hline 0.8982(0.0192)\\ \hline 0.4701(0.0307)\\ \hline 0.6568(0.0312)\\ \hline 0.8306(0.0278)\\ \hline 0.631(0.0398)\\ \hline \end{array}$	DNSGA-II-A 0.3935(0.0284) 0.5471(0.0365) 0.8015(0.0258) 0.5346(0.0378) 0.7027(0.0309) 0.8893(0.0204) 0.4069(0.0281) 0.5572(0.0438) 0.8125(0.0292) 0.5349(0.0398) 0.6872(0.033) 0.8875(0.0249) 0.3939(0.0308) 0.5459(0.042) 0.7967(0.0318) 0.5468(0.041)
FCC 1 2 3 4 5 6	$\begin{array}{c c} \hline \textbf{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 4000 \\ \hline 2000 \\ 3000 \\ \hline 3000 \\ \hline 0 \\ 3000 \\ \hline 0 \\ \hline $	$\begin{array}{r} \mbox{I-CGDE3} \\ \hline 0.9356(0.0066) \\ 0.9766(0.0026) \\ 0.9906(0.0006) \\ 0.9597(0.0039) \\ 0.9859(0.001) \\ 0.9938(0.0006) \\ 0.9377(0.0059) \\ 0.9769(0.0029) \\ 0.9769(0.0029) \\ 0.9904(0.0008) \\ 0.9599(0.0047) \\ 0.9856(0.0014) \\ 0.9939(0.0004) \\ 0.9386(0.0084) \\ 0.9784(0.0018) \\ 0.9907(0.0007) \\ 0.9635(0.0025) \\ 0.9863(0.001) \\ \end{array}$	$\begin{tabular}{ c c c c c c } \hline DCMOEA \\ \hline 0.6376(0.0205) \\ \hline 0.8025(0.0125) \\ \hline 0.913(0.007) \\ \hline 0.7732(0.0127) \\ \hline 0.886(0.007) \\ \hline 0.9524(0.0027) \\ \hline 0.6334(0.0196) \\ \hline 0.8051(0.0111) \\ \hline 0.9149(0.0041) \\ \hline 0.7693(0.0116) \\ \hline 0.886(0.0054) \\ \hline 0.9518(0.004) \\ \hline 0.6446(0.0173) \\ \hline 0.8138(0.0109) \\ \hline 0.9159(0.0053) \\ \hline 0.7792(0.016) \\ \hline 0.8925(0.0065) \\ \hline \end{tabular}$	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.8846(0.0133) \\ 0.9412(0.005) \\ 0.9533(0.003) \\ \hline 0.9366(0.0047) \\ 0.9663(0.0023) \\ 0.9727(0.0011) \\ 0.8927(0.0088) \\ 0.9435(0.0033) \\ 0.9523(0.0021) \\ 0.9387(0.0077) \\ 0.9672(0.0018) \\ 0.9729(0.0011) \\ \hline 0.8921(0.0106) \\ 0.9282(0.0049) \\ 0.9454(0.0033) \\ 0.9372(0.0053) \\ 0.9573(0.0019) \\ \end{array}$	$\begin{array}{r} \hline \text{DC-NSGA-II-A}\\ \hline 0.4502(0.0372)\\ \hline 0.6599(0.0359)\\ \hline 0.813(0.03)\\ \hline 0.5978(0.0358)\\ \hline 0.7775(0.0339)\\ \hline 0.8918(0.0213)\\ \hline 0.4374(0.0381)\\ \hline 0.6483(0.0325)\\ \hline 0.8159(0.0293)\\ \hline 0.5891(0.0447)\\ \hline 0.7771(0.0352)\\ \hline 0.8982(0.0192)\\ \hline 0.4701(0.0307)\\ \hline 0.6568(0.0312)\\ \hline 0.8306(0.0278)\\ \hline 0.631(0.0398)\\ \hline 0.7889(0.0299)\\ \hline \end{array}$	DNSGA-II-A 0.3935(0.0284) 0.5471(0.0365) 0.8015(0.0258) 0.5346(0.0378) 0.7027(0.0309) 0.8893(0.0204) 0.4069(0.0281) 0.5572(0.0438) 0.8125(0.0292) 0.5349(0.0398) 0.6872(0.033) 0.8875(0.0249) 0.3939(0.0308) 0.5459(0.042) 0.7967(0.0318) 0.5468(0.041) 0.7236(0.0291)
FCC 1 2 3 4 5 6	$\begin{array}{c c} \hline {\rm CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 4000 \\ \hline \end{array}$	$\begin{array}{r} \text{I-CGDE3} \\ \hline 0.9356(0.0066) \\ 0.9766(0.0026) \\ 0.9906(0.0006) \\ 0.9597(0.0039) \\ 0.9859(0.001) \\ 0.9938(0.0006) \\ 0.9377(0.0059) \\ 0.9769(0.0029) \\ 0.9769(0.0029) \\ 0.9904(0.0008) \\ 0.9599(0.0047) \\ 0.9856(0.0014) \\ 0.9938(0.004) \\ 0.9784(0.0018) \\ 0.99635(0.0025) \\ 0.9863(0.001) \\ 0.9939(0.0004) \\ \end{array}$	$\begin{tabular}{ c c c c c }\hline \hline DCMOEA \\\hline \hline 0.6376(0.0205) \\\hline 0.8025(0.0125) \\\hline 0.913(0.007) \\\hline 0.913(0.007) \\\hline 0.7732(0.0127) \\\hline 0.886(0.007) \\\hline 0.9524(0.0027) \\\hline 0.6334(0.0196) \\\hline 0.8051(0.0111) \\\hline 0.9149(0.0041) \\\hline 0.7693(0.0116) \\\hline 0.886(0.0054) \\\hline 0.9518(0.004) \\\hline 0.9518(0.004) \\\hline 0.6446(0.0173) \\\hline 0.8138(0.0109) \\\hline 0.9159(0.0053) \\\hline 0.7792(0.016) \\\hline 0.8925(0.0065) \\\hline 0.9542(0.0029) \\\hline \end{tabular}$	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.8846(0.0133) \\ 0.9412(0.005) \\ 0.9533(0.003) \\ 0.9366(0.0047) \\ 0.9663(0.0023) \\ 0.9727(0.0011) \\ 0.8927(0.0088) \\ 0.9435(0.0033) \\ 0.9523(0.0021) \\ 0.9387(0.0077) \\ 0.9672(0.0018) \\ 0.9729(0.0011) \\ 0.8921(0.0106) \\ 0.9282(0.0049) \\ 0.9454(0.0033) \\ 0.9573(0.0019) \\ 0.9686(0.0015) \\ \end{array}$	$\begin{array}{r} \hline \text{DC-NSGA-II-A}\\ \hline 0.4502(0.0372)\\ 0.6599(0.0359)\\ 0.813(0.03)\\ \hline 0.5978(0.0358)\\ 0.7775(0.0339)\\ 0.8918(0.0213)\\ \hline 0.4374(0.0381)\\ 0.6483(0.0325)\\ 0.8159(0.0293)\\ \hline 0.5891(0.0447)\\ 0.7771(0.0352)\\ \hline 0.8982(0.0192)\\ \hline 0.4701(0.0307)\\ \hline 0.6568(0.0312)\\ \hline 0.8306(0.0278)\\ \hline 0.631(0.0398)\\ \hline 0.7889(0.0299)\\ \hline 0.8938(0.0176)\\ \hline \end{array}$	$\begin{array}{r} \hline \text{DNSGA-II-A}\\ \hline 0.3935(0.0284)\\ 0.5471(0.0365)\\ 0.8015(0.0258)\\ \hline 0.5346(0.0378)\\ 0.7027(0.0309)\\ 0.8893(0.0204)\\ \hline 0.4069(0.0281)\\ 0.5572(0.0438)\\ 0.8125(0.0292)\\ \hline 0.5349(0.0398)\\ 0.6872(0.033)\\ 0.8875(0.0249)\\ \hline 0.3939(0.0308)\\ 0.5459(0.042)\\ 0.7967(0.0318)\\ \hline 0.5468(0.041)\\ 0.7236(0.0291)\\ 0.8927(0.0174)\\ \end{array}$
FCC 1 2 3 4 5 6 7	$\begin{array}{c c} \hline \textbf{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline$	$\begin{array}{r} \text{I-CGDE3} \\ \hline 0.9356(0.0066) \\ 0.9766(0.0026) \\ 0.9906(0.0006) \\ 0.9597(0.0039) \\ 0.9859(0.001) \\ 0.9938(0.0006) \\ 0.9377(0.0059) \\ 0.9769(0.0029) \\ 0.9769(0.0029) \\ 0.9904(0.0008) \\ 0.9599(0.0047) \\ 0.9856(0.0014) \\ 0.9939(0.0004) \\ 0.9386(0.0084) \\ 0.9784(0.0018) \\ 0.9907(0.0007) \\ 0.9635(0.0025) \\ 0.9863(0.001) \\ 0.9939(0.0004) \\ 0.9404(0.005) \\ \end{array}$	$\begin{tabular}{ c c c c c }\hline \hline DCMOEA \\\hline \hline 0.6376(0.0205) \\\hline 0.8025(0.0125) \\\hline 0.913(0.007) \\\hline 0.7732(0.0127) \\\hline 0.886(0.007) \\\hline 0.9524(0.0027) \\\hline 0.6334(0.0196) \\\hline 0.8051(0.0111) \\\hline 0.9149(0.0041) \\\hline 0.7693(0.0116) \\\hline 0.886(0.0054) \\\hline 0.9518(0.004) \\\hline 0.9518(0.004) \\\hline 0.6446(0.0173) \\\hline 0.8138(0.0109) \\\hline 0.9159(0.0053) \\\hline 0.7792(0.016) \\\hline 0.8925(0.0065) \\\hline 0.9542(0.0029) \\\hline 0.637(0.0189) \\\hline \end{tabular}$	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.8846(0.0133) \\ 0.9412(0.005) \\ 0.9533(0.003) \\ \hline 0.9366(0.0047) \\ 0.9663(0.0023) \\ 0.9727(0.0011) \\ \hline 0.8927(0.0088) \\ 0.9435(0.0033) \\ 0.9523(0.0021) \\ \hline 0.9387(0.0077) \\ 0.9672(0.0018) \\ 0.9729(0.0011) \\ \hline 0.8921(0.0106) \\ 0.9282(0.0049) \\ 0.9454(0.0033) \\ \hline 0.9372(0.0053) \\ 0.9573(0.0019) \\ 0.9666(0.0015) \\ \hline 0.9015(0.0075) \\ \hline \end{array}$	$\begin{array}{r} \hline \text{DC-NSGA-II-A}\\ \hline 0.4502(0.0372)\\ \hline 0.6599(0.0359)\\ \hline 0.813(0.03)\\ \hline 0.5978(0.0358)\\ \hline 0.7775(0.0339)\\ \hline 0.8918(0.0213)\\ \hline 0.4374(0.0381)\\ \hline 0.6483(0.0325)\\ \hline 0.8159(0.0293)\\ \hline 0.5891(0.0447)\\ \hline 0.7771(0.0352)\\ \hline 0.8982(0.0192)\\ \hline 0.4701(0.0307)\\ \hline 0.6568(0.0312)\\ \hline 0.8306(0.0278)\\ \hline 0.631(0.0398)\\ \hline 0.7889(0.0299)\\ \hline 0.8938(0.0176)\\ \hline 0.4524(0.0437)\\ \hline \end{array}$	$\begin{array}{r} \hline \text{DNSGA-II-A}\\ \hline 0.3935(0.0284)\\ 0.5471(0.0365)\\ 0.8015(0.0258)\\ \hline 0.5346(0.0378)\\ 0.7027(0.0309)\\ 0.8893(0.0204)\\ \hline 0.4069(0.0281)\\ 0.5572(0.0438)\\ 0.8125(0.0292)\\ \hline 0.5349(0.0398)\\ 0.6872(0.033)\\ \hline 0.8875(0.0249)\\ \hline 0.3939(0.0308)\\ 0.5459(0.042)\\ \hline 0.7967(0.0318)\\ \hline 0.5468(0.041)\\ 0.7236(0.0291)\\ 0.8927(0.0174)\\ \hline 0.4153(0.0288)\\ \end{array}$
FCC 1 2 3 4 5 6 7	$\begin{array}{c c} \hline \textbf{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 3000 \\ \hline 2000 \\ 3000 \\ \hline 3000 \\ \hline 2000 \\ 3000 \\ \hline 3000 \\ \hline 2000 \\ \hline 3000 \\ \hline 3000 \\ \hline 2000 \\ \hline 3000 \\ \hline 3000 \\ \hline \end{array}$	$\begin{array}{r} \mbox{I-CGDE3} \\ \hline \mbox{I-CGDE3} \\ \hline \mbox{0.9356(0.0066)} \\ \mbox{0.9766(0.0026)} \\ \mbox{0.9906(0.0006)} \\ \mbox{0.9597(0.0039)} \\ \mbox{0.9859(0.001)} \\ \mbox{0.9938(0.0006)} \\ \mbox{0.9938(0.0006)} \\ \mbox{0.9377(0.0059)} \\ \mbox{0.9769(0.0029)} \\ \mbox{0.9769(0.0029)} \\ \mbox{0.9904(0.0008)} \\ \mbox{0.9599(0.0047)} \\ \mbox{0.9856(0.0014)} \\ \mbox{0.9939(0.0004)} \\ \mbox{0.9784(0.0018)} \\ \mbox{0.9939(0.0004)} \\ \mbox{0.9939(0.0004)} \\ \mbox{0.9939(0.0004)} \\ \mbox{0.9939(0.0004)} \\ \mbox{0.9782(0.0018)} \\ \end{array}$	$\begin{tabular}{ c c c c c }\hline \hline DCMOEA \\\hline \hline 0.6376(0.0205) \\\hline 0.8025(0.0125) \\\hline 0.913(0.007) \\\hline 0.7732(0.0127) \\\hline 0.886(0.007) \\\hline 0.9524(0.0027) \\\hline 0.6334(0.0196) \\\hline 0.8051(0.0111) \\\hline 0.9149(0.0041) \\\hline 0.7693(0.0116) \\\hline 0.886(0.0054) \\\hline 0.9518(0.004) \\\hline 0.6446(0.0173) \\\hline 0.8138(0.0109) \\\hline 0.9159(0.0053) \\\hline 0.7792(0.016) \\\hline 0.8925(0.0065) \\\hline 0.9542(0.0029) \\\hline 0.637(0.0189) \\\hline 0.8117(0.0126) \\\hline \end{tabular}$	$\begin{array}{r} d{\rm CMOEA} \\ \hline d{\rm CMOEA} \\ \hline 0.8846(0.0133) \\ 0.9412(0.005) \\ 0.9533(0.003) \\ \hline 0.9366(0.0047) \\ 0.9663(0.0023) \\ 0.9727(0.0011) \\ \hline 0.8927(0.0088) \\ 0.9435(0.0033) \\ 0.9523(0.0021) \\ \hline 0.9387(0.0077) \\ 0.9672(0.0018) \\ 0.9729(0.0011) \\ \hline 0.8921(0.0106) \\ 0.9282(0.0049) \\ 0.9454(0.0033) \\ \hline 0.9372(0.0053) \\ 0.9573(0.0019) \\ 0.9666(0.0015) \\ \hline 0.9015(0.0075) \\ 0.9324(0.0037) \\ \hline \end{array}$	$\begin{array}{r} \hline \text{DC-NSGA-II-A}\\ \hline 0.4502(0.0372)\\ \hline 0.6599(0.0359)\\ \hline 0.813(0.03)\\ \hline 0.5978(0.0358)\\ \hline 0.7775(0.0339)\\ \hline 0.8918(0.0213)\\ \hline 0.4374(0.0381)\\ \hline 0.6483(0.0325)\\ \hline 0.8159(0.0293)\\ \hline 0.5891(0.0447)\\ \hline 0.7771(0.0352)\\ \hline 0.8982(0.0192)\\ \hline 0.4701(0.0307)\\ \hline 0.6568(0.0312)\\ \hline 0.8306(0.0278)\\ \hline 0.631(0.0398)\\ \hline 0.7889(0.0299)\\ \hline 0.8938(0.0176)\\ \hline 0.4524(0.0437)\\ \hline 0.6496(0.0332)\\ \hline \end{array}$	$\begin{array}{r} \hline \text{DNSGA-II-A}\\ \hline 0.3935(0.0284)\\ \hline 0.5471(0.0365)\\ \hline 0.8015(0.0258)\\ \hline 0.5346(0.0378)\\ \hline 0.7027(0.0309)\\ \hline 0.8893(0.0204)\\ \hline 0.4069(0.0281)\\ \hline 0.5572(0.0438)\\ \hline 0.8125(0.0292)\\ \hline 0.5349(0.0398)\\ \hline 0.6872(0.033)\\ \hline 0.8875(0.0249)\\ \hline 0.3939(0.0308)\\ \hline 0.5459(0.042)\\ \hline 0.7967(0.0318)\\ \hline 0.5468(0.041)\\ \hline 0.7236(0.0291)\\ \hline 0.8927(0.0174)\\ \hline 0.4153(0.0288)\\ \hline 0.5577(0.0398)\\ \hline \end{array}$
FCC 1 2 3 4 - 5 - 6 - 7	$\begin{array}{c c} \hline \textbf{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 \\ \hline 2000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 \\ \hline 20$	$\begin{array}{r} \text{I-CGDE3} \\ \hline 0.9356(0.0066) \\ 0.9766(0.0026) \\ 0.9906(0.0006) \\ 0.9597(0.0039) \\ 0.9859(0.001) \\ 0.9938(0.0006) \\ 0.9377(0.0059) \\ 0.9769(0.0029) \\ 0.9769(0.0029) \\ 0.9904(0.0008) \\ 0.9599(0.0047) \\ 0.9856(0.0014) \\ 0.9939(0.0004) \\ 0.9386(0.0084) \\ 0.9784(0.0018) \\ 0.9907(0.0007) \\ 0.9635(0.0025) \\ 0.9863(0.001) \\ 0.9939(0.0004) \\ 0.9782(0.0018) \\ 0.9782(0.0018) \\ 0.9907(0.0007) \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline DCMOEA \\\hline 0.6376(0.0205) \\\hline 0.8025(0.0125) \\\hline 0.913(0.007) \\\hline 0.913(0.007) \\\hline 0.913(0.007) \\\hline 0.913(0.007) \\\hline 0.886(0.007) \\\hline 0.9524(0.0027) \\\hline 0.6334(0.0196) \\\hline 0.8051(0.0111) \\\hline 0.9149(0.0041) \\\hline 0.7693(0.0116) \\\hline 0.886(0.0054) \\\hline 0.9518(0.004) \\\hline 0.6446(0.0173) \\\hline 0.8138(0.0109) \\\hline 0.9159(0.0053) \\\hline 0.7792(0.016) \\\hline 0.8925(0.0065) \\\hline 0.9542(0.0029) \\\hline 0.637(0.0189) \\\hline 0.8117(0.0126) \\\hline 0.9193(0.0051) \\\hline \end{tabular}$	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.8846(0.0133) \\ 0.9412(0.005) \\ 0.9533(0.003) \\ \hline 0.9533(0.003) \\ \hline 0.9663(0.0023) \\ 0.9727(0.0011) \\ \hline 0.8927(0.0088) \\ 0.9435(0.0033) \\ 0.9523(0.0021) \\ \hline 0.9387(0.0077) \\ 0.9672(0.0018) \\ 0.9729(0.0011) \\ \hline 0.8921(0.0106) \\ 0.9282(0.0049) \\ 0.9454(0.0033) \\ \hline 0.9372(0.0053) \\ 0.9573(0.0019) \\ 0.9666(0.0015) \\ \hline 0.9015(0.0075) \\ 0.9324(0.0037) \\ 0.9441(0.0029) \\ \hline \end{array}$	$\begin{array}{r} \hline \text{DC-NSGA-II-A}\\ \hline 0.4502(0.0372)\\ \hline 0.6599(0.0359)\\ \hline 0.813(0.03)\\ \hline 0.5978(0.0358)\\ \hline 0.7775(0.0339)\\ \hline 0.8918(0.0213)\\ \hline 0.4374(0.0381)\\ \hline 0.6483(0.0325)\\ \hline 0.8159(0.0293)\\ \hline 0.5891(0.0447)\\ \hline 0.7771(0.0352)\\ \hline 0.8982(0.0192)\\ \hline 0.4701(0.0307)\\ \hline 0.6568(0.0312)\\ \hline 0.8306(0.0278)\\ \hline 0.631(0.0398)\\ \hline 0.7889(0.0299)\\ \hline 0.8938(0.0176)\\ \hline 0.4524(0.0437)\\ \hline 0.6496(0.0332)\\ \hline 0.8241(0.0299)\\ \hline \end{array}$	$\begin{array}{c} \hline \text{DNSGA-II-A}\\ \hline 0.3935(0.0284)\\ \hline 0.5471(0.0365)\\ \hline 0.8015(0.0258)\\ \hline 0.5346(0.0378)\\ \hline 0.7027(0.0309)\\ \hline 0.8893(0.0204)\\ \hline 0.4069(0.0281)\\ \hline 0.5572(0.0438)\\ \hline 0.8125(0.0292)\\ \hline 0.5349(0.0398)\\ \hline 0.6872(0.033)\\ \hline 0.8875(0.0249)\\ \hline 0.3939(0.0308)\\ \hline 0.5459(0.042)\\ \hline 0.7967(0.0318)\\ \hline 0.5468(0.041)\\ \hline 0.7236(0.0291)\\ \hline 0.8927(0.0174)\\ \hline 0.4153(0.0288)\\ \hline 0.5577(0.0398)\\ \hline 0.801(0.0285)\\ \hline \end{array}$
FCC 1 2 3 4 5 6 7 8	$\begin{array}{c c} \hline \textbf{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 \\ \hline 3000 \\ \hline 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 $	$\begin{array}{r} \mbox{I-CGDE3}\\\hline\\ 0.9356(0.0066)\\0.9766(0.0026)\\0.9906(0.0006)\\0.9597(0.0039)\\0.9859(0.001)\\0.9938(0.0006)\\0.9377(0.0059)\\0.9769(0.0029)\\0.9904(0.0008)\\0.9599(0.0047)\\0.9856(0.0014)\\0.9939(0.0004)\\0.9386(0.0084)\\0.9784(0.0018)\\0.9907(0.0007)\\0.9635(0.0025)\\0.9863(0.001)\\0.9939(0.0004)\\0.9939(0.0004)\\0.9939(0.0004)\\0.9939(0.0004)\\0.9939(0.0004)\\0.9939(0.0004)\\0.9939(0.0004)\\0.9939(0.0004)\\0.99404(0.005)\\0.9782(0.0018)\\0.9907(0.0007)\\0.9628(0.0033)\\\hline\end{array}$	$\begin{tabular}{ c c c c c } \hline DCMOEA \\\hline 0.6376(0.0205) \\\hline 0.8025(0.0125) \\\hline 0.913(0.007) \\\hline 0.7732(0.0127) \\\hline 0.886(0.007) \\\hline 0.9524(0.0027) \\\hline 0.6334(0.0196) \\\hline 0.8051(0.0111) \\\hline 0.9149(0.0041) \\\hline 0.7693(0.0116) \\\hline 0.886(0.0054) \\\hline 0.9518(0.004) \\\hline 0.6446(0.0173) \\\hline 0.8138(0.0109) \\\hline 0.9159(0.0053) \\\hline 0.7792(0.016) \\\hline 0.8925(0.0065) \\\hline 0.9542(0.0029) \\\hline 0.637(0.0189) \\\hline 0.8117(0.0126) \\\hline 0.9193(0.0051) \\\hline 0.7846(0.0133) \\\hline \end{tabular}$	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.8846(0.0133) \\ 0.9412(0.005) \\ 0.9533(0.003) \\ \hline 0.9366(0.0047) \\ 0.9663(0.0023) \\ 0.9727(0.0011) \\ 0.8927(0.0088) \\ 0.9435(0.0033) \\ 0.9523(0.0021) \\ 0.9387(0.0077) \\ 0.9672(0.0018) \\ 0.9729(0.0011) \\ \hline 0.8921(0.0106) \\ 0.9282(0.0049) \\ 0.9454(0.0033) \\ \hline 0.9372(0.0053) \\ 0.9372(0.0075) \\ 0.9015(0.0075) \\ 0.9324(0.0037) \\ 0.9441(0.0029) \\ \hline 0.9389(0.0053) \\ \hline \end{array}$	$\begin{array}{r} \hline \text{DC-NSGA-II-A}\\ \hline 0.4502(0.0372)\\ \hline 0.6599(0.0359)\\ \hline 0.813(0.03)\\ \hline 0.5978(0.0358)\\ \hline 0.7775(0.0339)\\ \hline 0.8918(0.0213)\\ \hline 0.4374(0.0381)\\ \hline 0.6483(0.0325)\\ \hline 0.8159(0.0293)\\ \hline 0.5891(0.0447)\\ \hline 0.7771(0.0352)\\ \hline 0.8982(0.0192)\\ \hline 0.4701(0.0307)\\ \hline 0.6568(0.0312)\\ \hline 0.8306(0.0278)\\ \hline 0.631(0.0398)\\ \hline 0.7889(0.0299)\\ \hline 0.8938(0.0176)\\ \hline 0.4524(0.0437)\\ \hline 0.6496(0.0332)\\ \hline 0.8241(0.0299)\\ \hline 0.607(0.0326)\\ \hline \end{array}$	DNSGA-II-A 0.3935(0.0284) 0.5471(0.0365) 0.8015(0.0258) 0.5346(0.0378) 0.7027(0.0309) 0.8893(0.0204) 0.4069(0.0281) 0.5572(0.0438) 0.8125(0.0292) 0.5349(0.0398) 0.6872(0.033) 0.8875(0.0249) 0.3939(0.0308) 0.5459(0.042) 0.7967(0.0318) 0.5468(0.041) 0.7236(0.0291) 0.8927(0.0174) 0.4153(0.0288) 0.5577(0.0398) 0.801(0.0285) 0.5599(0.0379)
FC0 1 2 3 4 5 6 7 8	$\begin{array}{c c} \hline \textbf{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 3000 \\ \hline 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 3000 \\ \hline 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 \\ $	$\begin{array}{r} \mbox{I-CGDE3} \\ \hline \mbox{I-CGDE3} \\ \hline \mbox{0.9356(0.0066)} \\ \mbox{0.9766(0.0026)} \\ \mbox{0.9906(0.0006)} \\ \mbox{0.9597(0.0039)} \\ \mbox{0.9597(0.0039)} \\ \mbox{0.9859(0.001)} \\ \mbox{0.9938(0.0006)} \\ \mbox{0.9377(0.0059)} \\ \mbox{0.9769(0.0029)} \\ \mbox{0.9769(0.0029)} \\ \mbox{0.9904(0.0008)} \\ \mbox{0.9599(0.0047)} \\ \mbox{0.9856(0.0014)} \\ \mbox{0.9939(0.0004)} \\ \mbox{0.9784(0.0018)} \\ \mbox{0.9907(0.0007)} \\ \mbox{0.9863(0.001)} \\ \mbox{0.9939(0.0004)} \\ \mbox{0.9939(0.0004)} \\ \mbox{0.9782(0.0018)} \\ \mbox{0.9907(0.0007)} \\ \mbox{0.9861(0.0011)} \\ \mbox{0.9861(0.0011)} \\ \end{array}$	$\begin{tabular}{ c c c c c }\hline \hline DCMOEA \\\hline \hline 0.6376(0.0205) \\\hline 0.8025(0.0125) \\\hline 0.913(0.007) \\\hline 0.7732(0.0127) \\\hline 0.886(0.007) \\\hline 0.9524(0.0027) \\\hline 0.6334(0.0196) \\\hline 0.8051(0.0111) \\\hline 0.9149(0.0041) \\\hline 0.7693(0.0116) \\\hline 0.886(0.0054) \\\hline 0.9518(0.004) \\\hline 0.9518(0.004) \\\hline 0.6446(0.0173) \\\hline 0.8138(0.0109) \\\hline 0.9159(0.0053) \\\hline 0.7792(0.016) \\\hline 0.8925(0.0065) \\\hline 0.9542(0.0029) \\\hline 0.637(0.0189) \\\hline 0.8117(0.0126) \\\hline 0.9193(0.0051) \\\hline 0.7846(0.0133) \\\hline 0.8929(0.0064) \\\hline \end{tabular}$	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.8846(0.0133) \\ 0.9412(0.005) \\ 0.9533(0.003) \\ \hline 0.9533(0.003) \\ \hline 0.9366(0.0047) \\ 0.9663(0.0023) \\ 0.9727(0.0011) \\ \hline 0.8927(0.0088) \\ 0.9435(0.0033) \\ 0.9523(0.0021) \\ \hline 0.9387(0.0077) \\ 0.9672(0.0018) \\ 0.9729(0.0011) \\ \hline 0.9921(0.0106) \\ 0.9282(0.0049) \\ 0.9454(0.0033) \\ \hline 0.9372(0.0053) \\ 0.9573(0.0019) \\ 0.9686(0.0015) \\ \hline 0.9015(0.0075) \\ 0.9324(0.0037) \\ 0.93441(0.0029) \\ \hline 0.9389(0.0053) \\ 0.9591(0.002) \\ \hline \end{array}$	$\begin{array}{r} \hline \text{DC-NSGA-II-A}\\ \hline 0.4502(0.0372)\\ \hline 0.6599(0.0359)\\ \hline 0.813(0.03)\\ \hline 0.5978(0.0358)\\ \hline 0.7775(0.0339)\\ \hline 0.8918(0.0213)\\ \hline 0.4374(0.0381)\\ \hline 0.6483(0.0325)\\ \hline 0.8159(0.0293)\\ \hline 0.5891(0.0447)\\ \hline 0.7771(0.0352)\\ \hline 0.8982(0.0192)\\ \hline 0.4701(0.0307)\\ \hline 0.6568(0.0312)\\ \hline 0.8306(0.0278)\\ \hline 0.631(0.0398)\\ \hline 0.7889(0.0299)\\ \hline 0.8938(0.0176)\\ \hline 0.4524(0.0437)\\ \hline 0.6496(0.0332)\\ \hline 0.8241(0.0299)\\ \hline 0.607(0.0326)\\ \hline 0.7896(0.0259)\\ \hline \end{array}$	$\begin{array}{c} {\rm DNSGA-II-A}\\ \hline 0.3935(0.0284)\\ 0.5471(0.0365)\\ 0.8015(0.0258)\\ \hline 0.5346(0.0378)\\ 0.7027(0.0309)\\ 0.8893(0.0204)\\ \hline 0.4069(0.0281)\\ 0.5572(0.0438)\\ 0.8125(0.0292)\\ \hline 0.5349(0.0398)\\ 0.6872(0.033)\\ 0.8875(0.0249)\\ \hline 0.3939(0.0308)\\ 0.5459(0.042)\\ \hline 0.7967(0.0318)\\ \hline 0.5468(0.041)\\ 0.7236(0.0291)\\ 0.8927(0.0174)\\ \hline 0.4153(0.0288)\\ 0.5577(0.0398)\\ \hline 0.5599(0.0379)\\ 0.7059(0.0328)\\ \hline \end{array}$

Tabla 5.8: Media (μ) y desviación estándar (σ) de los resultados obtenidos en los problemas de prueba
DCTP y FCCD en el formato " $\mu(\sigma)$ " para cada DCMOEA considerado usando el indicador $\overline{IGD+}$. El
simbolo " τ_t " hace referencia a la frecuencia de cambio medido en un número máximo de evaluaciones.
Los mejores resultados se resaltan en negritas.

DC	fp $ au_t$	I-CGDE3	DCMOEA	dCMOEA	DC-NSGA-II-A	DNSGA-II-A
1	2500	0.0638(0.0224)	0.1168(0.0204)	0.1005(0.0256)	0.1245(0.0277)	0.1037(0.0298)
	5000	0.0182(0.0079)	0.0211(0.0025)	0.0145(0.0046)	0.0218(0.0025)	0.0179(0.0002)
	10000	0.0077(0.0024)	0.0091(0.0004)	0.0089(0.0004)	0.0094(0.0005)	0.0112(0.0017)
2	2500	0.018(0.0064)	0.035(0.0078)	0.0387(0.0137)	0.0356(0.0095)	0.0351(0.0081)
	5000	0.0053(0.0007)	0.0067(0.0008)	0.0082(0.0006)	0.0074(0.0008)	0.0108(0.0036)
	10000	0.003(0.0001)	0.0033(0.0002)	0.0072(0.0008)	0.0037(0.0003)	0.0044(0.0005)
3	2500	0.0621(0.0064)	0.1338(0.1267)	0.0799(0.0082)	0.0878(0.0099)	0.1482(0.0946)
	5000	0.0376(0.0069)	0.0526(0.0086)	0.0418(0.0036)	0.053(0.0098)	0.1124(0.0688)
	10000	0.0188(0.0017)	0.0324(0.0069)	0.0274(0.0022)	0.0331(0.0045)	0.0426(0.0073)
4	2500	0.2662(0.0308)	0.2446(0.0291)	0.3362(0.038)	0.2925(0.2041)	0.3582(0.1341)
	5000	0.2223(0.049)	0.2143(0.0711)	0.1897(0.0132)	0.2384(0.0262)	0.3225(0.0992)
	10000	0.1996(0.0477)	0.1735(0.0229)	0.1357(0.0144)	0.1768(0.0213)	0.2(0.0626)
5	2500	0.0161(0.0026)	0.0323(0.0081)	0.0294(0.0077)	0.03(0.0079)	0.0271(0.0052)
	5000	0.0073(0.0005)	0.0112(0.0011)	0.01(0.0008)	0.0108(0.0009)	0.0118(0.0021)
	10000	0.0043(0.0003)	0.0062(0.0003)	0.0088(0.0011)	0.0063(0.0005)	0.0064(0.0008)
6	2500	0.0177(0.0029)	0.0355(0.0307)	2.8159(1.6878)	0.6001(0.9587)	4.3793(2.3886)
	5000	0.0106(0.0004)	0.0137(0.0055)	2.2552(1.8908)	0.3602(0.9023)	3.8965(2.3806)
	10000	0.0082(0.0002)	0.0084(0.0002)	3.1293(2.7319)	0.1011(0.2956)	4.33(2.2225)
7	2500	0.1704(0.0441)	0.287(0.0503)	0.352(0.0744)	0.283(0.0722)	0.4459(0.1293)
	5000	0.0581(0.0243)	0.9452(0.0194)	0.0423(0.0342)	0.0602(0.0139)	0.048(0.0136)
	10000	0.0246(0.0164)	0.0069(0.0017)	0.0163(0.0079)	0.0098(0.0048)	0.0085(0.0016)
8	2500	0.0559(0.0764)	5.4467(2.3279)	3.8431(2.4926)	6.1516(1.8076)	7.9597(2.6127)
	5000	0.0581(0.1415) 0.0217(0.0526)	5.2939(2.4089)	3.0(32(2.472))	0.2538(2.5003)	(.1044(2.1077))
	10000	0.0317(0.0320)	0.0209(2.0990)	3.2217(2.2000)	0.2100(2.3200)	0.0089(2.0049)
- DOC	- G	L CODES	DOMODA			
FCC	CD $ au_t$	I-CGDE3	DCMOEA	dCMOEA	DC-NSGA-II-A	DNSGA-II-A
FCC 1	$\frac{\text{CD } au_t}{2000}$	I-CGDE3 0.0573(0.0048)	DCMOEA 0.3365(0.0344)	dCMOEA 0.1036(0.0141)	DC-NSGA-II-A 0.6636(0.0737)	DNSGA-II-A 0.8507(0.0869)
FCC 1	$\frac{\text{CD} \ \tau_t}{2000}$	I-CGDE3 0.0573(0.0048) 0.0227(0.002)	DCMOEA 0.3365(0.0344) 0.1704(0.0104)	dCMOEA 0.1036(0.0141) 0.0518(0.0037)	DC-NSGA-II-A 0.6636(0.0737) 0.3378(0.058)	DNSGA-II-A 0.8507(0.0869) 0.5403(0.0839)
FCC 1	$\frac{\text{CD } \tau_t}{2000} \\ \frac{3000}{4000} \\ \frac{3000}{2000} \\ \frac{1}{2000} \\ \frac$	I-CGDE3 0.0573(0.0048) 0.0227(0.002) 0.0103(0.0005)	DCMOEA 0.3365(0.0344) 0.1704(0.0104) 0.0756(0.0055)	dCMOEA 0.1036(0.0141) 0.0518(0.0037) 0.0422(0.0024)	DC-NSGA-II-A 0.6636(0.0737) 0.3378(0.058) 0.1686(0.0295)	DNSGA-II-A 0.8507(0.0869) 0.5403(0.0839) 0.1891(0.0297)
FC0 1 2	$\begin{array}{c c} \hline CD & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 2000 \\ \hline \end{array}$	I-CGDE3 0.0573(0.0048) 0.0227(0.002) 0.0103(0.0005) 0.0556(0.0051)	DCMOEA 0.3365(0.0344) 0.1704(0.0104) 0.0756(0.0055) 0.2768(0.016) 0.1472(0.0001)	$\begin{array}{c} \hline d{\rm CMOEA} \\ \hline 0.1036(0.0141) \\ 0.0518(0.0037) \\ 0.0422(0.0024) \\ \hline 0.0844(0.006) \\ 0.0429(0.0020) \\ \hline \end{array}$	DC-NSGA-II-A 0.6636(0.0737) 0.3378(0.058) 0.1686(0.0295) 0.5376(0.0739) 0.2076(0.0739)	DNSGA-II-A 0.8507(0.0869) 0.5403(0.0839) 0.1891(0.0297) 0.6682(0.0809) 0.4090(0.0409)
FC0 1 2	$\begin{array}{c c} \hline \text{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \end{array}$	I-CGDE3 0.0573(0.0048) 0.0227(0.002) 0.0103(0.0005) 0.0556(0.0051) 0.0208(0.0014)	$\begin{array}{r} \hline DCMOEA \\ \hline 0.3365(0.0344) \\ 0.1704(0.0104) \\ 0.0756(0.0055) \\ \hline 0.2768(0.016) \\ 0.1472(0.0091) \\ 0.0645(0.0026) \\ \hline \end{array}$	$\begin{array}{c} \hline d{\rm CMOEA} \\ \hline 0.1036(0.0141) \\ 0.0518(0.0037) \\ 0.0422(0.0024) \\ \hline 0.0844(0.006) \\ 0.0462(0.0029) \\ 0.028(0.0016) \\ \hline \end{array}$	DC-NSGA-II-A 0.6636(0.0737) 0.3378(0.058) 0.1686(0.0295) 0.5376(0.0739) 0.2838(0.0436) 0.1410(0.0262)	DNSGA-II-A 0.8507(0.0869) 0.5403(0.0839) 0.1891(0.0297) 0.6682(0.0809) 0.4022(0.0487) 0.1447(0.0247)
FC0 1 2	$\begin{array}{c c} \hline \text{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \end{array}$	I-CGDE3 0.0573(0.0048) 0.0227(0.002) 0.0103(0.0005) 0.0556(0.0051) 0.0208(0.0014) 0.01(0.0008)	$\begin{array}{c} \hline DCMOEA \\ \hline 0.3365(0.0344) \\ 0.1704(0.0104) \\ 0.0756(0.0055) \\ \hline 0.2768(0.016) \\ 0.1472(0.0091) \\ 0.0645(0.0036) \\ 0.2321(0.0252) \\ \hline \end{array}$	$\begin{array}{c} \hline d{\rm CMOEA} \\ \hline 0.1036(0.0141) \\ 0.0518(0.0037) \\ 0.0422(0.0024) \\ 0.0844(0.006) \\ 0.0462(0.0029) \\ 0.038(0.0016) \\ 0.0081(0.0024) \\ \hline \end{array}$	DC-NSGA-II-A 0.6636(0.0737) 0.3378(0.058) 0.1686(0.0295) 0.5376(0.0739) 0.2838(0.0436) 0.1419(0.0263)	$\begin{array}{c} \hline \textbf{O} \\ \hline \textbf{DNSGA-II-A} \\ \hline \textbf{O}.8507(0.0869) \\ \hline \textbf{O}.5403(0.0839) \\ \hline \textbf{O}.1891(0.0297) \\ \hline \textbf{O}.6682(0.0809) \\ \hline \textbf{O}.4022(0.0487) \\ \hline \textbf{O}.1447(0.0247) \\ \hline \textbf{O}.9779(0.1009) \\ \hline \textbf{O}.977$
FCC 1 2 3	$\begin{array}{c c} \hline \textbf{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 2000 \\ \hline \end{array}$	I-CGDE3 0.0573(0.0048) 0.0227(0.002) 0.0103(0.0005) 0.0556(0.0051) 0.0208(0.0014) 0.01(0.0008) 0.0572(0.0057) 0.0226(0.0022)	$\begin{array}{c} \hline DCMOEA \\ \hline 0.3365(0.0344) \\ 0.1704(0.0104) \\ 0.0756(0.0055) \\ \hline 0.2768(0.016) \\ 0.1472(0.0091) \\ 0.0645(0.0036) \\ \hline 0.3331(0.0252) \\ 0.160(0.0100) \\ \hline \end{array}$	$\begin{array}{c} \hline d{\rm CMOEA} \\ \hline 0.1036(0.0141) \\ 0.0518(0.0037) \\ 0.0422(0.0024) \\ \hline 0.0844(0.006) \\ 0.0462(0.0029) \\ 0.038(0.0016) \\ \hline 0.0981(0.0094) \\ 0.051(0.0022) \\ \hline \end{array}$	DC-NSGA-II-A 0.6636(0.0737) 0.3378(0.058) 0.1686(0.0295) 0.5376(0.0739) 0.2838(0.0436) 0.1419(0.0263) 0.6367(0.082) 0.241(0.0558)	$\begin{array}{c} \hline \textbf{DNSGA-II-A} \\ \hline \textbf{DNSGA-II-A} \\ \hline \textbf{0.8507}(0.0869) \\ \hline \textbf{0.5403}(0.0839) \\ \hline \textbf{0.1891}(0.0297) \\ \hline \textbf{0.6682}(0.0809) \\ \hline \textbf{0.4022}(0.0487) \\ \hline \textbf{0.4022}(0.0487) \\ \hline \textbf{0.1447}(0.0247) \\ \hline \textbf{0.8778}(0.1098) \\ \hline \textbf{0.5042}(0.0016) \\ \hline \end{array}$
FCC 1 2 3	$\begin{array}{c c} \hline \text{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline \end{array}$	I-CGDE3 0.0573(0.0048) 0.0227(0.002) 0.0103(0.0005) 0.0556(0.0051) 0.0208(0.0014) 0.01(0.0008) 0.0572(0.0057) 0.0226(0.0023) 0.0105(0.0006)	$\begin{array}{r} \hline \text{DCMOEA} \\ \hline 0.3365(0.0344) \\ 0.1704(0.0104) \\ 0.0756(0.0055) \\ \hline 0.2768(0.016) \\ 0.1472(0.0091) \\ 0.0645(0.0036) \\ \hline 0.3331(0.0252) \\ 0.169(0.0109) \\ 0.0751(0.0033) \\ \hline \end{array}$	$\begin{array}{c} \hline d{\rm CMOEA} \\ \hline 0.1036(0.0141) \\ 0.0518(0.0037) \\ 0.0422(0.0024) \\ \hline 0.0844(0.006) \\ 0.0462(0.0029) \\ 0.038(0.0016) \\ \hline 0.0981(0.0094) \\ 0.051(0.0032) \\ 0.0432(0.0017) \\ \hline \end{array}$	$\begin{array}{c} \hline & \\ \hline DC\text{-NSGA-II-A} \\ \hline 0.6636(0.0737) \\ \hline 0.3378(0.058) \\ \hline 0.1686(0.0295) \\ \hline 0.5376(0.0739) \\ \hline 0.2838(0.0436) \\ \hline 0.1419(0.0263) \\ \hline 0.6367(0.082) \\ \hline 0.341(0.0558) \\ \hline 0.1668(0.0304) \\ \hline \end{array}$	DNSGA-II-A 0.8507(0.0869) 0.5403(0.0839) 0.1891(0.0297) 0.6682(0.0809) 0.4022(0.0487) 0.1447(0.0247) 0.8778(0.1098) 0.5043(0.0916) 0.173(0.0203)
FCC 1 2 3	$\begin{array}{c c} \hline CD & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline \end{array}$	I-CGDE3 0.0573(0.0048) 0.0227(0.002) 0.0103(0.0005) 0.0556(0.0051) 0.0208(0.0014) 0.01(0.0008) 0.0572(0.0057) 0.0226(0.0023) 0.0105(0.0006) 0.0553(0.0058)	$\begin{array}{r} \hline \text{DCMOEA} \\ \hline 0.3365(0.0344) \\ 0.1704(0.0104) \\ 0.0756(0.0055) \\ \hline 0.2768(0.016) \\ 0.1472(0.0091) \\ 0.0645(0.0036) \\ \hline 0.3331(0.0252) \\ 0.169(0.0109) \\ 0.0751(0.0033) \\ 0.2825(0.0177) \\ \hline \end{array}$	$\begin{array}{c} \hline d{\rm CMOEA} \\ \hline 0.1036(0.0141) \\ 0.0518(0.0037) \\ 0.0422(0.0024) \\ \hline 0.0844(0.006) \\ 0.0462(0.0029) \\ 0.038(0.0016) \\ \hline 0.0981(0.0094) \\ 0.051(0.0032) \\ 0.0432(0.0017) \\ \hline 0.0829(0.011) \\ \hline \end{array}$	$\begin{array}{c} \hline & \\ \hline \\ \hline$	DNSGA-II-A 0.8507(0.0869) 0.5403(0.0839) 0.1891(0.0297) 0.6682(0.0809) 0.4022(0.0487) 0.1447(0.0247) 0.8778(0.1098) 0.5043(0.0916) 0.1783(0.0293) 0.6553(0.0853)
FCC 1 2 3 4	$\begin{array}{c c} \hline \text{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 2000 \\ 3000 \\ \hline \end{array}$	I-CGDE3 0.0573(0.0048) 0.0227(0.002) 0.0103(0.0005) 0.0556(0.0051) 0.0208(0.0014) 0.01(0.0008) 0.0572(0.0057) 0.0226(0.0023) 0.0105(0.0006) 0.0553(0.0058) 0.021(0.002)	$\begin{array}{r} \hline \text{DCMOEA} \\ \hline 0.3365(0.0344) \\ 0.1704(0.0104) \\ 0.0756(0.0055) \\ \hline 0.2768(0.016) \\ 0.1472(0.0091) \\ 0.0645(0.0036) \\ \hline 0.3331(0.0252) \\ 0.169(0.0109) \\ 0.0751(0.0033) \\ \hline 0.2825(0.0177) \\ 0.1468(0.0067) \\ \hline \end{array}$	$\begin{array}{r} \hline d{\rm CMOEA} \\ \hline 0.1036(0.0141) \\ 0.0518(0.0037) \\ 0.0422(0.0024) \\ \hline 0.0844(0.006) \\ 0.0462(0.0029) \\ 0.038(0.0016) \\ \hline 0.0981(0.0094) \\ 0.051(0.0032) \\ 0.0432(0.0017) \\ \hline 0.0829(0.011) \\ 0.0451(0.0023) \\ \hline \end{array}$	$\begin{array}{c} \hline & \\ \hline \\ \hline$	$\begin{array}{c} \textbf{(1)}\\ \hline \textbf{DNSGA-II-A}\\ \hline 0.8507(0.0869)\\ \hline 0.5403(0.0839)\\ \hline 0.1891(0.0297)\\ \hline 0.6682(0.0809)\\ \hline 0.4022(0.0487)\\ \hline 0.14022(0.0487)\\ \hline 0.1447(0.0247)\\ \hline 0.8778(0.1098)\\ \hline 0.5043(0.0916)\\ \hline 0.1783(0.0293)\\ \hline 0.6579(0.0853)\\ \hline 0.426(0.0651)\\ \hline \end{array}$
FCC 1 2 3 4	$\begin{array}{c cccc} \hline & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline \end{array}$	I-CGDE3 0.0573(0.0048) 0.0227(0.002) 0.0103(0.0005) 0.0556(0.0051) 0.0208(0.0014) 0.01(0.0008) 0.0572(0.0057) 0.0226(0.0023) 0.0105(0.0006) 0.0553(0.0058) 0.021(0.002) 0.0099(0.0005)	$\begin{array}{c} \hline \text{DCMOEA} \\ \hline 0.3365(0.0344) \\ \hline 0.1704(0.0104) \\ \hline 0.0756(0.0055) \\ \hline 0.2768(0.016) \\ \hline 0.1472(0.0091) \\ \hline 0.0645(0.0036) \\ \hline 0.3331(0.0252) \\ \hline 0.169(0.0109) \\ \hline 0.0751(0.0033) \\ \hline 0.2825(0.0177) \\ \hline 0.1468(0.0067) \\ \hline 0.0652(0.005) \\ \hline \end{array}$	$\begin{array}{c} \hline d{\rm CMOEA} \\ \hline 0.1036(0.0141) \\ 0.0518(0.0037) \\ 0.0422(0.0024) \\ \hline 0.0844(0.006) \\ 0.0462(0.0029) \\ 0.038(0.0016) \\ \hline 0.0981(0.0094) \\ 0.051(0.0032) \\ 0.0432(0.0017) \\ \hline 0.0829(0.011) \\ 0.0451(0.0023) \\ 0.0378(0.0016) \\ \hline \end{array}$	$\begin{array}{c} \hline \textbf{DC-NSGA-II-A}\\ \hline \textbf{DC-NSGA-II-A}\\ \hline \textbf{0.6636}(0.0737)\\ \hline \textbf{0.3378}(0.058)\\ \hline \textbf{0.1686}(0.0295)\\ \hline \textbf{0.5376}(0.0739)\\ \hline \textbf{0.5376}(0.0739)\\ \hline \textbf{0.2838}(0.0436)\\ \hline \textbf{0.1419}(0.0263)\\ \hline \textbf{0.6367}(0.082)\\ \hline \textbf{0.341}(0.0558)\\ \hline \textbf{0.1668}(0.0304)\\ \hline \textbf{0.5403}(0.0655)\\ \hline \textbf{0.285}(0.0465)\\ \hline \textbf{0.1334}(0.0241)\\ \end{array}$	$\begin{array}{c} (1,2,2)\\ \hline \text{DNSGA-II-A}\\ \hline 0.8507(0.0869)\\ \hline 0.5403(0.0839)\\ \hline 0.1891(0.0297)\\ \hline 0.6682(0.0809)\\ \hline 0.4022(0.0487)\\ \hline 0.1447(0.0247)\\ \hline 0.8778(0.1098)\\ \hline 0.5043(0.0916)\\ \hline 0.1783(0.0293)\\ \hline 0.6579(0.0853)\\ \hline 0.426(0.0651)\\ \hline 0.1474(0.0296)\\ \hline \end{array}$
FCC 1 2 3 4	$\begin{array}{c c} \hline CD & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline \end{array}$	I-CGDE3 0.0573(0.0048) 0.0227(0.002) 0.0103(0.0005) 0.0556(0.0051) 0.0208(0.0014) 0.01(0.0008) 0.0572(0.0057) 0.0226(0.0023) 0.0105(0.0006) 0.0553(0.0058) 0.021(0.002) 0.0099(0.0005) 0.0562(0.0076)	$\begin{array}{r} \hline \text{DCMOEA} \\ \hline 0.3365(0.0344) \\ 0.1704(0.0104) \\ 0.0756(0.0055) \\ \hline 0.2768(0.016) \\ 0.1472(0.0091) \\ 0.0645(0.0036) \\ \hline 0.3331(0.0252) \\ 0.169(0.0109) \\ 0.0751(0.0033) \\ \hline 0.2825(0.0177) \\ 0.1468(0.0067) \\ 0.0652(0.005) \\ \hline 0.3352(0.0189) \\ \hline \end{array}$	$\begin{array}{c} \hline d{\rm CMOEA} \\ \hline 0.1036(0.0141) \\ 0.0518(0.0037) \\ 0.0422(0.0024) \\ \hline 0.0844(0.006) \\ 0.0462(0.0029) \\ 0.038(0.0016) \\ \hline 0.0981(0.0094) \\ 0.051(0.0032) \\ 0.0432(0.0017) \\ \hline 0.0829(0.011) \\ 0.0451(0.0023) \\ 0.0378(0.0016) \\ \hline 0.0992(0.0105) \\ \hline \end{array}$	DC-NSGA-II-A 0.6636(0.0737) 0.3378(0.058) 0.1686(0.0295) 0.5376(0.0739) 0.2838(0.0436) 0.1419(0.0263) 0.6367(0.082) 0.341(0.0558) 0.1668(0.0304) 0.5403(0.0655) 0.285(0.0465) 0.1334(0.0241) 0.6788(0.1197)	DNSGA-II-A 0.8507(0.0869) 0.5403(0.0839) 0.1891(0.0297) 0.6682(0.0809) 0.4022(0.0487) 0.1447(0.0247) 0.8778(0.1098) 0.5043(0.0916) 0.1783(0.0293) 0.6579(0.0853) 0.426(0.0651) 0.1474(0.0296) 0.8879(0 1189)
	$\begin{array}{c cccc} \hline {\rm CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 2000 \\ 3000 \\ \hline \end{array}$	I-CGDE3 0.0573(0.0048) 0.0227(0.002) 0.0103(0.0005) 0.0556(0.0051) 0.0208(0.0014) 0.01(0.0008) 0.0572(0.0057) 0.0226(0.0023) 0.0105(0.0066) 0.0553(0.0058) 0.021(0.002) 0.0099(0.0005) 0.0562(0.0076) 0.0213(0.0014)	$\begin{array}{r} \hline \text{DCMOEA} \\ \hline 0.3365(0.0344) \\ 0.1704(0.0104) \\ 0.0756(0.0055) \\ \hline 0.2768(0.016) \\ 0.1472(0.0091) \\ 0.0645(0.0036) \\ \hline 0.3331(0.0252) \\ 0.169(0.0109) \\ 0.0751(0.0033) \\ \hline 0.2825(0.0177) \\ 0.1468(0.0067) \\ 0.0652(0.005) \\ \hline 0.3352(0.0189) \\ 0.1654(0.0103) \\ \hline \end{array}$	$\begin{array}{r} \hline d{\rm CMOEA} \\ \hline 0.1036(0.0141) \\ 0.0518(0.0037) \\ 0.0422(0.0024) \\ \hline 0.0844(0.006) \\ 0.0462(0.0029) \\ 0.038(0.0016) \\ \hline 0.0981(0.0094) \\ 0.051(0.0032) \\ 0.0432(0.0017) \\ \hline 0.0829(0.011) \\ 0.0451(0.0023) \\ 0.0378(0.0016) \\ \hline 0.0992(0.0105) \\ 0.0632(0.0039) \\ \hline \end{array}$	$\begin{array}{c} \hline \textbf{DC-NSGA-II-A}\\ \hline \textbf{DC-NSGA-II-A}\\ \hline \textbf{0.6636}(0.0737)\\ \hline \textbf{0.3378}(0.058)\\ \hline \textbf{0.1686}(0.0295)\\ \hline \textbf{0.5376}(0.0739)\\ \hline \textbf{0.5376}(0.0739)\\ \hline \textbf{0.2838}(0.0436)\\ \hline \textbf{0.1419}(0.0263)\\ \hline \textbf{0.6367}(0.082)\\ \hline \textbf{0.341}(0.0558)\\ \hline \textbf{0.1668}(0.0304)\\ \hline \textbf{0.5403}(0.0655)\\ \hline \textbf{0.285}(0.0465)\\ \hline \textbf{0.1334}(0.0241)\\ \hline \textbf{0.6788}(0.1197)\\ \hline \textbf{0.3519}(0.0545)\\ \end{array}$	DNSGA-II-A 0.8507(0.0869) 0.5403(0.0839) 0.1891(0.0297) 0.6682(0.0809) 0.4022(0.0487) 0.1447(0.0247) 0.8778(0.1098) 0.5043(0.0916) 0.1783(0.0293) 0.6579(0.0853) 0.426(0.0651) 0.1474(0.0296) 0.8879(0.1189) 0.558(0.0821)
FCC 1 2 3 4 5	$\begin{array}{c cccc} \hline {\rm CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline \end{array}$	I-CGDE3 0.0573(0.0048) 0.0227(0.002) 0.0103(0.0005) 0.0556(0.0051) 0.0208(0.0014) 0.01(0.0008) 0.0572(0.0057) 0.0226(0.0023) 0.0105(0.0006) 0.0553(0.0058) 0.021(0.002) 0.0099(0.0005) 0.0562(0.0076) 0.0213(0.0014) 0.0103(0.0007)	$\begin{array}{r} \hline \text{DCMOEA} \\ \hline 0.3365(0.0344) \\ 0.1704(0.0104) \\ 0.0756(0.0055) \\ \hline 0.2768(0.016) \\ 0.1472(0.0091) \\ 0.0645(0.0036) \\ \hline 0.3331(0.0252) \\ 0.169(0.0109) \\ 0.0751(0.0033) \\ \hline 0.2825(0.0177) \\ 0.1468(0.0067) \\ 0.0652(0.005) \\ \hline 0.3352(0.0189) \\ 0.1654(0.0103) \\ 0.0729(0.0041) \\ \end{array}$	$\begin{array}{r} \hline d{\rm CMOEA} \\ \hline 0.1036(0.0141) \\ 0.0518(0.0037) \\ 0.0422(0.0024) \\ \hline 0.0844(0.006) \\ 0.0462(0.0029) \\ 0.038(0.0016) \\ \hline 0.0981(0.0094) \\ 0.051(0.0032) \\ 0.0432(0.0017) \\ \hline 0.0829(0.011) \\ 0.0451(0.0023) \\ 0.0378(0.0016) \\ \hline 0.0992(0.0105) \\ 0.0632(0.0039) \\ 0.0492(0.0023) \\ \hline \end{array}$	$\begin{array}{c} \textbf{DC-NSGA-II-A}\\ \hline \textbf{DC-NSGA-II-A}\\ \hline \textbf{0.6636}(0.0737)\\ \hline \textbf{0.3378}(0.058)\\ \hline \textbf{0.1686}(0.0295)\\ \hline \textbf{0.5376}(0.0739)\\ \hline \textbf{0.2838}(0.0436)\\ \hline \textbf{0.1419}(0.0263)\\ \hline \textbf{0.1419}(0.0263)\\ \hline \textbf{0.6367}(0.082)\\ \hline \textbf{0.341}(0.0558)\\ \hline \textbf{0.1668}(0.0304)\\ \hline \textbf{0.5403}(0.0655)\\ \hline \textbf{0.285}(0.0465)\\ \hline \textbf{0.1334}(0.0241)\\ \hline \textbf{0.6788}(0.1197)\\ \hline \textbf{0.3519}(0.0545)\\ \hline \textbf{0.1576}(0.0338)\\ \end{array}$	$\begin{array}{c} \textbf{O} \textbf{V} \textbf{V} \textbf{V} \textbf{V} \textbf{V} \textbf{V} \textbf{V} V$
FCC 1 2 3 4 5 6	$\begin{array}{c cccc} \hline {\rm CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 $	I-CGDE3 0.0573(0.0048) 0.0227(0.002) 0.0103(0.0005) 0.0556(0.0051) 0.0208(0.0014) 0.01(0.0008) 0.0572(0.0057) 0.0226(0.0023) 0.0105(0.0006) 0.0553(0.0058) 0.021(0.002) 0.0562(0.0076) 0.0213(0.0014) 0.0103(0.0007) 0.0511(0.0035)	$\begin{array}{r} \hline \text{DCMOEA} \\ \hline 0.3365(0.0344) \\ 0.1704(0.0104) \\ 0.0756(0.0055) \\ \hline 0.2768(0.016) \\ 0.1472(0.0091) \\ 0.0645(0.0036) \\ \hline 0.3331(0.0252) \\ 0.169(0.0109) \\ 0.0751(0.0033) \\ \hline 0.2825(0.0177) \\ 0.1468(0.0067) \\ 0.0652(0.005) \\ \hline 0.3352(0.0189) \\ 0.1654(0.0103) \\ 0.0729(0.0041) \\ \hline 0.2836(0.0246) \\ \hline \end{array}$	$\begin{array}{r} \hline d{\rm CMOEA} \\ \hline 0.1036(0.0141) \\ 0.0518(0.0037) \\ 0.0422(0.0024) \\ \hline 0.0844(0.006) \\ 0.0462(0.0029) \\ 0.038(0.0016) \\ \hline 0.0981(0.0094) \\ 0.051(0.0032) \\ 0.0432(0.0017) \\ \hline 0.0829(0.011) \\ 0.0451(0.0023) \\ 0.0378(0.0016) \\ \hline 0.0992(0.0105) \\ 0.0632(0.0039) \\ \hline 0.0492(0.0023) \\ \hline 0.0844(0.006) \\ \hline \end{array}$	$\begin{array}{c} \hline \textbf{DC-NSGA-II-A} \\ \hline \textbf{DC-NSGA-II-A} \\ \hline \textbf{0.6636}(0.0737) \\ \hline \textbf{0.3378}(0.058) \\ \hline \textbf{0.1686}(0.0295) \\ \hline \textbf{0.5376}(0.0739) \\ \hline \textbf{0.2838}(0.0436) \\ \hline \textbf{0.1419}(0.0263) \\ \hline \textbf{0.1419}(0.0263) \\ \hline \textbf{0.6367}(0.082) \\ \hline \textbf{0.341}(0.0558) \\ \hline \textbf{0.1668}(0.0304) \\ \hline \textbf{0.5403}(0.0655) \\ \hline \textbf{0.285}(0.0465) \\ \hline \textbf{0.1334}(0.0241) \\ \hline \textbf{0.6788}(0.1197) \\ \hline \textbf{0.3519}(0.0545) \\ \hline \textbf{0.1576}(0.0338) \\ \hline \textbf{0.5087}(0.0712) \end{array}$	$\begin{array}{c} (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,$
FCC 1 2 3 4 5 6	$\begin{array}{c cccc} \hline {\bf CD} & {\bf \tau}_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 4000 \\ \hline 2000 \\ 3000 \\ \hline 3000 \\ \hline 0 \\ \hline$	I-CGDE3 0.0573(0.0048) 0.0227(0.002) 0.0103(0.0005) 0.0556(0.0051) 0.0208(0.0014) 0.01(0.0008) 0.0572(0.0057) 0.0226(0.0023) 0.0105(0.0006) 0.0553(0.0058) 0.021(0.002) 0.0099(0.0005) 0.0213(0.0014) 0.0103(0.0007) 0.0511(0.0035) 0.0204(0.0013)	$\begin{array}{r} \hline \text{DCMOEA} \\ \hline 0.3365(0.0344) \\ 0.1704(0.0104) \\ 0.0756(0.0055) \\ \hline 0.2768(0.016) \\ 0.1472(0.0091) \\ 0.0645(0.0036) \\ \hline 0.3331(0.0252) \\ 0.169(0.0109) \\ 0.0751(0.0033) \\ \hline 0.2825(0.0177) \\ 0.1468(0.0067) \\ 0.0652(0.005) \\ \hline 0.3352(0.0189) \\ 0.1654(0.0103) \\ 0.0729(0.0041) \\ \hline 0.2836(0.0246) \\ 0.1387(0.0088) \\ \hline \end{array}$	$\begin{array}{c} \hline d{\rm CMOEA} \\ \hline 0.1036(0.0141) \\ 0.0518(0.0037) \\ 0.0422(0.0024) \\ \hline 0.0844(0.006) \\ 0.0462(0.0029) \\ 0.038(0.0016) \\ \hline 0.0981(0.0094) \\ 0.051(0.0032) \\ 0.0432(0.0017) \\ \hline 0.0829(0.011) \\ 0.0451(0.0023) \\ 0.0378(0.0016) \\ \hline 0.0992(0.0105) \\ 0.0632(0.0039) \\ 0.0492(0.0023) \\ \hline 0.0844(0.006) \\ 0.0579(0.0028) \\ \end{array}$	$\begin{array}{c} \textbf{DC-NSGA-II-A}\\ \hline \textbf{DC-NSGA-II-A}\\ \hline \textbf{0.6636}(0.0737)\\ \hline \textbf{0.3378}(0.058)\\ \hline \textbf{0.1686}(0.0295)\\ \hline \textbf{0.5376}(0.0739)\\ \hline \textbf{0.5376}(0.0739)\\ \hline \textbf{0.2838}(0.0436)\\ \hline \textbf{0.1419}(0.0263)\\ \hline \textbf{0.6367}(0.082)\\ \hline \textbf{0.6367}(0.082)\\ \hline \textbf{0.341}(0.0558)\\ \hline \textbf{0.1668}(0.0304)\\ \hline \textbf{0.5403}(0.0655)\\ \hline \textbf{0.285}(0.0465)\\ \hline \textbf{0.1334}(0.0241)\\ \hline \textbf{0.6788}(0.1197)\\ \hline \textbf{0.3519}(0.0545)\\ \hline \textbf{0.1576}(0.0338)\\ \hline \textbf{0.5087}(0.0712)\\ \hline \textbf{0.2795}(0.0407)\\ \end{array}$	DNSGA-II-A 0.8507(0.0869) 0.5403(0.0839) 0.1891(0.0297) 0.6682(0.0809) 0.4022(0.0487) 0.1447(0.0247) 0.8778(0.1098) 0.5043(0.0916) 0.1783(0.0293) 0.6579(0.0853) 0.426(0.0651) 0.1474(0.0296) 0.8879(0.1189) 0.558(0.0821) 0.1967(0.0371) 0.7052(0.094) 0.3932(0.0493)
	$\begin{array}{c c} \hline {\rm CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 \\ \hline 200 $	I-CGDE3 0.0573(0.0048) 0.0227(0.002) 0.0103(0.0005) 0.0556(0.0051) 0.0208(0.0014) 0.01(0.0008) 0.0572(0.0057) 0.0226(0.0023) 0.0105(0.0066) 0.0553(0.0058) 0.021(0.002) 0.0099(0.0005) 0.0562(0.0076) 0.0213(0.0014) 0.0103(0.0007) 0.0511(0.0035) 0.0204(0.0013) 0.0099(0.0005)	$\begin{array}{r} \hline \text{DCMOEA} \\ \hline 0.3365(0.0344) \\ 0.1704(0.0104) \\ 0.0756(0.0055) \\ \hline 0.2768(0.016) \\ 0.1472(0.0091) \\ 0.0645(0.0036) \\ \hline 0.3331(0.0252) \\ 0.169(0.0109) \\ 0.0751(0.0033) \\ \hline 0.2825(0.0177) \\ 0.1468(0.0067) \\ 0.0652(0.005) \\ \hline 0.3352(0.0189) \\ 0.1654(0.0103) \\ 0.0729(0.0041) \\ \hline 0.2836(0.0246) \\ 0.1387(0.0088) \\ 0.0618(0.0038) \\ \hline \end{array}$	$\begin{array}{r} \hline d{\rm CMOEA} \\ \hline 0.1036(0.0141) \\ 0.0518(0.0037) \\ 0.0422(0.0024) \\ \hline 0.0844(0.006) \\ 0.0462(0.0029) \\ 0.038(0.0016) \\ \hline 0.0981(0.0094) \\ 0.051(0.0032) \\ 0.0432(0.0017) \\ \hline 0.0829(0.011) \\ 0.0451(0.0023) \\ 0.0378(0.0016) \\ \hline 0.0992(0.0105) \\ 0.0632(0.0039) \\ 0.0492(0.0023) \\ \hline 0.0844(0.006) \\ 0.0579(0.0028) \\ 0.0437(0.0022) \\ \end{array}$	DC-NSGA-II-A 0.6636(0.0737) 0.3378(0.058) 0.1686(0.0295) 0.5376(0.0739) 0.2838(0.0436) 0.1419(0.0263) 0.6367(0.082) 0.341(0.0558) 0.1668(0.0304) 0.5403(0.0655) 0.285(0.0465) 0.1334(0.0241) 0.6788(0.1197) 0.3519(0.0545) 0.1576(0.0338) 0.5087(0.0712) 0.2795(0.0407) 0.1429(0.0237)	$\begin{array}{c} (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,$
$ \begin{array}{c} \hline FCC \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline 4 \\ \hline 5 \\ \hline 6 \\ \hline 7 \\ \end{array} $	$\begin{array}{c cccc} \hline \mathcal{T}_t \\ \hline 2000 \\ \hline 3000 \\ \hline 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 $	I-CGDE3 0.0573(0.0048) 0.0227(0.002) 0.0103(0.0005) 0.0556(0.0051) 0.0208(0.0014) 0.01(0.0008) 0.0572(0.0057) 0.0226(0.0023) 0.0105(0.0006) 0.0553(0.0058) 0.021(0.002) 0.0099(0.0005) 0.0562(0.0076) 0.0213(0.0014) 0.0103(0.0007) 0.0511(0.0035) 0.0204(0.0013) 0.0099(0.0005)	$\begin{array}{r} \hline \text{DCMOEA} \\ \hline 0.3365(0.0344) \\ 0.1704(0.0104) \\ 0.0756(0.0055) \\ \hline 0.2768(0.016) \\ 0.1472(0.0091) \\ 0.0645(0.0036) \\ \hline 0.3331(0.0252) \\ 0.169(0.0109) \\ 0.0751(0.0033) \\ \hline 0.2825(0.0177) \\ 0.1468(0.0067) \\ 0.0652(0.005) \\ \hline 0.3352(0.0189) \\ 0.1654(0.0103) \\ 0.0729(0.0041) \\ \hline 0.2836(0.0246) \\ 0.1387(0.0088) \\ 0.0618(0.0038) \\ \hline 0.3401(0.0227) \\ \hline \end{array}$	$\begin{array}{r} \hline d{\rm CMOEA} \\ \hline 0.1036(0.0141) \\ 0.0518(0.0037) \\ 0.0422(0.0024) \\ \hline 0.0844(0.006) \\ 0.0462(0.0029) \\ 0.038(0.0016) \\ \hline 0.0981(0.0094) \\ 0.051(0.0032) \\ 0.0432(0.0017) \\ \hline 0.0829(0.011) \\ 0.0432(0.0017) \\ \hline 0.0829(0.011) \\ 0.0451(0.0023) \\ \hline 0.0378(0.0016) \\ \hline 0.0992(0.0105) \\ 0.0632(0.0039) \\ \hline 0.0492(0.0023) \\ \hline 0.0844(0.006) \\ \hline 0.0579(0.0028) \\ \hline 0.0936(0.009) \\ \hline \end{array}$	$\begin{array}{c} \textbf{DC-NSGA-II-A}\\ \hline \textbf{DC-NSGA-II-A}\\ \hline \textbf{0.6636}(0.0737)\\ \hline \textbf{0.3378}(0.058)\\ \hline \textbf{0.1686}(0.0295)\\ \hline \textbf{0.5376}(0.0739)\\ \hline \textbf{0.5376}(0.0739)\\ \hline \textbf{0.2838}(0.0436)\\ \hline \textbf{0.1419}(0.0263)\\ \hline \textbf{0.1419}(0.0263)\\ \hline \textbf{0.6367}(0.082)\\ \hline \textbf{0.341}(0.0558)\\ \hline \textbf{0.1668}(0.0304)\\ \hline \textbf{0.5403}(0.0655)\\ \hline \textbf{0.285}(0.0465)\\ \hline \textbf{0.1334}(0.0241)\\ \hline \textbf{0.6788}(0.1197)\\ \hline \textbf{0.3519}(0.0545)\\ \hline \textbf{0.1576}(0.0338)\\ \hline \textbf{0.5087}(0.0712)\\ \hline \textbf{0.2795}(0.0407)\\ \hline \textbf{0.1429}(0.0237)\\ \hline \textbf{0.6655}(0.1243)\\ \end{array}$	DNSGA-II-A 0.8507(0.0869) 0.5403(0.0839) 0.1891(0.0297) 0.6682(0.0809) 0.4022(0.0487) 0.4022(0.0487) 0.4022(0.0487) 0.1447(0.0247) 0.8778(0.1098) 0.5043(0.0916) 0.1783(0.0293) 0.6579(0.0853) 0.426(0.0651) 0.1474(0.0296) 0.8879(0.1189) 0.558(0.0821) 0.1967(0.0371) 0.7052(0.094) 0.3932(0.0493) 0.1437(0.0234) 0.8763(0.1125)
FCC 1 2 3 4 5 6 7	$\begin{array}{c c} {\rm CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 4000 \\ \hline 2000 \\ 3000 \\ \hline 4000 \\ \hline 2000 \\ 3000 \\ \hline \hline 3000 \\ \hline 3000 \\ \hline 3000 \\ \hline \hline 3000 \\ \hline 1000 \\ $	I-CGDE3 0.0573(0.0048) 0.0227(0.002) 0.0103(0.0005) 0.0556(0.0051) 0.0208(0.0014) 0.01(0.0008) 0.0572(0.0057) 0.0226(0.0023) 0.0105(0.0006) 0.0553(0.0058) 0.021(0.002) 0.0099(0.0005) 0.0562(0.0076) 0.0213(0.0014) 0.0103(0.0007) 0.0511(0.0035) 0.0204(0.0013) 0.0099(0.0005) 0.0563(0.0041) 0.0216(0.0014)	$\begin{array}{r} \hline \text{DCMOEA} \\ \hline 0.3365(0.0344) \\ 0.1704(0.0104) \\ 0.0756(0.0055) \\ \hline 0.2768(0.016) \\ 0.1472(0.0091) \\ 0.0645(0.0036) \\ \hline 0.3331(0.0252) \\ 0.169(0.0109) \\ 0.0751(0.0033) \\ \hline 0.2825(0.0177) \\ 0.1468(0.0067) \\ 0.0652(0.005) \\ \hline 0.3352(0.0189) \\ 0.1654(0.0103) \\ 0.0729(0.0041) \\ \hline 0.2836(0.0246) \\ 0.1387(0.0088) \\ 0.0618(0.0038) \\ \hline 0.3401(0.0227) \\ 0.1654(0.0114) \\ \hline \end{array}$	$\begin{array}{r} \hline d{\rm CMOEA} \\ \hline 0.1036(0.0141) \\ 0.0518(0.0037) \\ 0.0422(0.0024) \\ \hline 0.0844(0.006) \\ 0.0462(0.0029) \\ 0.038(0.0016) \\ \hline 0.0981(0.0094) \\ 0.051(0.0032) \\ 0.0432(0.0017) \\ \hline 0.0829(0.011) \\ 0.0432(0.0017) \\ \hline 0.0829(0.011) \\ 0.0451(0.0023) \\ 0.0378(0.0016) \\ \hline 0.0992(0.0105) \\ 0.0632(0.0039) \\ \hline 0.0492(0.0023) \\ \hline 0.0844(0.006) \\ 0.0579(0.0028) \\ \hline 0.0437(0.0022) \\ \hline 0.0936(0.009) \\ \hline 0.0606(0.003) \\ \hline \end{array}$	$\begin{array}{c} \textbf{DC-NSGA-II-A}\\ \hline \textbf{DC-NSGA-II-A}\\ \hline \textbf{0.6636}(0.0737)\\ \hline \textbf{0.3378}(0.058)\\ \hline \textbf{0.1686}(0.0295)\\ \hline \textbf{0.5376}(0.0739)\\ \hline \textbf{0.5376}(0.0739)\\ \hline \textbf{0.2838}(0.0436)\\ \hline \textbf{0.1419}(0.0263)\\ \hline \textbf{0.1419}(0.0263)\\ \hline \textbf{0.6367}(0.082)\\ \hline \textbf{0.341}(0.0558)\\ \hline \textbf{0.1668}(0.0304)\\ \hline \textbf{0.5403}(0.0655)\\ \hline \textbf{0.285}(0.0465)\\ \hline \textbf{0.1334}(0.0241)\\ \hline \textbf{0.6788}(0.1197)\\ \hline \textbf{0.3519}(0.0545)\\ \hline \textbf{0.1576}(0.0338)\\ \hline \textbf{0.5087}(0.0712)\\ \hline \textbf{0.2795}(0.0407)\\ \hline \textbf{0.1429}(0.0237)\\ \hline \textbf{0.6655}(0.1243)\\ \hline \textbf{0.3538}(0.0475)\\ \end{array}$	$\begin{array}{c} \textbf{O} \textbf{NSGA-II-A}\\ \hline \textbf{O}.8507(0.0869)\\ 0.5403(0.0839)\\ 0.1891(0.0297)\\ \hline \textbf{O}.6682(0.0809)\\ 0.4022(0.0487)\\ 0.4022(0.0487)\\ 0.4022(0.0487)\\ 0.4022(0.0487)\\ 0.4022(0.0487)\\ 0.1447(0.0247)\\ \hline \textbf{O}.8778(0.1098)\\ 0.5043(0.0916)\\ 0.1783(0.0293)\\ \hline \textbf{O}.5043(0.0916)\\ 0.1783(0.0293)\\ \hline \textbf{O}.579(0.0853)\\ 0.426(0.0651)\\ \hline \textbf{O}.1783(0.0293)\\ \hline \textbf{O}.426(0.0651)\\ \hline \textbf{O}.1783(0.0293)\\ \hline \textbf{O}.579(0.0853)\\ \hline \textbf{O}.426(0.0651)\\ \hline \textbf{O}.1783(0.0293)\\ \hline \textbf{O}.426(0.0651)\\ \hline \textbf{O}.1783(0.0293)\\ \hline \textbf{O}.558(0.0821)\\ \hline \textbf{O}.7052(0.094)\\ \hline \textbf{O}.3932(0.0493)\\ \hline \textbf{O}.1437(0.0234)\\ \hline \textbf{O}.8763(0.1125)\\ \hline \textbf{O}.5536(0.0815)\\ \hline \end{array}$
FCC 1 2 3 4 5 6 7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I-CGDE3 0.0573(0.0048) 0.0227(0.002) 0.0103(0.0005) 0.0556(0.0051) 0.0208(0.0014) 0.01(0.0008) 0.0572(0.0057) 0.0226(0.0023) 0.0105(0.0006) 0.0553(0.0058) 0.021(0.002) 0.0209(0.0005) 0.0562(0.0076) 0.0213(0.0014) 0.0103(0.0007) 0.0511(0.0035) 0.0204(0.0013) 0.0204(0.0041) 0.0216(0.0041) 0.0216(0.0041)	$\begin{array}{r} \hline \textbf{DCMOEA} \\ \hline 0.3365(0.0344) \\ 0.1704(0.0104) \\ 0.0756(0.0055) \\ \hline 0.2768(0.016) \\ 0.1472(0.0091) \\ 0.0645(0.0036) \\ \hline 0.3331(0.0252) \\ 0.169(0.0109) \\ 0.0751(0.0033) \\ \hline 0.2825(0.0177) \\ 0.1468(0.0067) \\ 0.0652(0.005) \\ \hline 0.3352(0.0189) \\ 0.1654(0.0103) \\ 0.0729(0.0041) \\ \hline 0.2836(0.0246) \\ 0.1387(0.0088) \\ 0.0618(0.0038) \\ \hline 0.3401(0.0227) \\ 0.1654(0.0114) \\ 0.071(0.0045) \\ \hline \end{array}$	$\begin{array}{c} \hline d{\rm CMOEA} \\ \hline 0.1036(0.0141) \\ 0.0518(0.0037) \\ 0.0422(0.0024) \\ \hline 0.0844(0.006) \\ 0.0462(0.0029) \\ 0.038(0.0016) \\ \hline 0.0981(0.0094) \\ 0.051(0.0032) \\ 0.0432(0.0017) \\ \hline 0.0829(0.011) \\ 0.0451(0.0023) \\ 0.0378(0.0016) \\ \hline 0.0992(0.0105) \\ 0.0632(0.0039) \\ 0.0492(0.0023) \\ \hline 0.0844(0.006) \\ 0.0579(0.0028) \\ 0.0437(0.0022) \\ \hline 0.0936(0.009) \\ 0.0606(0.003) \\ 0.0501(0.0022) \\ \end{array}$	$\begin{array}{c} \textbf{DC-NSGA-II-A}\\ \hline \textbf{DC-NSGA-II-A}\\ \hline \textbf{0.6636}(0.0737)\\ \hline \textbf{0.3378}(0.058)\\ \hline \textbf{0.1686}(0.0295)\\ \hline \textbf{0.5376}(0.0739)\\ \hline \textbf{0.5376}(0.0739)\\ \hline \textbf{0.2838}(0.0436)\\ \hline \textbf{0.1419}(0.0263)\\ \hline \textbf{0.6367}(0.082)\\ \hline \textbf{0.341}(0.0558)\\ \hline \textbf{0.1668}(0.0304)\\ \hline \textbf{0.5403}(0.0655)\\ \hline \textbf{0.285}(0.0465)\\ \hline \textbf{0.1334}(0.0241)\\ \hline \textbf{0.6788}(0.1197)\\ \hline \textbf{0.3519}(0.0545)\\ \hline \textbf{0.1576}(0.0338)\\ \hline \textbf{0.5087}(0.0712)\\ \hline \textbf{0.2795}(0.0407)\\ \hline \textbf{0.1429}(0.0237)\\ \hline \textbf{0.6655}(0.1243)\\ \hline \textbf{0.3538}(0.0475)\\ \hline \textbf{0.1626}(0.0291)\\ \end{array}$	$\begin{array}{c} \textbf{O} \textbf{V} \textbf{V} \textbf{V} \textbf{V} \textbf{V} \textbf{V} \textbf{V} V$
FCC 1 2 3 4 5 6 7 8	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I-CGDE3 0.0573(0.0048) 0.0227(0.002) 0.0103(0.0005) 0.0556(0.0051) 0.0208(0.0014) 0.01(0.0008) 0.0572(0.0057) 0.0226(0.0023) 0.0105(0.0006) 0.0553(0.0058) 0.021(0.002) 0.0099(0.0005) 0.0562(0.0076) 0.0213(0.0014) 0.0103(0.0007) 0.0511(0.0035) 0.0204(0.0013) 0.0216(0.0041) 0.0103(0.0006) 0.0563(0.0041) 0.0103(0.0006)	$\begin{array}{r} \hline \text{DCMOEA} \\ \hline 0.3365(0.0344) \\ 0.1704(0.0104) \\ 0.0756(0.0055) \\ \hline 0.2768(0.016) \\ 0.1472(0.0091) \\ 0.0645(0.0036) \\ \hline 0.3331(0.0252) \\ 0.169(0.0109) \\ 0.0751(0.0033) \\ \hline 0.2825(0.0177) \\ 0.1468(0.0067) \\ 0.0652(0.005) \\ \hline 0.3352(0.0189) \\ 0.1654(0.0103) \\ 0.0729(0.0041) \\ \hline 0.2836(0.0246) \\ 0.1387(0.0088) \\ 0.0618(0.0038) \\ \hline 0.3401(0.0227) \\ 0.1654(0.0114) \\ 0.071(0.0045) \\ \hline 0.2779(0.0197) \\ \hline \end{array}$	$\begin{array}{c} \hline d{\rm CMOEA} \\ \hline 0.1036(0.0141) \\ 0.0518(0.0037) \\ 0.0422(0.0024) \\ \hline 0.0844(0.006) \\ 0.0462(0.0029) \\ 0.038(0.0016) \\ \hline 0.0981(0.0094) \\ 0.051(0.0032) \\ 0.0432(0.0017) \\ \hline 0.0829(0.011) \\ 0.0451(0.0023) \\ 0.0378(0.0016) \\ \hline 0.0992(0.0105) \\ 0.0632(0.0039) \\ 0.0492(0.0023) \\ \hline 0.0844(0.006) \\ 0.0579(0.0028) \\ 0.0437(0.0022) \\ \hline 0.0936(0.009) \\ 0.0606(0.003) \\ 0.0501(0.0022) \\ \hline 0.0831(0.0076) \\ \hline \end{array}$	$\begin{array}{c} \textbf{DC-NSGA-II-A}\\ \hline \textbf{DC-NSGA-II-A}\\ \hline \textbf{0.6636}(0.0737)\\ \hline \textbf{0.3378}(0.058)\\ \hline \textbf{0.1686}(0.0295)\\ \hline \textbf{0.5376}(0.0739)\\ \hline \textbf{0.5376}(0.0739)\\ \hline \textbf{0.5376}(0.0739)\\ \hline \textbf{0.5403}(0.0436)\\ \hline \textbf{0.1419}(0.0263)\\ \hline \textbf{0.6367}(0.082)\\ \hline \textbf{0.341}(0.0558)\\ \hline \textbf{0.1668}(0.0304)\\ \hline \textbf{0.5403}(0.0655)\\ \hline \textbf{0.285}(0.0465)\\ \hline \textbf{0.1334}(0.0241)\\ \hline \textbf{0.6788}(0.1197)\\ \hline \textbf{0.3519}(0.0545)\\ \hline \textbf{0.1576}(0.0338)\\ \hline \textbf{0.5087}(0.0712)\\ \hline \textbf{0.2795}(0.0407)\\ \hline \textbf{0.1429}(0.0237)\\ \hline \textbf{0.6655}(0.1243)\\ \hline \textbf{0.3538}(0.0475)\\ \hline \textbf{0.1626}(0.0291)\\ \hline \textbf{0.5429}(0.06)\\ \end{array}$	$\begin{array}{c} (,,,,,)\\ \hline \text{DNSGA-II-A}\\ \hline 0.8507(0.0869)\\ \hline 0.5403(0.0839)\\ \hline 0.1891(0.0297)\\ \hline 0.6682(0.0809)\\ \hline 0.4022(0.0487)\\ \hline 0.4022(0.0487)\\ \hline 0.4022(0.0487)\\ \hline 0.1447(0.0247)\\ \hline 0.8778(0.1098)\\ \hline 0.578(0.1098)\\ \hline 0.5043(0.0916)\\ \hline 0.1783(0.0293)\\ \hline 0.579(0.0853)\\ \hline 0.6579(0.0853)\\ \hline 0.426(0.0651)\\ \hline 0.1474(0.0296)\\ \hline 0.8879(0.1189)\\ \hline 0.558(0.0821)\\ \hline 0.1967(0.0371)\\ \hline 0.7052(0.094)\\ \hline 0.3932(0.0493)\\ \hline 0.1437(0.0234)\\ \hline 0.8763(0.1125)\\ \hline 0.5536(0.0815)\\ \hline 0.1917(0.0356)\\ \hline 0.68(0.0892)\\ \hline \end{array}$
$ \begin{array}{c} \hline FCC \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline 4 \\ \hline 5 \\ \hline 6 \\ \hline 7 \\ \hline 8 \\ \hline 8 \\ \hline \end{array} $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I-CGDE3 0.0573(0.0048) 0.0227(0.002) 0.0103(0.0005) 0.0556(0.0051) 0.0208(0.0014) 0.01(0.0008) 0.0572(0.0057) 0.0226(0.0023) 0.0105(0.0057) 0.0226(0.0023) 0.0105(0.0006) 0.0553(0.0058) 0.021(0.002) 0.0099(0.0005) 0.0562(0.0076) 0.0213(0.0014) 0.0103(0.0007) 0.0511(0.0035) 0.0204(0.0013) 0.0204(0.0014) 0.0216(0.0041) 0.0216(0.0045) 0.0218(0.0045) 0.0203(0.0015)	$\begin{array}{r} \hline \text{DCMOEA} \\ \hline 0.3365(0.0344) \\ 0.1704(0.0104) \\ 0.0756(0.0055) \\ \hline 0.2768(0.016) \\ 0.1472(0.0091) \\ 0.0645(0.0036) \\ \hline 0.331(0.0252) \\ 0.169(0.0109) \\ 0.0751(0.0033) \\ \hline 0.2825(0.0177) \\ 0.1468(0.0067) \\ 0.0652(0.005) \\ \hline 0.3352(0.0189) \\ 0.1654(0.0103) \\ 0.0729(0.0041) \\ \hline 0.2836(0.0246) \\ 0.1387(0.0088) \\ 0.0618(0.0038) \\ \hline 0.3401(0.0227) \\ 0.1654(0.0114) \\ 0.071(0.0045) \\ \hline 0.2779(0.0197) \\ 0.1389(0.0082) \\ \hline \end{array}$	$\begin{array}{c} \hline d{\rm CMOEA} \\ \hline 0.1036(0.0141) \\ 0.0518(0.0037) \\ 0.0422(0.0024) \\ \hline 0.0844(0.006) \\ 0.0462(0.0029) \\ 0.038(0.0016) \\ \hline 0.0981(0.0094) \\ 0.051(0.0032) \\ 0.0432(0.0017) \\ \hline 0.0829(0.011) \\ 0.0432(0.0017) \\ \hline 0.0829(0.011) \\ 0.0451(0.0023) \\ 0.0378(0.0016) \\ \hline 0.0992(0.0105) \\ 0.0632(0.0039) \\ 0.0492(0.0023) \\ \hline 0.0844(0.006) \\ 0.0579(0.0028) \\ 0.0437(0.0022) \\ \hline 0.0936(0.009) \\ 0.0606(0.003) \\ 0.0554(0.0027) \\ \hline \end{array}$	$\begin{array}{c} \textbf{DC-NSGA-II-A}\\ \hline \textbf{DC-NSGA-II-A}\\ \hline \textbf{0.6636}(0.0737)\\ \hline \textbf{0.3378}(0.058)\\ \hline \textbf{0.1686}(0.0295)\\ \hline \textbf{0.5376}(0.0739)\\ \hline \textbf{0.5376}(0.0739)\\ \hline \textbf{0.2838}(0.0436)\\ \hline \textbf{0.1419}(0.0263)\\ \hline \textbf{0.6367}(0.082)\\ \hline \textbf{0.341}(0.0558)\\ \hline \textbf{0.1668}(0.0304)\\ \hline \textbf{0.5403}(0.0655)\\ \hline \textbf{0.285}(0.0465)\\ \hline \textbf{0.1334}(0.0241)\\ \hline \textbf{0.6788}(0.1197)\\ \hline \textbf{0.3519}(0.0545)\\ \hline \textbf{0.1576}(0.0338)\\ \hline \textbf{0.5087}(0.0712)\\ \hline \textbf{0.2795}(0.0407)\\ \hline \textbf{0.1429}(0.0237)\\ \hline \textbf{0.6655}(0.1243)\\ \hline \textbf{0.3538}(0.0475)\\ \hline \textbf{0.1626}(0.0291)\\ \hline \textbf{0.5429}(0.06)\\ \hline \textbf{0.2792}(0.0372)\\ \end{array}$	$\begin{array}{c} (,,,,)\\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \hline \hline \\ \hline \hline$

Tabla 5.9: Media (μ) y desviación estándar (σ) de los resultados obtenidos en los problemas de prueba DCTP y FCCD en el formato " $\mu(\sigma)$ " para cada DCMOEA considerado usando el indicador \overline{MS} . El simbolo " τ_t " hace referencia a la frecuencia de cambio medido en un número máximo de evaluaciones. Los mejores resultados se resaltan en negritas.

DC	FP $ au_t$	I-CGDE3	DCMOEA	dCMOEA	DC-NSGA-II-A	DNSGA-II-A
1	2500	0.9056(0.0942)	0.8819(0.0418)	0.9233(0.0602)	0.801(0.0529)	0.8738(0.0617)
	5000	0.9758(0.0479)	0.9594(0.0308)	0.96(0.065)	0.9568(0.0275)	0.9679(0.0235)
	10000	0.986(0.0367)	0.984(0.0109)	0.9982(0.0027)	0.9798(0.0114)	0.9347(0.026)
2	2500	0.9886(0.0268)	0.9759(0.0163)	0.9696(0.0412)	0.9744(0.0198)	0.9677(0.0202)
	5000	0.997(0.0069)	0.997(0.0027)	0.9977(0.0008)	0.9976(0.0015)	0.9883(0.0093)
	10000	0.9988(0.0005)	0.9985(0.0019)	0.9984(0.0008)	0.9988(0.0009)	0.9974(0.0025)
3	2500	0.9757(0.0239)	0.9096(0.1145)	0.9653(0.0226)	0.9457(0.0211)	0.8689(0.0845)
	5000	0.984(0.0275)	0.974(0.018)	0.9883(0.0019)	0.9621(0.0224)	0.8756(0.0962)
	10000	0.9947(0.001)	0.9821(0.0135)	0.9922(0.0012)	0.986(0.0103)	0.9698(0.0151)
4	2500	0.8574(0.0391)	0.8769(0.0328)	0.8082(0.0449)	0.8106(0.1237)	0.7468(0.0799)
	5000	0.855(0.0774)	0.9257(0.0598)	0.8644(0.0436)	0.9196(0.0395)	0.6945(0.0939)
	10000	0.862(0.0565)	0.9813(0.0143)	0.9107(0.0162)	0.9412(0.0458)	0.7873(0.0664)
5	2500	0.957(0.0239)	0.932(0.0168)	0.9519(0.0134)	0.9377(0.0222)	0.9162(0.0407)
	5000	0.9715(0.0108)	0.9575(0.0071)	0.9735(0.0084)	0.9575(0.0081)	0.9417(0.0122)
	10000	0.9755(0.0149)	0.9637(0.0064)	0.9826(0.0073)	0.9618(0.0067)	0.9558(0.0095)
6	2500	0.9956(0.0049)	0.9529(0.047)	0.9188(0.0729)	0.8102(0.1284)	0.9454(0.0835)
	5000	0.9987(0.0008)	0.9842(0.0152)	0.9976(0.0507)	0.9944(0.0148)	1.029(0.0233)
	10000	0.9994(0.0002)	0.9949(0.0028)	1.0288(0.0193)	0.9607(0.039)	0.9594(0.0773)
7	2500	0.8826(0.0564)	0.8578(0.0265)	0.7976(0.0834)	0.8514(0.0408)	0.718(0.0644)
	5000	0.9479(0.0286)	0.0191(0.0157)	0.9462(0.0661)	0.9508(0.0103)	0.928(0.0211)
	10000	0.9851(0.0161)	0.9948(0.0068)	0.9837(0.0313)	0.977(0.0221)	0.978(0.0181)
8	2500	0.9559(0.0777)	1.0135(0.1742)	0.9503(0.1241)	0.9828(0.1782)	1.0228(0.2256)
	5000	0.9722(0.085)	1.1517(0.076)	0.939(0.1438)	1.1429(0.1174)	1.051(0.1926)
	10000	0.9766(0.0475)	1.1343(0.0772)	0.9847(0.1785)	1.0342(0.1359)	1.0068(0.1952)
FCC	CD $ au_t$	I-CGDE3	DCMOEA	dCMOEA	DC-NSGA-II-A	DNSGA-II-A
FCC	$\frac{\text{CD } au_t}{2000}$	I-CGDE3 0.9777(0.0036)	DCMOEA 0.8713(0.0081)	dCMOEA 0.9576(0.0073)	DC-NSGA-II-A 0.8641(0.0285)	DNSGA-II-A 0.9106(0.0366)
FCC	$\frac{\text{CD } \tau_t}{2000}$	I-CGDE3 0.9777(0.0036) 0.9925(0.0013)	DCMOEA 0.8713(0.0081) 0.9271(0.0058)	dCMOEA 0.9576(0.0073) 0.9808(0.0022)	DC-NSGA-II-A 0.8641(0.0285) 0.8911(0.0124)	DNSGA-II-A 0.9106(0.0366) 0.8745(0.0331)
FCC	$\begin{array}{c c} \text{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \end{array}$	I-CGDE3 0.9777(0.0036) 0.9925(0.0013) 0.9976(0.0004)	DCMOEA 0.8713(0.0081) 0.9271(0.0058) 0.9667(0.0031)	dCMOEA 0.9576(0.0073) 0.9808(0.0022) 0.9858(0.0015)	DC-NSGA-II-A 0.8641(0.0285) 0.8911(0.0124) 0.9346(0.0108)	DNSGA-II-A 0.9106(0.0366) 0.8745(0.0331) 0.9156(0.0112)
FC0 1 2	$\begin{array}{c c} \text{CD} \ \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \end{array}$	I-CGDE3 0.9777(0.0036) 0.9925(0.0013) 0.9976(0.0004) 0.9853(0.0025)	DCMOEA 0.8713(0.0081) 0.9271(0.0058) 0.9667(0.0031) 0.8898(0.0082)	$\begin{array}{c} d{\rm CMOEA} \\ \hline 0.9576(0.0073) \\ 0.9808(0.0022) \\ 0.9858(0.0015) \\ 0.975(0.0046) \end{array}$	DC-NSGA-II-A 0.8641(0.0285) 0.8911(0.0124) 0.9346(0.0108) 0.8552(0.02)	DNSGA-II-A 0.9106(0.0366) 0.8745(0.0331) 0.9156(0.0112) 0.8527(0.0191)
FC0 1 2	$\begin{array}{c c} \text{CD} \ \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \end{array}$	I-CGDE3 0.9777(0.0036) 0.9925(0.0013) 0.9976(0.0004) 0.9853(0.0025) 0.9969(0.0007)	DCMOEA 0.8713(0.0081) 0.9271(0.0058) 0.9667(0.0031) 0.8898(0.0082) 0.943(0.0048)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	DC-NSGA-II-A 0.8641(0.0285) 0.8911(0.0124) 0.9346(0.0108) 0.8552(0.02) 0.9041(0.0118)	$\begin{array}{c} \hline \text{DNSGA-II-A} \\ \hline 0.9106(0.0366) \\ 0.8745(0.0331) \\ \hline 0.9156(0.0112) \\ \hline 0.8527(0.0191) \\ 0.8652(0.0145) \end{array}$
FC0 1 2	$\begin{array}{c cccc} \hline & & \tau_t \\ \hline & 2000 \\ & 3000 \\ \hline & 4000 \\ \hline & 2000 \\ & 3000 \\ & 4000 \\ \hline \end{array}$	I-CGDE3 0.9777(0.0036) 0.9925(0.0013) 0.9976(0.0004) 0.9853(0.0025) 0.9969(0.0007) 0.9992(0.0002)	DCMOEA 0.8713(0.0081) 0.9271(0.0058) 0.9667(0.0031) 0.8898(0.0082) 0.943(0.0048) 0.9787(0.0026)	$\begin{array}{c} d{\rm CMOEA} \\ \hline 0.9576(0.0073) \\ 0.9808(0.0022) \\ 0.9858(0.0015) \\ 0.975(0.0046) \\ 0.9906(0.0015) \\ 0.9937(0.001) \end{array}$	$\begin{array}{c} \mbox{DC-NSGA-II-A}\\ \hline 0.8641(0.0285)\\ 0.8911(0.0124)\\ 0.9346(0.0108)\\ \hline 0.8552(0.02)\\ 0.9041(0.0118)\\ 0.954(0.0098) \end{array}$	$\begin{array}{c} \hline \text{DNSGA-II-A} \\ \hline 0.9106(0.0366) \\ 0.8745(0.0331) \\ 0.9156(0.0112) \\ \hline 0.8527(0.0191) \\ 0.8652(0.0145) \\ 0.9414(0.01) \end{array}$
FC0 1 2 3	$\begin{array}{c c} \hline \text{CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline 2000 \\ \hline \end{array}$	I-CGDE3 0.9777(0.0036) 0.9925(0.0013) 0.9976(0.0004) 0.9853(0.0025) 0.9969(0.0007) 0.9992(0.0002) 0.9773(0.003)	DCMOEA 0.8713(0.0081) 0.9271(0.0058) 0.9667(0.0031) 0.8898(0.0082) 0.943(0.0048) 0.9787(0.0026) 0.866(0.0097)	$\begin{array}{c} d{\rm CMOEA} \\ \hline 0.9576(0.0073) \\ 0.9808(0.0022) \\ 0.9858(0.0015) \\ 0.975(0.0046) \\ 0.9906(0.0015) \\ 0.9937(0.001) \\ 0.9593(0.0068) \end{array}$	$\begin{array}{c} \mbox{DC-NSGA-II-A}\\ \hline 0.8641(0.0285)\\ 0.8911(0.0124)\\ 0.9346(0.0108)\\ 0.8552(0.02)\\ 0.9041(0.0118)\\ 0.954(0.0098)\\ 0.8393(0.0169) \end{array}$	$\begin{array}{r} \hline \text{DNSGA-II-A} \\ \hline 0.9106(0.0366) \\ 0.8745(0.0331) \\ 0.9156(0.0112) \\ \hline 0.8527(0.0191) \\ 0.8652(0.0145) \\ 0.9414(0.01) \\ \hline 0.9258(0.0494) \end{array}$
FC0 1 2 3	$\begin{array}{c c} \hline \text{CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 3000 \\ \hline \end{array}$	I-CGDE3 0.9777(0.0036) 0.9925(0.0013) 0.9976(0.0004) 0.9853(0.0025) 0.9969(0.0007) 0.9992(0.0002) 0.9773(0.003) 0.9927(0.0015)	DCMOEA 0.8713(0.0081) 0.9271(0.0058) 0.9667(0.0031) 0.8898(0.0082) 0.943(0.0048) 0.9787(0.0026) 0.866(0.0097) 0.9266(0.006)	$\begin{array}{c} d{\rm CMOEA} \\ \hline 0.9576(0.0073) \\ 0.9808(0.0022) \\ 0.9858(0.0015) \\ \hline 0.975(0.0046) \\ 0.9906(0.0015) \\ 0.9937(0.001) \\ \hline 0.9593(0.0068) \\ 0.9814(0.0022) \end{array}$	$\begin{array}{c} \mbox{DC-NSGA-II-A}\\ \hline 0.8641(0.0285)\\ 0.8911(0.0124)\\ 0.9346(0.0108)\\ \hline 0.8552(0.02)\\ 0.9041(0.0118)\\ 0.954(0.0098)\\ \hline 0.8393(0.0169)\\ 0.8872(0.0122)\\ \end{array}$	$\begin{array}{c} \hline \text{DNSGA-II-A} \\ \hline 0.9106(0.0366) \\ \hline 0.8745(0.0331) \\ \hline 0.9156(0.0112) \\ \hline 0.8527(0.0191) \\ \hline 0.8652(0.0145) \\ \hline 0.9414(0.01) \\ \hline 0.9258(0.0494) \\ \hline 0.8658(0.0297) \\ \hline \end{array}$
FC0 1 2 3	$\begin{array}{c c} \hline \text{CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline \end{array}$	I-CGDE3 0.9777(0.0036) 0.9925(0.0013) 0.9976(0.0004) 0.9853(0.0025) 0.9969(0.0007) 0.9992(0.0002) 0.9773(0.003) 0.9927(0.0015) 0.9975(0.0005)	$\begin{tabular}{ c c c c c c c } \hline DCMOEA \\ \hline 0.8713(0.0081) \\ 0.9271(0.0058) \\ 0.9667(0.0031) \\ \hline 0.8898(0.0082) \\ 0.943(0.0048) \\ 0.9787(0.0026) \\ \hline 0.866(0.0097) \\ 0.9266(0.006) \\ 0.9673(0.0035) \\ \hline \end{tabular}$	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.9576(0.0073) \\ 0.9808(0.0022) \\ 0.9858(0.0015) \\ 0.975(0.0046) \\ 0.9906(0.0015) \\ 0.9937(0.001) \\ 0.9593(0.0068) \\ 0.9814(0.0022) \\ 0.9857(0.0016) \end{array}$	$\begin{array}{c} \mbox{DC-NSGA-II-A}\\ \hline 0.8641(0.0285)\\ 0.8911(0.0124)\\ 0.9346(0.0108)\\ \hline 0.8552(0.02)\\ 0.9041(0.0118)\\ 0.954(0.0098)\\ \hline 0.8393(0.0169)\\ 0.8872(0.0122)\\ 0.9361(0.0102)\\ \end{array}$	$\begin{array}{c} \hline \text{DNSGA-II-A} \\ \hline 0.9106(0.0366) \\ 0.8745(0.0331) \\ \hline 0.9156(0.0112) \\ \hline 0.8527(0.0191) \\ 0.8652(0.0145) \\ \hline 0.9414(0.01) \\ \hline 0.9258(0.0494) \\ 0.8658(0.0297) \\ \hline 0.916(0.014) \\ \end{array}$
FCC 1 2 3 4	$\begin{array}{c c} \hline \text{CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline 2000 \\ \hline \end{array}$	I-CGDE3 0.9777(0.0036) 0.9925(0.0013) 0.9976(0.0004) 0.9853(0.0025) 0.9969(0.0007) 0.9992(0.0002) 0.9773(0.003) 0.9927(0.0015) 0.9975(0.0005) 0.9857(0.0025)	DCMOEA 0.8713(0.0081) 0.9271(0.0058) 0.9667(0.0031) 0.8898(0.0082) 0.943(0.0048) 0.9787(0.0026) 0.866(0.0097) 0.9266(0.006) 0.9673(0.0035) 0.8872(0.0094)	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.9576(0.0073) \\ 0.9808(0.0022) \\ 0.9858(0.0015) \\ 0.975(0.0046) \\ 0.9906(0.0015) \\ 0.9937(0.001) \\ 0.9593(0.0068) \\ 0.9814(0.0022) \\ 0.9857(0.0016) \\ 0.9764(0.005) \end{array}$	$\begin{array}{c} \mbox{DC-NSGA-II-A}\\ \hline 0.8641(0.0285)\\ 0.8911(0.0124)\\ 0.9346(0.0108)\\ \hline 0.8552(0.02)\\ 0.9041(0.0118)\\ 0.954(0.0098)\\ \hline 0.8393(0.0169)\\ 0.8872(0.0122)\\ 0.9361(0.0102)\\ \hline 0.8449(0.0132)\\ \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
FCC 1 2 3 4	$\begin{array}{c c} \hline \text{CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 3000 \\ \hline \end{array}$	I-CGDE3 0.9777(0.0036) 0.9925(0.0013) 0.9976(0.0004) 0.9853(0.0025) 0.9969(0.0007) 0.9992(0.0002) 0.9773(0.003) 0.9975(0.0015) 0.9975(0.0025) 0.9968(0.0007)	DCMOEA 0.8713(0.0081) 0.9271(0.0058) 0.9667(0.0031) 0.8898(0.0082) 0.943(0.0048) 0.9787(0.0026) 0.866(0.0097) 0.9266(0.006) 0.9673(0.0035) 0.8872(0.0094) 0.9432(0.0041)	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.9576(0.0073) \\ 0.9808(0.0022) \\ 0.9858(0.0015) \\ \hline 0.975(0.0046) \\ 0.9906(0.0015) \\ 0.9937(0.001) \\ \hline 0.9593(0.0068) \\ 0.9814(0.0022) \\ 0.9857(0.0016) \\ \hline 0.9764(0.005) \\ 0.9909(0.0015) \\ \hline \end{array}$	$\begin{array}{c} \text{DC-NSGA-II-A}\\ \hline 0.8641(0.0285)\\ 0.8911(0.0124)\\ 0.9346(0.0108)\\ \hline 0.8552(0.02)\\ 0.9041(0.0118)\\ 0.954(0.0098)\\ \hline 0.8393(0.0169)\\ 0.8872(0.0122)\\ 0.9361(0.0102)\\ \hline 0.8449(0.0132)\\ 0.9038(0.0119)\\ \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
FC0 1 2 3 4	$\begin{array}{c c} \hline {\rm CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline \end{array}$	I-CGDE3 0.9777(0.0036) 0.9925(0.0013) 0.9976(0.0004) 0.9853(0.0025) 0.9969(0.0007) 0.9992(0.0002) 0.9773(0.003) 0.9927(0.0015) 0.9975(0.0025) 0.9957(0.0025) 0.9968(0.0007) 0.9993(0.0002)	DCMOEA 0.8713(0.0081) 0.9271(0.0058) 0.9667(0.0031) 0.8898(0.0082) 0.943(0.0048) 0.9787(0.0026) 0.866(0.0097) 0.9266(0.006) 0.9673(0.0035) 0.8872(0.0094) 0.9432(0.0041) 0.9786(0.0032)	$\frac{d\text{CMOEA}}{0.9576(0.0073)}\\ 0.9808(0.0022)\\ 0.9858(0.0015)\\ 0.975(0.0046)\\ 0.9906(0.0015)\\ 0.9937(0.001)\\ 0.9593(0.0068)\\ 0.9814(0.0022)\\ 0.9857(0.0016)\\ 0.9764(0.005)\\ 0.9909(0.0015)\\ 0.9937(0.0007)\\ 0$	$\begin{array}{c} \text{DC-NSGA-II-A}\\ \hline 0.8641(0.0285)\\ 0.8911(0.0124)\\ 0.9346(0.0108)\\ \hline 0.8552(0.02)\\ 0.9041(0.0118)\\ 0.954(0.0098)\\ \hline 0.8393(0.0169)\\ 0.8872(0.0122)\\ 0.9361(0.0102)\\ \hline 0.8449(0.0132)\\ 0.9038(0.0119)\\ 0.9556(0.0107)\\ \end{array}$	$\begin{array}{r} \hline \text{DNSGA-II-A} \\ \hline 0.9106(0.0366) \\ 0.8745(0.0331) \\ 0.9156(0.0112) \\ \hline 0.8527(0.0191) \\ 0.8652(0.0145) \\ 0.9414(0.01) \\ \hline 0.9258(0.0494) \\ 0.8658(0.0297) \\ 0.916(0.014) \\ \hline 0.8414(0.0178) \\ 0.863(0.0134) \\ 0.936(0.0152) \\ \hline \end{array}$
FC0 1 2 3 4 5	$\begin{array}{c c} \hline \text{CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline 2000 \\ \hline 2000 \\ \hline 2000 \\ \hline \end{array}$	I-CGDE3 0.9777(0.0036) 0.9925(0.0013) 0.9976(0.0004) 0.9853(0.0025) 0.9969(0.0007) 0.9992(0.0002) 0.9773(0.003) 0.9927(0.0015) 0.9975(0.0025) 0.9968(0.0007) 0.993(0.0002)	DCMOEA 0.8713(0.0081) 0.9271(0.0058) 0.9667(0.0031) 0.8898(0.0082) 0.943(0.0048) 0.9787(0.0026) 0.866(0.0097) 0.9266(0.006) 0.9673(0.0035) 0.8872(0.0094) 0.9432(0.0041) 0.9786(0.0032) 0.8617(0.0101)	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.9576(0.0073) \\ 0.9808(0.0022) \\ 0.9858(0.0015) \\ \hline 0.975(0.0046) \\ 0.9906(0.0015) \\ 0.9937(0.001) \\ 0.9593(0.0068) \\ 0.9814(0.0022) \\ 0.9857(0.0016) \\ \hline 0.9764(0.005) \\ 0.9909(0.0015) \\ 0.9937(0.0007) \\ \hline 0.9547(0.008) \end{array}$	$\begin{array}{r} \hline \text{DC-NSGA-II-A}\\ \hline 0.8641(0.0285)\\ \hline 0.8911(0.0124)\\ \hline 0.9346(0.0108)\\ \hline 0.8552(0.02)\\ \hline 0.9041(0.0118)\\ \hline 0.954(0.0098)\\ \hline 0.8393(0.0169)\\ \hline 0.8872(0.0122)\\ \hline 0.9361(0.0102)\\ \hline 0.8449(0.0132)\\ \hline 0.9038(0.0119)\\ \hline 0.9556(0.0107)\\ \hline 0.8743(0.0506)\\ \hline \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
FCC 1 2 3 4 5	$\begin{array}{c c} \hline \text{CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 2000 \\ 3000 \\ \hline \end{array}$	I-CGDE3 0.9777(0.0036) 0.9925(0.0013) 0.9976(0.0004) 0.9853(0.0025) 0.9969(0.0007) 0.9992(0.0002) 0.9773(0.003) 0.9927(0.0015) 0.9975(0.0025) 0.9968(0.0007) 0.993(0.0022) 0.9766(0.0052) 0.9941(0.0014)	DCMOEA 0.8713(0.0081) 0.9271(0.0058) 0.9667(0.0031) 0.8898(0.0082) 0.943(0.0048) 0.9787(0.0026) 0.866(0.0097) 0.9266(0.006) 0.9673(0.0035) 0.8872(0.0094) 0.9786(0.0032) 0.8617(0.0101) 0.9203(0.0052)	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.9576(0.0073) \\ 0.9808(0.0022) \\ 0.9858(0.0015) \\ \hline 0.975(0.0046) \\ 0.9906(0.0015) \\ 0.9937(0.001) \\ \hline 0.9593(0.0068) \\ 0.9814(0.0022) \\ 0.9857(0.0016) \\ \hline 0.9764(0.005) \\ 0.9909(0.0015) \\ 0.9937(0.0007) \\ \hline 0.9547(0.008) \\ 0.9772(0.003) \\ \end{array}$	$\begin{array}{r} \label{eq:DC-NSGA-II-A}\\ \hline 0.8641(0.0285)\\ 0.8911(0.0124)\\ 0.9346(0.0108)\\ \hline 0.8552(0.02)\\ 0.9041(0.0118)\\ 0.954(0.0098)\\ \hline 0.8393(0.0169)\\ 0.8872(0.0122)\\ 0.9361(0.0102)\\ \hline 0.8449(0.0132)\\ 0.9038(0.0119)\\ 0.9556(0.0107)\\ \hline 0.8743(0.0506)\\ 0.8857(0.0105)\\ \hline \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
FCC 1 2 3 4 5	$\begin{array}{c c} \hline \text{CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline \end{array}$	I-CGDE3 0.9777(0.0036) 0.9925(0.0013) 0.9976(0.0004) 0.9853(0.0025) 0.9969(0.0007) 0.9992(0.0002) 0.9773(0.003) 0.9927(0.0015) 0.9975(0.0005) 0.9857(0.0025) 0.9968(0.0007) 0.9975(0.0025) 0.9968(0.0007) 0.9993(0.0002) 0.9766(0.0052) 0.9941(0.0014) 0.9979(0.0004)	DCMOEA 0.8713(0.0081) 0.9271(0.0058) 0.9667(0.0031) 0.8898(0.0082) 0.943(0.0048) 0.9787(0.0026) 0.866(0.0097) 0.9266(0.006) 0.9673(0.0035) 0.8872(0.0094) 0.9432(0.0041) 0.9786(0.0032) 0.8617(0.0101) 0.9203(0.0052) 0.9651(0.0033)	dCMOEA 0.9576(0.0073) 0.9808(0.0022) 0.9808(0.0022) 0.9858(0.0015) 0.975(0.0046) 0.9906(0.0015) 0.9937(0.001) 0.9593(0.0068) 0.9814(0.0022) 0.9857(0.0016) 0.9764(0.005) 0.9937(0.0007) 0.9547(0.008) 0.9772(0.003) 0.9838(0.0024)	$\begin{array}{r} \label{eq:DC-NSGA-II-A} \\ \hline 0.8641(0.0285) \\ \hline 0.8911(0.0124) \\ \hline 0.9346(0.0108) \\ \hline 0.8552(0.02) \\ \hline 0.9041(0.0118) \\ \hline 0.954(0.0098) \\ \hline 0.8393(0.0169) \\ \hline 0.8872(0.0122) \\ \hline 0.9361(0.0102) \\ \hline 0.8449(0.0132) \\ \hline 0.9038(0.0119) \\ \hline 0.9556(0.0107) \\ \hline 0.8743(0.0506) \\ \hline 0.8857(0.0105) \\ \hline 0.9367(0.0106) \\ \hline \end{array}$	$\begin{tabular}{ c c c c c c } \hline DNSGA-II-A \\ \hline 0.9106(0.0366) \\ \hline 0.8745(0.0331) \\ \hline 0.9156(0.0112) \\ \hline 0.8527(0.0191) \\ \hline 0.8652(0.0145) \\ \hline 0.9414(0.01) \\ \hline 0.9258(0.0494) \\ \hline 0.8658(0.0297) \\ \hline 0.916(0.014) \\ \hline 0.8414(0.0178) \\ \hline 0.863(0.0134) \\ \hline 0.936(0.0152) \\ \hline 0.9133(0.0427) \\ \hline 0.8622(0.0228) \\ \hline 0.9074(0.0121) \\ \hline \end{tabular}$
FCC 1 2 3 4 5 6	$\begin{array}{c c} \hline {\rm CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 4000 \\ \hline 2000 \\ \hline 2000 \\ \hline 3000 \\ \hline 4000 \\ \hline 2000 \\ \hline 200 \\ \hline 2000 \\ \hline 200 $	I-CGDE3 0.9777(0.0036) 0.9925(0.0013) 0.9976(0.0004) 0.9853(0.0025) 0.9969(0.0007) 0.9992(0.0002) 0.9773(0.003) 0.9927(0.0015) 0.9975(0.0005) 0.9968(0.0007) 0.9975(0.0025) 0.9968(0.0007) 0.9993(0.0002) 0.9766(0.0052) 0.9941(0.0014) 0.9979(0.0004) 0.9843(0.0025)	DCMOEA 0.8713(0.0081) 0.9271(0.0058) 0.9667(0.0031) 0.8898(0.0082) 0.943(0.0048) 0.9787(0.0026) 0.866(0.0097) 0.9266(0.006) 0.9673(0.0035) 0.8872(0.0094) 0.9432(0.0041) 0.9786(0.0032) 0.8617(0.0101) 0.9203(0.0052) 0.9651(0.0033) 0.8843(0.01)	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.9576(0.0073) \\ 0.9808(0.0022) \\ 0.9808(0.0022) \\ 0.9858(0.0015) \\ \hline 0.975(0.0046) \\ 0.9906(0.0015) \\ 0.9937(0.001) \\ \hline 0.9937(0.001) \\ 0.9593(0.0068) \\ 0.9814(0.0022) \\ 0.9857(0.0016) \\ \hline 0.9764(0.005) \\ 0.9909(0.0015) \\ 0.9909(0.0015) \\ 0.9937(0.0007) \\ \hline 0.9547(0.008) \\ 0.9772(0.003) \\ 0.9838(0.0024) \\ \hline 0.9721(0.0044) \\ \hline \end{array}$	$\begin{array}{r} \label{eq:DC-NSGA-II-A} \\ \hline 0.8641(0.0285) \\ 0.8911(0.0124) \\ 0.9346(0.0108) \\ \hline 0.8552(0.02) \\ 0.9041(0.0118) \\ 0.954(0.0098) \\ \hline 0.8393(0.0169) \\ 0.8872(0.0122) \\ 0.9361(0.0102) \\ \hline 0.8449(0.0132) \\ 0.9038(0.0119) \\ 0.9556(0.0107) \\ \hline 0.8743(0.0506) \\ 0.8857(0.0105) \\ \hline 0.9367(0.0106) \\ \hline 0.8499(0.0126) \\ \hline \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
FCC 1 2 3 4 5 6	$\begin{array}{c c} \hline \text{CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 4000 \\ \hline 2000 \\ 3000 \\ \hline 4000 \\ \hline 2000 \\ 3000 \\ \hline 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 4000 \\ \hline \end{array}$	I-CGDE3 0.9777(0.0036) 0.9925(0.0013) 0.9976(0.0004) 0.9853(0.0025) 0.9969(0.0007) 0.9992(0.0002) 0.9773(0.003) 0.9927(0.0015) 0.9975(0.0005) 0.9968(0.0007) 0.9975(0.0025) 0.9968(0.0007) 0.9993(0.0002) 0.9766(0.0052) 0.9941(0.0014) 0.9979(0.0004) 0.9843(0.0025) 0.996(0.0008)	DCMOEA 0.8713(0.0081) 0.9271(0.0058) 0.9667(0.0031) 0.8898(0.0082) 0.943(0.0048) 0.9787(0.0026) 0.866(0.0097) 0.9266(0.006) 0.9673(0.0035) 0.8872(0.0094) 0.9432(0.0041) 0.9786(0.0032) 0.8617(0.0101) 0.9203(0.0052) 0.9651(0.0033) 0.8843(0.01) 0.9459(0.0053)	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.9576(0.0073) \\ 0.9808(0.0022) \\ 0.9808(0.0022) \\ 0.9858(0.0015) \\ \hline 0.975(0.0046) \\ 0.9906(0.0015) \\ 0.9937(0.001) \\ 0.9593(0.0068) \\ 0.9814(0.0022) \\ 0.9857(0.0016) \\ \hline 0.9764(0.005) \\ 0.9909(0.0015) \\ 0.9909(0.0015) \\ 0.9937(0.0007) \\ \hline 0.9547(0.008) \\ 0.9772(0.003) \\ 0.9838(0.0024) \\ \hline 0.9721(0.0044) \\ 0.9848(0.0024) \\ \hline \end{array}$	$\begin{array}{r} \label{eq:DC-NSGA-II-A} \\ \hline 0.8641(0.0285) \\ 0.8911(0.0124) \\ 0.9346(0.0108) \\ \hline 0.8552(0.02) \\ 0.9041(0.0118) \\ 0.954(0.0098) \\ \hline 0.8393(0.0169) \\ 0.8393(0.0169) \\ 0.8872(0.0122) \\ 0.9361(0.0102) \\ \hline 0.9361(0.0102) \\ 0.9038(0.0119) \\ 0.9556(0.0107) \\ \hline 0.8743(0.0506) \\ 0.8857(0.0105) \\ 0.9367(0.0106) \\ \hline 0.8499(0.0126) \\ 0.9068(0.0111) \\ \hline \end{array}$	$\begin{array}{r} \hline \text{DNSGA-II-A} \\ \hline 0.9106(0.0366) \\ 0.8745(0.0331) \\ 0.9156(0.0112) \\ \hline 0.8527(0.0191) \\ 0.8652(0.0145) \\ 0.9414(0.01) \\ \hline 0.9258(0.0494) \\ 0.8658(0.0297) \\ 0.916(0.014) \\ \hline 0.8414(0.0178) \\ 0.863(0.0134) \\ 0.936(0.0152) \\ \hline 0.9133(0.0427) \\ 0.8622(0.0228) \\ 0.9074(0.0121) \\ \hline 0.8577(0.0188) \\ 0.8728(0.0139) \\ \hline \end{array}$
FCC 1 2 3 4 5 6	$\begin{array}{c cccc} \hline {\rm CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 4000 \\ \hline \end{array}$	I-CGDE3 0.9777(0.0036) 0.9925(0.0013) 0.9976(0.0004) 0.9853(0.0025) 0.9969(0.0007) 0.9992(0.0002) 0.9773(0.003) 0.9927(0.0015) 0.9975(0.0005) 0.9968(0.0007) 0.9993(0.0002) 0.9766(0.0052) 0.9979(0.0004) 0.9979(0.0004) 0.996(0.0008) 0.9993(0.0003)	$\begin{tabular}{ c c c c c } \hline DCMOEA \\ \hline 0.8713(0.0081) \\ \hline 0.9271(0.0058) \\ \hline 0.9271(0.0058) \\ \hline 0.943(0.0048) \\ \hline 0.943(0.0048) \\ \hline 0.9787(0.0026) \\ \hline 0.866(0.0097) \\ \hline 0.9266(0.006) \\ \hline 0.9673(0.0035) \\ \hline 0.8872(0.0094) \\ \hline 0.9432(0.0041) \\ \hline 0.9786(0.0032) \\ \hline 0.8617(0.0101) \\ \hline 0.9203(0.0052) \\ \hline 0.9651(0.0033) \\ \hline 0.8843(0.01) \\ \hline 0.9459(0.0053) \\ \hline 0.982(0.0027) \\ \hline \end{tabular}$	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.9576(0.0073) \\ 0.9808(0.0022) \\ 0.9808(0.0022) \\ 0.9858(0.0015) \\ \hline 0.975(0.0046) \\ 0.9906(0.0015) \\ 0.9937(0.001) \\ 0.9593(0.0068) \\ 0.9814(0.0022) \\ 0.9857(0.0016) \\ \hline 0.9764(0.005) \\ 0.9909(0.0015) \\ 0.9909(0.0015) \\ 0.9937(0.0007) \\ \hline 0.9547(0.008) \\ 0.9772(0.003) \\ 0.9721(0.0044) \\ 0.9848(0.0024) \\ 0.9893(0.0018) \\ \end{array}$	$\begin{array}{r} \label{eq:DC-NSGA-II-A}\\ \hline 0.8641(0.0285)\\ 0.8911(0.0124)\\ 0.9346(0.0108)\\ \hline 0.8552(0.02)\\ 0.9041(0.0118)\\ 0.954(0.0098)\\ \hline 0.8393(0.0169)\\ 0.8393(0.0169)\\ 0.8872(0.0122)\\ 0.9361(0.0102)\\ \hline 0.8449(0.0132)\\ 0.9038(0.0119)\\ 0.9556(0.0107)\\ \hline 0.8743(0.0506)\\ 0.8857(0.0105)\\ 0.9367(0.0106)\\ \hline 0.8499(0.0126)\\ 0.9068(0.0111)\\ 0.9561(0.0094)\\ \end{array}$	$\begin{array}{r} \hline \text{DNSGA-II-A} \\ \hline 0.9106(0.0366) \\ 0.8745(0.0331) \\ 0.9156(0.0112) \\ \hline 0.8527(0.0191) \\ 0.8652(0.0145) \\ 0.9414(0.01) \\ \hline 0.9258(0.0494) \\ 0.8658(0.0297) \\ 0.916(0.014) \\ \hline 0.8414(0.0178) \\ 0.863(0.0134) \\ 0.936(0.0152) \\ \hline 0.9133(0.0427) \\ 0.8622(0.0228) \\ 0.9074(0.0121) \\ \hline 0.8577(0.0188) \\ 0.8728(0.0139) \\ 0.9382(0.0107) \\ \hline \end{array}$
FCC 1 2 3 4 5 6 7	$\begin{array}{c cccc} \hline {\rm CD} & \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline 2000 \\ \hline 3000 \\ 4000 \\ \hline 2000 \\ \hline 200 \\ \hline 2000 \\ \hline 200$	I-CGDE3 0.9777(0.0036) 0.9925(0.0013) 0.9976(0.0004) 0.9853(0.0025) 0.9969(0.0007) 0.9992(0.0002) 0.9773(0.003) 0.9927(0.0015) 0.9975(0.0005) 0.9968(0.0007) 0.9975(0.0025) 0.9968(0.0007) 0.9993(0.0002) 0.9766(0.0052) 0.9941(0.0014) 0.9979(0.0004) 0.9843(0.0025) 0.9993(0.0003) 0.99765(0.0045)	DCMOEA 0.8713(0.0081) 0.9271(0.0058) 0.9667(0.0031) 0.8898(0.0082) 0.943(0.0048) 0.9787(0.0026) 0.866(0.0097) 0.9266(0.006) 0.9673(0.0035) 0.8872(0.0094) 0.9432(0.0041) 0.9786(0.0032) 0.8617(0.0101) 0.9203(0.0052) 0.9651(0.0033) 0.8843(0.01) 0.9459(0.0053) 0.982(0.0027) 0.8535(0.0098)	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.9576(0.0073) \\ 0.9808(0.0022) \\ 0.9808(0.0022) \\ 0.9858(0.0015) \\ \hline 0.975(0.0046) \\ 0.9906(0.0015) \\ 0.9937(0.001) \\ \hline 0.9593(0.0068) \\ 0.9814(0.0022) \\ 0.9857(0.0016) \\ \hline 0.9764(0.005) \\ 0.9909(0.0015) \\ 0.9909(0.0015) \\ 0.9937(0.0007) \\ \hline 0.9547(0.008) \\ 0.9772(0.003) \\ 0.9838(0.0024) \\ \hline 0.9838(0.0024) \\ 0.9893(0.0018) \\ \hline 0.9528(0.01) \\ \hline \end{array}$	$\begin{array}{r} \label{eq:DC-NSGA-II-A}\\ \hline 0.8641(0.0285)\\ \hline 0.8911(0.0124)\\ \hline 0.9346(0.0108)\\ \hline 0.8552(0.02)\\ \hline 0.9041(0.0118)\\ \hline 0.954(0.0098)\\ \hline 0.8393(0.0169)\\ \hline 0.8393(0.0169)\\ \hline 0.8872(0.0122)\\ \hline 0.9361(0.0102)\\ \hline 0.9361(0.0102)\\ \hline 0.9038(0.0119)\\ \hline 0.9556(0.0107)\\ \hline 0.8743(0.0506)\\ \hline 0.8857(0.0105)\\ \hline 0.9367(0.0106)\\ \hline 0.8499(0.0126)\\ \hline 0.9068(0.0111)\\ \hline 0.9561(0.0094)\\ \hline 0.8466(0.0278)\\ \hline \end{array}$	$\begin{array}{r} \hline \text{DNSGA-II-A} \\ \hline 0.9106(0.0366) \\ 0.8745(0.0331) \\ 0.9156(0.0112) \\ \hline 0.8527(0.0191) \\ 0.8652(0.0145) \\ 0.9414(0.01) \\ \hline 0.9258(0.0494) \\ 0.8658(0.0297) \\ 0.916(0.014) \\ \hline 0.8414(0.0178) \\ 0.863(0.0134) \\ 0.936(0.0152) \\ \hline 0.9133(0.0427) \\ 0.8622(0.0228) \\ 0.9074(0.0121) \\ \hline 0.8577(0.0188) \\ 0.8728(0.0139) \\ 0.9382(0.0107) \\ \hline 0.9152(0.0447) \\ \hline \end{array}$
FCC 1 2 3 4 5 6 7	$\begin{array}{c c} \hline {\rm CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 4000 \\ \hline 2000 \\ 3000 \\ \hline 4000 \\ \hline 2000 \\ 3000 \\ \hline 3000 \\ \hline 000 \\ \hline 00$	$\begin{array}{r} \text{I-CGDE3}\\ \hline 0.9777(0.0036)\\ 0.9925(0.0013)\\ 0.9976(0.0004)\\ \hline 0.9853(0.0025)\\ 0.9969(0.0007)\\ 0.9992(0.0002)\\ \hline 0.9773(0.003)\\ 0.9927(0.0015)\\ 0.9975(0.0005)\\ \hline 0.9975(0.0005)\\ \hline 0.9968(0.0007)\\ 0.9993(0.0002)\\ \hline 0.9766(0.0052)\\ 0.9941(0.0014)\\ 0.9979(0.0004)\\ \hline 0.9993(0.0003)\\ 0.9993(0.0003)\\ \hline 0.9945(0.001)\\ \hline \end{array}$	$\begin{tabular}{ c c c c c } \hline DCMOEA \\ \hline 0.8713(0.0081) \\ \hline 0.9271(0.0058) \\ \hline 0.9271(0.0058) \\ \hline 0.9271(0.0058) \\ \hline 0.9667(0.0031) \\ \hline 0.8898(0.0082) \\ \hline 0.943(0.0048) \\ \hline 0.9787(0.0026) \\ \hline 0.866(0.0097) \\ \hline 0.9266(0.006) \\ \hline 0.9673(0.0035) \\ \hline 0.8667(0.0035) \\ \hline 0.8872(0.0094) \\ \hline 0.9432(0.0041) \\ \hline 0.9432(0.0041) \\ \hline 0.9786(0.0032) \\ \hline 0.8617(0.0101) \\ \hline 0.9203(0.0052) \\ \hline 0.9651(0.0033) \\ \hline 0.8843(0.01) \\ \hline 0.9459(0.0053) \\ \hline 0.982(0.0027) \\ \hline 0.8535(0.0098) \\ \hline 0.9217(0.0065) \\ \hline \end{tabular}$	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.9576(0.0073) \\ 0.9808(0.0022) \\ 0.9808(0.0022) \\ 0.9858(0.0015) \\ \hline 0.975(0.0046) \\ 0.9906(0.0015) \\ 0.9937(0.001) \\ \hline 0.9937(0.001) \\ 0.9593(0.0068) \\ 0.9814(0.0022) \\ 0.9857(0.0016) \\ \hline 0.9764(0.005) \\ 0.9909(0.0015) \\ 0.9909(0.0015) \\ 0.9937(0.0007) \\ \hline 0.9547(0.008) \\ 0.9772(0.003) \\ 0.9838(0.0024) \\ \hline 0.9721(0.0044) \\ 0.9848(0.0024) \\ 0.9893(0.0018) \\ \hline 0.9528(0.01) \\ 0.9778(0.0025) \\ \hline \end{array}$	$\begin{array}{r} \label{eq:DC-NSGA-II-A}\\ \hline 0.8641(0.0285)\\ \hline 0.8911(0.0124)\\ \hline 0.9346(0.0108)\\ \hline 0.8552(0.02)\\ \hline 0.9041(0.0118)\\ \hline 0.954(0.0098)\\ \hline 0.8393(0.0169)\\ \hline 0.8872(0.0122)\\ \hline 0.9361(0.0102)\\ \hline 0.8449(0.0132)\\ \hline 0.9038(0.0119)\\ \hline 0.9556(0.0107)\\ \hline 0.8743(0.0506)\\ \hline 0.8857(0.0105)\\ \hline 0.9367(0.0106)\\ \hline 0.8499(0.0126)\\ \hline 0.9068(0.0111)\\ \hline 0.9561(0.0094)\\ \hline 0.8466(0.0278)\\ \hline 0.8773(0.0116)\\ \hline \end{array}$	$\begin{array}{r} \hline \text{DNSGA-II-A} \\ \hline 0.9106(0.0366) \\ 0.8745(0.0331) \\ 0.9156(0.0112) \\ \hline 0.8527(0.0191) \\ 0.8652(0.0145) \\ 0.9414(0.01) \\ \hline 0.9258(0.0494) \\ 0.8658(0.0297) \\ 0.916(0.014) \\ \hline 0.8414(0.0178) \\ 0.863(0.0134) \\ 0.936(0.0152) \\ \hline 0.9133(0.0427) \\ 0.8622(0.0228) \\ 0.9074(0.0121) \\ \hline 0.8577(0.0188) \\ 0.8728(0.0139) \\ 0.9382(0.0107) \\ \hline 0.9152(0.0447) \\ 0.8757(0.0285) \\ \hline \end{array}$
FCC 1 2 3 4 5 6 7	$\begin{array}{c c} \hline {\rm CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline 2000 \\ \hline 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 $	$\begin{array}{r} \text{I-CGDE3}\\ \hline 0.9777(0.0036)\\ 0.9925(0.0013)\\ 0.9976(0.0004)\\ 0.9853(0.0025)\\ 0.9969(0.0007)\\ 0.9992(0.0002)\\ 0.9773(0.003)\\ 0.9977(0.0015)\\ 0.9975(0.0005)\\ 0.9975(0.0005)\\ 0.9975(0.0002)\\ 0.9968(0.0007)\\ 0.9993(0.0002)\\ 0.9941(0.0014)\\ 0.9979(0.0004)\\ 0.9941(0.0014)\\ 0.9979(0.0004)\\ 0.9941(0.0014)\\ 0.9979(0.0004)\\ 0.996(0.0008)\\ 0.9993(0.0003)\\ 0.9765(0.0045)\\ 0.9945(0.001)\\ 0.998(0.0003)\\ \end{array}$	$\begin{tabular}{ c c c c c } \hline DCMOEA \\\hline 0.8713(0.0081) \\\hline 0.9271(0.0058) \\\hline 0.9271(0.0058) \\\hline 0.9667(0.0031) \\\hline 0.8898(0.0082) \\\hline 0.943(0.0048) \\\hline 0.9787(0.0026) \\\hline 0.9666(0.0097) \\\hline 0.9266(0.006) \\\hline 0.9673(0.0035) \\\hline 0.8872(0.0094) \\\hline 0.9432(0.0041) \\\hline 0.9432(0.0041) \\\hline 0.9786(0.0032) \\\hline 0.8617(0.0101) \\\hline 0.9203(0.0052) \\\hline 0.8617(0.0103) \\\hline 0.8843(0.01) \\\hline 0.9459(0.0053) \\\hline 0.982(0.0027) \\\hline 0.8535(0.0098) \\\hline 0.9217(0.0065) \\\hline 0.9655(0.0036) \\\hline \end{tabular}$	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.9576(0.0073) \\ 0.9808(0.0022) \\ 0.9808(0.0022) \\ 0.9858(0.0015) \\ \hline 0.975(0.0046) \\ 0.9906(0.0015) \\ 0.9937(0.001) \\ \hline 0.9937(0.001) \\ 0.9593(0.0068) \\ 0.9814(0.0022) \\ 0.9857(0.0016) \\ \hline 0.9764(0.005) \\ 0.9909(0.0015) \\ 0.9909(0.0015) \\ 0.9937(0.0007) \\ \hline 0.9547(0.008) \\ 0.9772(0.003) \\ 0.9772(0.003) \\ 0.9838(0.0024) \\ 0.9893(0.0018) \\ \hline 0.9528(0.01) \\ 0.9778(0.0025) \\ 0.9833(0.002) \\ \hline \end{array}$	$\begin{array}{r} \label{eq:DC-NSGA-II-A}\\ \hline 0.8641(0.0285)\\ \hline 0.8911(0.0124)\\ \hline 0.9346(0.0108)\\ \hline 0.8552(0.02)\\ \hline 0.9041(0.0118)\\ \hline 0.954(0.0098)\\ \hline 0.8393(0.0169)\\ \hline 0.8393(0.0169)\\ \hline 0.8872(0.0122)\\ \hline 0.9361(0.0102)\\ \hline 0.9361(0.0102)\\ \hline 0.9361(0.0102)\\ \hline 0.9038(0.0119)\\ \hline 0.9556(0.0107)\\ \hline 0.8743(0.0506)\\ \hline 0.8857(0.0105)\\ \hline 0.9367(0.0106)\\ \hline 0.8499(0.0126)\\ \hline 0.9068(0.0111)\\ \hline 0.9561(0.0094)\\ \hline 0.8466(0.0278)\\ \hline 0.8773(0.0116)\\ \hline 0.9361(0.0114)\\ \hline \end{array}$	$\begin{tabular}{ c c c c c } \hline DNSGA-II-A \\ \hline 0.9106(0.0366) \\ \hline 0.8745(0.0331) \\ \hline 0.9156(0.0112) \\ \hline 0.8527(0.0191) \\ \hline 0.8652(0.0145) \\ \hline 0.9414(0.01) \\ \hline 0.9258(0.0494) \\ \hline 0.8658(0.0297) \\ \hline 0.916(0.014) \\ \hline 0.8638(0.0134) \\ \hline 0.863(0.0134) \\ \hline 0.936(0.0152) \\ \hline 0.9133(0.0427) \\ \hline 0.8622(0.0228) \\ \hline 0.9074(0.0121) \\ \hline 0.8577(0.0188) \\ \hline 0.8728(0.0139) \\ \hline 0.9382(0.0107) \\ \hline 0.9152(0.0447) \\ \hline 0.8757(0.0285) \\ \hline 0.9085(0.0141) \\ \hline \end{tabular}$
FCC 1 2 3 4 5 6 7 8	$\begin{array}{c c} \hline {\rm CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 \\$	$\begin{array}{r} \mbox{I-CGDE3}\\ \hline \mbox{I-CGDE3}\\ \hline \mbox{0.9977}(0.0036)\\ \mbox{0.9925}(0.0013)\\ \mbox{0.9976}(0.0004)\\ \hline \mbox{0.9976}(0.0002)\\ \mbox{0.9992}(0.0002)\\ \mbox{0.9992}(0.0002)\\ \mbox{0.9977}(0.0015)\\ \mbox{0.9975}(0.0005)\\ \mbox{0.9975}(0.0002)\\ \mbox{0.9975}(0.0002)\\ \mbox{0.9993}(0.0002)\\ \mbox{0.9993}(0.0002)\\ \mbox{0.9979}(0.0004)\\ \mbox{0.9979}(0.0004)\\ \mbox{0.9979}(0.0004)\\ \mbox{0.9993}(0.0003)\\ \mbox{0.9945}(0.0011)\\ \mbox{0.99845}(0.0025)\\ \mbox{0.9845}(0.0025)\\ \hline \mbox{0.9845}(0.0025)\\ \mbox{0.9845}(0.0025$	$\begin{tabular}{ c c c c c } \hline DCMOEA \\\hline 0.8713(0.0081) \\0.9271(0.0058) \\0.9667(0.0031) \\\hline 0.8898(0.0082) \\0.943(0.0048) \\0.9787(0.0026) \\\hline 0.9666(0.0097) \\0.9266(0.006) \\0.9673(0.0035) \\\hline 0.8872(0.0094) \\0.9432(0.0041) \\0.9432(0.0041) \\0.9786(0.0032) \\\hline 0.8617(0.0101) \\0.9203(0.0052) \\0.9651(0.0033) \\\hline 0.8843(0.01) \\0.9459(0.0053) \\0.982(0.0027) \\\hline 0.8535(0.0098) \\0.9217(0.0065) \\0.9655(0.0036) \\\hline 0.8817(0.0081) \\\hline \end{tabular}$	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.9576(0.0073) \\ 0.9808(0.0022) \\ 0.9808(0.0022) \\ 0.9858(0.0015) \\ \hline 0.975(0.0046) \\ 0.9906(0.0015) \\ 0.9937(0.001) \\ \hline 0.9593(0.0068) \\ 0.9814(0.0022) \\ 0.9857(0.0016) \\ \hline 0.9764(0.005) \\ 0.9909(0.0015) \\ 0.9909(0.0015) \\ 0.9937(0.0007) \\ \hline 0.9547(0.008) \\ 0.9772(0.003) \\ 0.9772(0.003) \\ 0.9838(0.0024) \\ \hline 0.9721(0.0044) \\ 0.9848(0.0024) \\ 0.99528(0.01) \\ 0.9778(0.0025) \\ 0.9738(0.0046) \\ \hline \end{array}$	$\begin{array}{r} \hline \text{DC-NSGA-II-A}\\ \hline 0.8641(0.0285)\\ \hline 0.8911(0.0124)\\ \hline 0.9346(0.0108)\\ \hline 0.8552(0.02)\\ \hline 0.9041(0.0118)\\ \hline 0.954(0.0098)\\ \hline 0.8393(0.0169)\\ \hline 0.8393(0.0169)\\ \hline 0.8872(0.0122)\\ \hline 0.9361(0.0102)\\ \hline 0.9361(0.0102)\\ \hline 0.9361(0.0102)\\ \hline 0.9038(0.0119)\\ \hline 0.9556(0.0107)\\ \hline 0.8743(0.0506)\\ \hline 0.8857(0.0105)\\ \hline 0.9367(0.0106)\\ \hline 0.8499(0.0126)\\ \hline 0.9068(0.0111)\\ \hline 0.9561(0.0094)\\ \hline 0.8466(0.0278)\\ \hline 0.8773(0.0116)\\ \hline 0.9361(0.0114)\\ \hline 0.8434(0.0097)\\ \hline \end{array}$	$\begin{array}{r} \hline \text{DNSGA-II-A} \\ \hline 0.9106(0.0366) \\ 0.8745(0.0331) \\ 0.9156(0.0112) \\ \hline 0.8527(0.0191) \\ 0.8652(0.0145) \\ 0.9414(0.01) \\ \hline 0.9258(0.0494) \\ 0.8658(0.0297) \\ 0.916(0.014) \\ \hline 0.8414(0.0178) \\ 0.863(0.0134) \\ 0.936(0.0152) \\ \hline 0.9133(0.0427) \\ 0.8622(0.0228) \\ 0.9074(0.0121) \\ \hline 0.8577(0.0188) \\ 0.8728(0.0139) \\ 0.9382(0.0107) \\ \hline 0.9152(0.0447) \\ 0.8757(0.0285) \\ 0.9085(0.0141) \\ \hline 0.8492(0.0221) \\ \hline \end{array}$
FCC 1 2 3 4 5 6 7 8	$\begin{array}{c c} \hline {\rm CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 000 \\ \hline 000$	$\begin{array}{r} \mbox{I-CGDE3}\\ \hline \mbox{I-CGDE3}\\ \hline \mbox{0.9977}(0.0036)\\ \mbox{0.9925}(0.0013)\\ \mbox{0.9976}(0.0004)\\ \hline \mbox{0.9976}(0.0002)\\ \mbox{0.9992}(0.0002)\\ \mbox{0.9992}(0.0002)\\ \mbox{0.9977}(0.0003)\\ \mbox{0.9977}(0.0005)\\ \mbox{0.9975}(0.0002)\\ \mbox{0.9975}(0.0002)\\ \mbox{0.99857}(0.0025)\\ \mbox{0.9998}(0.0002)\\ \mbox{0.9979}(0.0004)\\ \mbox{0.9979}(0.0004)\\ \mbox{0.9993}(0.0003)\\ \mbox{0.99941}(0.0014)\\ \mbox{0.9993}(0.0003)\\ \mbox{0.99945}(0.0013)\\ \mbox{0.99845}(0.0025)\\ \mbox{0.996}(0.0008)\\ \mbox{0.9996}(0.0008)\\ \mbox{0.9996}(0.008)\\ \mbox{0.9996}(0.008)\\ \mbox{0.9996}(0.008)\\ \mbox{0.9996}(0.008)\\ \mbox{0.9996}(0.008)\\ \mbox{0.9996}(0.008)\\ \mbox{0.9996}(0.008)\\ \mbox{0.9996}(0.008)\\ \mbox{0.9996}(0.008)\\ $	$\begin{array}{r} \hline \text{DCMOEA} \\ \hline 0.8713(0.0081) \\ 0.9271(0.0058) \\ 0.9667(0.0031) \\ \hline 0.8898(0.0082) \\ 0.943(0.0048) \\ 0.9787(0.0026) \\ \hline 0.9666(0.0097) \\ 0.9266(0.006) \\ 0.9673(0.0035) \\ \hline 0.8872(0.0094) \\ 0.9432(0.0041) \\ 0.9432(0.0041) \\ 0.9786(0.0032) \\ \hline 0.8617(0.0101) \\ 0.9203(0.0052) \\ 0.9651(0.0033) \\ \hline 0.8843(0.01) \\ 0.9459(0.0053) \\ 0.982(0.0027) \\ \hline 0.8535(0.0098) \\ 0.9217(0.0065) \\ 0.9655(0.0036) \\ \hline 0.8817(0.0081) \\ 0.9442(0.0058) \\ \hline \end{array}$	$\begin{array}{r} d{\rm CMOEA} \\ \hline 0.9576(0.0073) \\ 0.9808(0.0022) \\ 0.9808(0.0022) \\ 0.9858(0.0015) \\ \hline 0.975(0.0046) \\ 0.9906(0.0015) \\ 0.9937(0.001) \\ 0.9593(0.0068) \\ 0.9814(0.0022) \\ 0.9857(0.0016) \\ \hline 0.9764(0.005) \\ 0.9909(0.0015) \\ 0.9909(0.0015) \\ 0.9937(0.0007) \\ \hline 0.9547(0.008) \\ 0.9772(0.003) \\ 0.9772(0.003) \\ 0.9838(0.0024) \\ 0.9838(0.0024) \\ 0.9893(0.0018) \\ \hline 0.9528(0.01) \\ 0.9738(0.0046) \\ 0.986(0.0016) \\ \hline \end{array}$	$\begin{array}{r} \label{eq:DC-NSGA-II-A} \\ \hline 0.8641(0.0285) \\ \hline 0.8911(0.0124) \\ \hline 0.9346(0.0108) \\ \hline 0.8552(0.02) \\ \hline 0.9041(0.0118) \\ \hline 0.954(0.0098) \\ \hline 0.8393(0.0169) \\ \hline 0.8872(0.0122) \\ \hline 0.9361(0.0102) \\ \hline 0.9361(0.0102) \\ \hline 0.9361(0.0102) \\ \hline 0.9038(0.0119) \\ \hline 0.9556(0.0107) \\ \hline 0.8743(0.0506) \\ \hline 0.8857(0.0105) \\ \hline 0.9367(0.0106) \\ \hline 0.8499(0.0126) \\ \hline 0.9068(0.0111) \\ \hline 0.9561(0.0094) \\ \hline 0.8434(0.0097) \\ \hline 0.9066(0.01) \\ \hline \end{array}$	$\begin{array}{r} \hline \text{DNSGA-II-A} \\ \hline 0.9106(0.0366) \\ 0.8745(0.0331) \\ 0.9156(0.0112) \\ \hline 0.8527(0.0191) \\ 0.8652(0.0145) \\ 0.9414(0.01) \\ \hline 0.9258(0.0494) \\ 0.8658(0.0297) \\ 0.916(0.014) \\ \hline 0.8658(0.0134) \\ 0.863(0.0134) \\ 0.936(0.0152) \\ \hline 0.9133(0.0427) \\ 0.8622(0.0228) \\ 0.9074(0.0121) \\ \hline 0.8577(0.0188) \\ 0.8728(0.0139) \\ 0.9382(0.0107) \\ \hline 0.9152(0.0447) \\ 0.8757(0.0285) \\ 0.9085(0.0141) \\ \hline 0.8492(0.0221) \\ 0.865(0.0148) \\ \hline \end{array}$

Tabla 5.10: Media (μ) y desviación estándar (σ) de los resultados obtenidos en los problemas de prueba DCTP y FCCD en el formato " $\mu(\sigma)$ " para cada DCMOEA considerado usando el indicador \overline{FR} . El simbolo " τ_t " hace referencia a la frecuencia de cambio medido en un número máximo de evaluaciones. Los mejores resultados se resaltan en negritas.

DC	TP $ au_t$	I-CGDE3	DCMOEA	dCMOEA	DC-NSGA-II-A	DNSGA-II-A
1	2500	1.0(0.0)	1.0(0.0)	1.0(0.0)	1.0(0.0)	1.0(0.0)
	5000	1.0(0.0)	1.0(0.0)	1.0(0.0)	1.0(0.0)	1.0(0.0)
	10000	1.0(0.0)	1.0(0.0)	1.0(0.0)	1.0(0.0)	1.0(0.0)
2	2500	1.0(0.0)	0.9999(0.0004)	1.0(0.0)	0.9998(0.0007)	1.0(0.0)
	5000	1.0(0.0)	0.9924(0.0408)	1.0(0.0)	1.0(0.0)	1.0(0.0)
	10000	1.0(0.0)	1.0(0.0)	1.0(0.0)	1.0(0.0)	1.0(0.0)
3	2500	$\frac{1.0(0.0)}{1.0(0.0)}$	0.9962(0.0193)	$\frac{10(0.0)}{1.0(0.0)}$	0.9992(0.0013)	$\frac{10(0.0)}{1.0(0.0)}$
0	5000	1.0(0.0)	1.0(0.0)	1.0(0.0) 1.0(0.0)	0.9998(0.0010)	1.0(0.0) 1.0(0.0)
	10000	1.0(0.0)	0.9995(0.0012)	1.0(0.0) 1.0(0.0)	0.9998(0.001)	1.0(0.0) 1.0(0.0)
-1	2500	$\frac{1.0(0.0)}{1.0(0.0)}$	0.9535(0.0012) 0.9627(0.0555)	1.0(0.0) 1.0(0.0)	$\frac{0.9396(0.0001)}{0.9202(0.0441)}$	1.0(0.0)
4	2000	1.0(0.0) 1.0(0.0)	0.3027(0.0000) 0.8568(0.1071)	1.0(0.0) 1.0(0.0)	0.9202(0.0441) 0.0112(0.0500)	1.0(0.0) 1.0(0.0)
	10000	1.0(0.0) 1.0(0.0)	0.0300(0.1071) 0.7307(0.1732)	1.0(0.0) 1.0(0.0)	0.3112(0.0303) 0.7502(0.1285)	1.0(0.0) 1.0(0.0)
5	2500	$\frac{1.0(0.0)}{1.0(0.0)}$	0.1391(0.1132)	$\frac{1.0(0.0)}{1.0(0.0)}$	0.7502(0.1285)	$\frac{1.0(0.0)}{1.0(0.0)}$
5	2000	1.0(0.0) 1.0(0.0)	1.0(0.0)	1.0(0.0) 1.0(0.0)	1.0(0.0)	1.0(0.0) 1.0(0.0)
	10000	1.0(0.0) 1.0(0.0)	1.0(0.0) 1.0(0.0)	1.0(0.0) 1.0(0.0)	1.0(0.0) 1.0(0.0)	1.0(0.0)
6	10000	$\frac{1.0(0.0)}{1.0(0.0)}$	1.0(0.0)	$\frac{1.0(0.0)}{1.0(0.0)}$	$\frac{1.0(0.0)}{0.0072(0.0027)}$	$\frac{0.9999(0.0004)}{1.0(0.0)}$
0	2000	1.0(0.0)	0.9974(0.0038)	1.0(0.0)	0.9973(0.0027)	1.0(0.0) 1.0(0.0)
	5000	1.0(0.0)	0.9991(0.0012)	1.0(0.0)	0.9986(0.0022)	1.0(0.0)
	10000	1.0(0.0)	0.9994(0.0014)	$\frac{1.0(0.0)}{1.0(0.0)}$	0.9991(0.0016)	1.0(0.0)
7	2500	1.0(0.0)	0.9939(0.0064)	1.0(0.0)	0.9932(0.006)	1.0(0.0)
	5000	1.0(0.0)	1.0(0.0)	1.0(0.0)	0.9972(0.0037)	1.0(0.0)
	10000	1.0(0.0)	0.9992(0.0036)	1.0(0.0)	0.9998(0.0013)	1.0(0.0)
8	2500	1.0(0.0)	1.0(0.0)	1.0(0.0)	1.0(0.0)	1.0(0.0)
	5000	1.0(0.0)	1.0(0.0)	1.0(0.0)	1.0(0.0)	1.0(0.0)
	10000	1.0(0.0)	1.0(0.0)	1.0(0.0)	1.0(0.0)	1.0(0.0)
	10000	110(010)	()	- ()	1.0(0.0)	1.0(0.0)
FC	CD τ_t	I-CGDE3	DCMOEA	dCMOEA	DC-NSGA-II-A	DNSGA-II-A
FC	$\frac{\text{CD } \tau_t}{2000}$	I-CGDE3 1.0(0.0)	DCMOEA 1.0(0.0001)	dCMOEA 1.0(0.0)	DC-NSGA-II-A 1.0(0.0002)	DNSGA-II-A 1.0(0.0)
FC 1	$\frac{\text{CD } \tau_t}{2000}$	I-CGDE3 I.0(0.0) 1.0(0.0)	DCMOEA 1.0(0.0001) 1.0(0.0001)	dCMOEA 1.0(0.0) 1.0(0.0)	DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001)	DNSGA-II-A 1.0(0.0) 1.0(0.0)
FC 1	$ \frac{\text{CD } \tau_t}{2000} 3000 4000 4000 $	I-CGDE3 I.0(0.0) 1.0(0.0) 1.0(0.0)	DCMOEA 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002)	$\begin{array}{c} \hline d{\rm CMOEA} \\ \hline 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ \end{array}$	IN(0.0) DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003)	DNSGA-II-A 1.0(0.0) 1.0(0.0) 1.0(0.0)
FC($ \begin{array}{r} $	I-CGDE3 I.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)	DCMOEA 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0)	$\begin{array}{c} \hline d{\rm CMOEA} \\ \hline 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ \hline 1.0(0.0) \\ \hline \end{array}$	IN(0.0) DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003) 1.0(0.0001)	DNSGA-II-A 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)
FC($\begin{array}{r} \hline \text{CD} \ \tau_t \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \end{array}$	I-CGDE3 I.0(0.0) 1.0(0.0) I.0(0.0) I.0(0.0) I.0(0.0)	DCMOEA 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0) 1.0(0.0)	dCMOEA 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)	IN(0.0) DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003) 1.0(0.0001) 0.9999(0.0002)	International DNSGA-II-A 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)
FC 1 2	$\begin{array}{r} \hline \text{CD} \ \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \end{array}$	I-CGDE3 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)	DCMOEA 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0) 1.0(0.0) 1.0(0.002)	$\begin{array}{c} \hline d{\rm CMOEA} \\ \hline 1.0(0.0) \\ 1.0(0.0) \\ \hline 1.0(0.0) \\ \hline 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ \hline \end{array}$	Inst(600) DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003) 1.0(0.0001) 0.9999(0.0002) 0.9999(0.0002)	DNSGA-II-A 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)
FC9	$\begin{array}{r} \hline \text{CD} \ \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline 2000 \\ \hline \end{array}$	I.O(0.0) I.O(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)	DCMOEA 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0) 1.0(0.00) 1.0(0.002) 1.0(0.0)	$\begin{array}{c} \hline d{\rm CMOEA} \\ \hline d{\rm CMOEA} \\ \hline 1.0(0.0) \\ \hline \end{array}$	Inst(6.09) DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003) 1.0(0.0001) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002)	$\begin{array}{r} 1.0(0.0)\\\hline \hline \text{DNSGA-II-A}\\\hline 1.0(0.0)\\\hline 1.0(0.0)\\\hline 1.0(0.0)\\\hline 1.0(0.0)\\\hline 1.0(0.0)\\\hline 1.0(0.0)\\\hline 1.0(0.0)\\\hline \end{array}$
FC 1 2 3	$\begin{array}{r} \hline \text{CD} \ \ \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 3000 \end{array}$	I.0(0.0) I-CGDE3 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)	DCMOEA 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0) 1.0(0.0) 1.0(0.002) 1.0(0.0) 0.9999(0.0001)	$\begin{array}{c} \hline d{\rm CMOEA} \\ \hline 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ \hline \end{array}$	Inst(0.00) DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003) 1.0(0.0001) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002)	I.0(0.0) DNSGA-II-A 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)
FC9	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \text{I-CGDE3} \\ \hline \text{I-CGDE3} \\ \hline 1.0(0.0) \\ 1.0(0.0) \\ \hline \end{array}$	DCMOEA 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0) 1.0(0.0) 1.0(0.00) 0.9999(0.0001) 0.9999(0.0001)	$\begin{array}{c} \hline d{\rm CMOEA} \\ \hline 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ \hline \end{array}$	Inst(0.00) DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003) 1.0(0.0001) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002)	Instance DNSGA-II-A 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)
FC9 1 2 3 4	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	I.0(0.0) I.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)	DCMOEA 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0) 1.0(0.00) 1.0(0.00) 0.9999(0.0001) 0.9999(0.0001) 1.0(0.0)	$\begin{array}{c} \textbf{dCMOEA} \\ \hline \textbf{dCMOEA} \\ \hline \textbf{1.0(0.0)} \\ \textbf{1.0(0.0)} \\ \hline \textbf{1.0(0.0)} \end{array}$	Inst(0.00) DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003) 1.0(0.0001) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 1.0(0.001)	DNSGA-II-A 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)
FC9 1 2 3 4	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \text{I-CGDE3} \\ \hline \text{I-CGDE3} \\ \hline 1.0(0.0) \\ 1.0(0.0) \\ \hline 1.0(0.0) \\ 1.0(0.0) \\ \hline 1.0(0.0) \\ 1.0(0.0) \\ \hline \end{array}$	DCMOEA 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0) 1.0(0.00) 1.0(0.0002) 1.0(0.0) 0.9999(0.0001) 0.9999(0.0001) 1.0(0.0) 1.0(0.001)	dCMOEA 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)	Inst(600) DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003) 1.0(0.0001) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 1.0(0.0) 1.0(0.0)	Instant DNSGA-II-A 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)
FC9 1 2 3 4	$\begin{array}{c c} \hline \text{CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline \end{array}$	$\begin{array}{c} \text{I-CGDE3} \\ \hline \text{I-CGDE3} \\ \hline 1.0(0.0) \\ 1.0(0.0) \\ \hline 1.0(0.0) \\ \hline 1.0(0.0) \\ 1.0(0.0) \\ \hline 1.0(0.0) \\ $	DCMOEA 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0) 1.0(0.00) 1.0(0.0002) 1.0(0.0001) 0.9999(0.0001) 1.0(0.0001) 0.9999(0.0002)	$\begin{array}{c} d{\rm CMOEA}\\ \hline d{\rm CMOEA}\\ \hline 1.0(0.0)\\ 1.0(0.0)\\ \hline 1.0(0.0)\\$	Inst(0.00) DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003) 1.0(0.0001) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 1.0(0.0) 1.0(0.001) 0.9999(0.0002)	Ind(0.0) DNSGA-II-A 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)
FC9 1 2 3 4	$\begin{array}{r} \hline \text{CD} \ \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline 2000 \\ \hline 2000 \\ \hline 2000 \\ \hline \end{array}$	I-CGDE3 I-CGDE3 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)	DCMOEA 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0) 1.0(0.0) 1.0(0.00) 1.0(0.0002) 1.0(0.0001) 0.9999(0.0001) 0.9999(0.0001) 1.0(0.00) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0)	$\begin{array}{c} \hline d{\rm CMOEA} \\ \hline 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ \hline 1.0(0.0) \\ \hline \end{array}$	Inst(6.0) DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003) 1.0(0.0001) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 1.0(0.0) 1.0(0.001) 0.9999(0.0002) 1.0(0.001) 1.0(0.001) 0.9999(0.0002)	DNSGA-II-A 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)
FC 1 2 3 4 5	$\begin{array}{r} \hline \text{CD} \ \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 2000 \\ 3000 \\ \hline 2000 \\ 3000 \\ \hline \end{array}$	$\begin{array}{c} \text{I-CGDE3} \\ \hline \text{I-CGDE3} \\ \hline \text{I.0(0.0)} \\ 1.0(0.0) \\ \hline \text{I.0(0.0)} \\ \hline \end{array}$	DCMOEA 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0) 1.0(0.0) 1.0(0.002) 1.0(0.002) 1.0(0.001) 0.9999(0.0001) 0.9999(0.0001) 1.0(0.001) 0.9999(0.0002) 1.0(0.0) 1.0(0.0) 1.0(0.001)	$\begin{array}{c} \hline d{\rm CMOEA} \\ \hline 1.0(0.0) \\ 1.0(0.0) \\ 1.0(0.0) \\ \hline 1.0(0.0) \\ 1.0(0.0$	DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003) 1.0(0.0001) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 1.0(0.0) 1.0(0.001) 0.9999(0.0002)	DNSGA-II-A 1.0(0.0)
FC9 1 2 3 4 5	$\begin{array}{c c} \hline \text{CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline \end{array}$	I.0(0.0) I.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)	DCMOEA 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0) 1.0(0.0) 1.0(0.00) 1.0(0.002) 1.0(0.0) 0.9999(0.0001) 0.9999(0.0001) 1.0(0.001) 0.9999(0.0002) 1.0(0.0) 1.0(0.001) 0.9999(0.0002) 1.0(0.001) 0.9999(0.0002)	$\begin{array}{c} d{\rm CMOEA}\\ \hline d{\rm CMOEA}\\ \hline 1.0(0.0)\\ 1.0(0.0)\\ \hline 1.0(0.0)\\ \hline 1.0(0.0)\\ 1.0(0.0)\\ \hline 1.0(0.0)\\ \hline$	DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003) 1.0(0.0001) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 1.0(0.001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0001) 0.9999(0.0002)	DNSGA-II-A 1.0(0.0)
$ \begin{array}{c} \hline FC} \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline 4 \\ \hline 5 \\ \hline 6 \\ \hline \end{array} $	$\begin{array}{c c} \hline \text{CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 \\ \hline$	I.0(0.0) I.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0)	DCMOEA 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.002) 1.0(0.001) 0.9999(0.0001) 0.9999(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.001) 0.9999(0.0002) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0001)	dCMOEA 1.0(0.0)	Ind(0.00) DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003) 1.0(0.0001) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 1.0(0.001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0001) 0.9999(0.0002)	Ind(0.0) DNSGA-II-A 1.0(0.0)
FC9 1 2 3 4 5 6	$\begin{array}{c c} \hline \text{CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 3000 \\ \hline 2000 \\ 3000 \\ \hline 3000 \\ \hline 2000 \\ 3000 \\ \hline 3000 \\ \hline 0 \hline$	I.0(0.0) I.0(0.0) 1.0(0.0)	DCMOEA 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.002) 1.0(0.001) 0.9999(0.0001) 0.9999(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.001) 0.9999(0.0002) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0001) 1.0(0	$\begin{array}{c} \mathbf{dCMOEA} \\ \hline \mathbf{dCMOEA} \\ \hline \mathbf{1.0(0.0)} \\ \mathbf{1.0(0.0)} \\ \mathbf{1.0(0.0)} \\ \hline 1.0$	Inst(0.00) DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003) 1.0(0.0001) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 1.0(0.001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001)	Ind(0.0) DNSGA-II-A 1.0(0.0)
FC9 1 2 3 4 5 6	$\begin{array}{c c} \hline \text{CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 2000 \\ \hline $	$\begin{array}{c} \text{I-CGDE3} \\ \hline \text{I-CGDE3} \\ \hline 1.0(0.0) \\ 1.0(0.0) \\ \hline 1.0(0.0) $	DCMOEA 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0) 1.0(0.0) 1.0(0.00) 1.0(0.0001) 0.9999(0.0001) 0.9999(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0001) 1	$\begin{array}{c} \mathbf{dCMOEA} \\ \hline \mathbf{dCMOEA} \\ \hline \mathbf{1.0(0.0)} \\ \mathbf{1.0(0.0)} \\ \hline \mathbf{1.0(0.0)} \\$	DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003) 1.0(0.0001) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 1.0(0.001) 1.0(0.001) 0.9999(0.0002) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.001) 1.0(0.001) 1.0(0.001)	Ind(0.0) DNSGA-II-A 1.0(0.0)
FC9 1 2 3 4 5 6 7	$\begin{array}{c c} \hline \text{CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ 4000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 \\ \hline 2000 \\ \hline 3000 \\ \hline 2000 \\ $	I.0(0.0) I.0(0.0) 1.0(0.0)	DCMOEA 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0) 1.0(0.0) 1.0(0.00) 1.0(0.0002) 1.0(0.0001) 0.9999(0.0001) 0.9999(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0001) 1.0($\begin{array}{c} \mathbf{dCMOEA} \\ \hline \mathbf{dCMOEA} \\ \hline \mathbf{1.0(0.0)} \\ \mathbf{1.0(0.0)} \\ \hline \mathbf{1.0(0.0)} \\$	DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003) 1.0(0.0001) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 1.0(0.001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.001) 1.0(0.001) 1.0(0.001) 1.0(0.001)	DNSGA-II-A 1.0(0.0)
	$\begin{array}{c c} \hline \text{CD} & \overline{\tau_t} \\ \hline \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 3000 \\ \hline 2000 \\ 3000 \\ \hline \hline 000 \\ \hline 000$	$\begin{array}{c} \text{I-CGDE3}\\ \hline \text{I-CGDE3}\\ \hline 1.0(0.0)\\ 1.0(0.0)\\ \hline 1.0(0.0)\\$	DCMOEA 1.0(0.0001) 1.0(0.001) 0.9999(0.0002) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.002) 1.0(0.0) 1.0(0.0) 0.9999(0.0001) 0.9999(0.0001) 1.0(0.0) 1.0(0.001) 0.9999(0.0002) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0001) 1.0(0.001) 1.0(0.001) 1.0(0.001) 1.0(0.0001) 1.0(0.0001)	$\begin{array}{c} \mathbf{dCMOEA} \\ \hline \mathbf{dCMOEA} \\ \hline \mathbf{1.0(0.0)} \\ \mathbf{1.0(0.0)} \\ \hline \mathbf{1.0(0.0)} \\$	Inst(0.00) DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003) 1.0(0.0001) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 1.0(0.001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001)	DNSGA-II-A 1.0(0.0)
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} \text{I-CGDE3} \\ \hline \text{I-CGDE3} \\ \hline \text{I.0(0.0)} \\ \hline \ \ \ \ \text{I.0(0.0)} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	DCMOEA 1.0(0.0001) 1.0(0.001) 0.9999(0.0002) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.002) 1.0(0.0) 1.0(0.0) 0.9999(0.0001) 0.9999(0.0001) 1.0(0.0) 1.0(0.001) 0.9999(0.0002) 1.0(0.001) 1.0(0.001) 1.0(0.001) 1.0(0.001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001)	$\begin{array}{c} \mathbf{dCMOEA} \\ \hline \mathbf{dCMOEA} \\ \hline \mathbf{1.0(0.0)} \\ \mathbf{1.0(0.0)} \\ \hline \mathbf{1.0(0.0)} \\$	Inst(0.00) DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003) 1.0(0.0001) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 1.0(0.001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002)	$\begin{array}{r} 1.0(0.0)\\ \hline \\ \hline \text{DNSGA-II-A}\\ \hline 1.0(0.0)\\ \hline 1.$
FC9 1 2 3 4 5 6 7 8	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} \text{I-CGDE3} \\ \hline \text{I-CGDE3} \\ \hline 1.0(0.0) \\ 1.0(0.0) \\ \hline 1.0(0.0) $	DCMOEA 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.001) 0.9999(0.0001) 1.0(0.001) 1.0(0.001) 0.9999(0.0002) 1.0(0.001) 1	$\begin{array}{r} \hline d{\rm CMOEA} \\ \hline 1.0(0.0) \\ 1.0(0.0) $	Inst(0.00) DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003) 1.0(0.0001) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 1.0(0.001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002)	Ind(0.0) DNSGA-II-A 1.0(0.0)
FC9 1 2 3 4 5 6 7 8	$\begin{array}{c c} \hline \text{CD} & \overline{\tau_t} \\ \hline 2000 \\ 3000 \\ 4000 \\ \hline 2000 \\ 3000 \\ \hline 3000 \\ \hline 2000 \\ 3000 \\ \hline 3000 \\ \hline 2000 \\ \hline 3000 \\ \hline 000 \\ $	$\begin{array}{c} \text{I-CGDE3} \\ \hline \text{I-CGDE3} \\ \hline 1.0(0.0) \\ 1.0(0.0) \\ \hline 1.0(0.0) $	DCMOEA 1.0(0.0001) 1.0(0.001) 0.9999(0.0002) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.001) 0.9999(0.0002) 1.0(0.0) 0.9999(0.0001) 0.9999(0.0001) 1.0(0.0) 1.0(0.001) 0.9999(0.0002) 1.0(0.001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001)	$\begin{array}{c} \mathbf{dCMOEA} \\ \hline \mathbf{dCMOEA} \\ \hline \mathbf{1.0(0.0)} \\ \mathbf{1.0(0.0)} \\ \hline \mathbf{1.0(0.0)} \\$	DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003) 1.0(0.0001) 0.9998(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 1.0(0.001) 1.0(0.001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001)	I.0(0.0) DNSGA-II-A 1.0(0.0)
FC9 1 2 3 4 5 6 7 8	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} \text{I-CGDE3}\\ \hline \text{I-CGDE3}\\ \hline 1.0(0.0)\\ 1.0(0.0)\\ \hline 1.0(0.0)\\$	DCMOEA 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.0) 1.0(0.001) 0.9999(0.0002) 1.0(0.0) 0.9999(0.0001) 0.9999(0.0001) 1.0(0.001) 0.9999(0.0002) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001)	$\begin{array}{c} \mathbf{dCMOEA} \\ \hline \mathbf{dCMOEA} \\ \hline \mathbf{1.0(0.0)} \\ \mathbf{1.0(0.0)} \\ \hline \mathbf{1.0(0.0)} \\$	DC-NSGA-II-A 1.0(0.0002) 1.0(0.0001) 0.9998(0.0003) 1.0(0.0001) 0.9998(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 0.9999(0.0002) 1.0(0.001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0001) 1.0(0.0001) 0.9999(0.0002) 1.0(0.0001) 0.9999(0.0002)	$\begin{array}{r} 1.0(0.0)\\ \hline \\ \hline \text{DNSGA-II-A}\\ \hline 1.0(0.0)\\ \hline 1.$

Tabla 5.11: Resumen de resultados de la prueba Wilcoxon rank-sum con 95 % de confianza para los problemas DCTP (Experimento II). Los símbolos "+", "-" y "=" se entienden como; I-CGDE3 tuvo un comportamiento significativamente superior, inferior o sin diferencias significativas. El simbolo τ_t representa la frecuencia de cambio medida en un número máximo de evaluaciones posibles en cada tiempo t.

DCTP		\overline{HVR}		$\overline{IGD+}$			\overline{MS}			\overline{FR}			
I- CGDE3	I- CGDE3 $ au_t$		=	—	+	=	—	+	=	—	+	=	
	2500	7	0	1	7	0	1	5	3	0	3	5	0
DC-MOEA	5000	7	0	1	7	0	1	7	0	1	2	7	0
	10000	6	0	2	6	0	2	5	1	2	1	6	0
	2500	8	0	0	8	0	0	6	2	0	0	8	0
dCMOEA	5000	6	2	0	5	0	3	5	1	2	0	8	0
	10000	6	1	1	6	1	1	3	3	2	0	8	0
	2500	7	0	1	8	0	0	6	2	0	4	4	0
DC-NSGA-II-A	5000	6	1	1	7	1	0	5	2	1	3	5	0
	10000	6	0	2	6	0	2	4	3	1	2	6	0
	2500	8	0	0	8	0	0	6	1	1	0	8	0
DNSGA-II-A	5000	7	1	0	6	2	0	5	3	0	0	8	0
	10000	6	0	2	6	1	1	5	2	1	0	8	0
Total		80	5	11	80	5	11	62	23	11	15	81	0

Tabla 5.12: Resumen de resultados de la prueba Wilcoxon rank-sum para los problemas FCCD (Experimento II). Los símbolos "+", "-" y "=" se entienden como; I-CGDE3 tuvo un comportamiento significativamente superior, inferior o sin diferencias significativas. El simbolo τ_t representa la frecuencia de cambio medida en un número máximo de evaluaciones posibles en cada tiempo t.

FCCD			\overline{HVR}		IGD+			\overline{MS}			\overline{FR}		
I- CGDE3	$ au_t$	+	=	_	+	=	—	+	=	—	+	=	—
	2500	8	0	0	8	0	0	8	0	0	0	8	0
DC-MOEA	5000	8	0	0	8	0	0	8	0	0	0	8	0
	10000	8	0	0	8	0	0	8	0	0	2	6	0
	2500	8	0	0	8	0	0	8	0	0	0	8	0
dCMOEA	5000	8	0	0	8	0	0	8	0	0	0	8	0
	10000	8	0	0	8	0	0	8	0	0	0	8	0
	2500	8	0	0	8	0	0	8	0	0	0	8	0
DC-NSGA-II-A	5000	8	0	0	8	0	0	8	0	0	0	8	0
	10000	8	0	0	8	0	0	8	0	0	3	5	0
	2500	8	0	0	8	0	0	8	0	0	0	8	0
DNSGA-II-A	5000	8	0	0	8	0	0	8	0	0	0	8	0
	10000	8	0	0	8	0	0	8	0	0	0	8	0
Total		96	0	0	96	0	0	96	0	0	5	91	0

Figura 5.4: Aproximaciones a los POFs obtenidos por los algoritmos I-CGDE3 y DC-MOEA para el conjunto de problemas de prueba DCTP (color azul) y sus respectivos POFs (color rojo).

Figura 5.5: Aproximaciones a los POFs obtenidos por los algoritmos I-CGDE3 y *d*CMOEA para el conjunto de problemas de prueba FCCD (color azul) y sus respectivos POFs (color rojo).

Figura 5.6: Gráficas de convergencia para el indicador $\overline{IGD+}$ (eje de las ordenas) en el conjunto de problemas de prueba FCCD de I-CGDE3 y los algoritmos comparados usando una frecuencia de cambio de 10000 evaluaciones, donde el eje de las abscisas corresponde al número de generaciones.

Figura 5.7: Gráficas de convergencia para el indicador $\overline{IGD+}$ (eje de las ordenadas) en el conjunto de problemas de prueba FCCD de los algoritmos I-CGDE3 y *d*CMOEA usando una frecuencia de cambio de 4000 evaluaciones, donde el eje de las abscisas corresponde al número de generaciones.

Como conclusiones generales se tiene lo siguiente:

- La alta capacidad de convergencia (sin mencionar que puede ser aumentada al crecer el valor de ω) le permite a I-CGDE3 tener un desempeño significativamente mejor para los problemas FCCD.
- El factor de mutación propuesto permite un refinamiento en la búsqueda local por lo cual se obtienen aproximaciones a los POFs más definidos.
- La reducción de la región factible cercana a los POF puede ocasionar una disminución abrupta del valor del factor de mutación propuesto, ocasionando una pérdida de la capacidad exploratoria en I-CGDE3.
- I-CGDE3 bajo el uso de la función de penalización propuesta en [23], no posee un buen desempeño en problemas que se benefician de favorecer a las soluciones factibles, DCTP 7.
- La simple modificación propuesta en la función de penalización (Sección 4.2.2) le permite a I-CGDE3 lidiar con restricciones que producen regiones factibles disconexas, sin utilizar un mayor tamaño de población tal como se propuso en [23].

A continuación se describen de manera particular los resultados obtenidos en DCTP y FCCD.

DCTP

La principal dificultad presente en la optimización del problema DCTP 1 es que tras un cambio y reevaluación de la soluciones obtenidas en el previo proceso de optimización, un porcentaje mal distribuido de las mismas seguirán siendo factibles y cercanas al nuevo POF, por lo que estas soluciones pueden ocasionar una pérdida de diversidad.

En DCTP 2, el factor de mutación adaptativo propuesto permite generar nuevas soluciones cercanas entre sí con mejores valores de aptitud sin una reducción grave de la diversidad que puede ocasionar una pérdida de soluciones que aproximan los extremos del POF.

Para DCTP 3 los mejores valores son obtenidos por dCMOEA e I-CGDE3 debido a que anteponen la búsqueda sobre regiones cercanas a las soluciones no dominadas.

El problema DCTP 4 se caracteriza por tener una región factible lejana al POF sin restricciones, en particular en este problema no es posible obtener buenos resultado con algún algoritmo del estado del arte. El desempeño de I-CGDE3 es significativamente peor comparado a los otros DCMOEAs. Su comportamiento se debe a lo siguiente: dada la reducida región factible cercana al POF sin restricciones, la descendencia factibles generada por I-CGDE3 disminuirá al aumentar el número de generaciones ejecutadas, de acuerdo a la definición del factor de mutación empleado, esté también decrecerá drásticamente su valor y por tanto el algoritmo propuesto perderá capacidad exploratoria.

La principal dificultades en la aproximación de los POFs de DCTP 5 es que éstos poseen regiones continuas y discretas. I-CGDE3 es capaz de obtener buenos valores en cada una de los indicadores considerados ante distintas frecuencias de cambio y valores de ω en DCTP 5, debido a que incluye la capacidad exploratoria propia de la DE, para aproximar la región continua cercana a la región factible. Además, el factor de mutación adaptativo le permite refinar los resultados sobre la región discreta de
los POFs. La reducción del valor del factor de mutación no se contradice con la capacidad exploratoria en la DE, debido a que su reducción no es abrupta, tal como ocurre en DCTP 4.

Tanto DCTP 1 y DCTP 6 poseen POFs continuos y cercanos a la región factible, aunque en DCTP 6 es necesario atravesar regiones infactibles para encontrar al verdadero POF. En ambos casos I-CGDE3 es capaz de converger al verdadero POF en un número reducido de evaluaciones.

R. Tanabe y A. Oyama menciona en [68], que para el problema CTP 7 (problema del que se basa DCTP 7) NSGA-II es capaz de obtener un alto porcentaje de soluciones factibles sin usar un mecanismo de manejo de restricciones, por lo que introducir un mecanismo de manejo de restricciones en I-CGDE3 que proporcione mayor importancia a las soluciones factibles, reglas de factibilidad o epsilon- restricciones, permitirá obtener mejores resultados para \overline{HVR} y $\overline{IGD+}$ en I-CGDE3. Otro de los motivos por el cual no se obtienen buenos resultados se debe a la reducción del valor del factor de mutación durante el proceso de optimización.

La Figura 5.6 muestra las gráficas de convergencia de los DCMOEAs considerados en el análisis estadístico. Por otro lado, la Figura 5.4 solo muestra los POF^* para I-CGDE3 y DC-MOEA por ser los dos algoritmos que mostraron los mejores valores sobre \overline{HVR} y $\overline{IGD+}$ en los problemas DCTP.

FCCD

Como se observó en el experimento anterior, es posible obtener mejores resultados en el conjunto de problemas de prueba FCCD al aumentar la capacidad de convergencia del algoritmo de optimización empleado. De lo anterior se puede concluir que I-CGDE3 posee mayor capacidad de convergencia sobre los otros DCMOEAs representativos del estado del arte lo que le permite tener resultados significativamente mejores en los indicadores \overline{HVR} , $\overline{IGD+}$ y \overline{MS} con distintas frecuencias de cambio, además de ser capaz de converger a la región factible.

Debido al mal desempeño de DC-NSGA-II, DNSGA-II y DC-MOEA, las Figuras 5.7 y 5.5 solo muestra las gráficas de convergencia para I-CGDE3 y dCMOEA en el indicador $\overline{IGD+}$ y los POF* obtenidos por los mismos.

Del análisis estadístico de los resultados y un análisis de las características de los problemas de prueba, para FCCD se concluye que:

- La región factible cambia solo en posición no en su forma durante un tiempo, la interposición entre región factible y el POF sin restricciones ocasiona las distintas apariencias de los POFs restringuidos. Sin pérdida de generalidad, esto produce que el comportamiento que posea un algoritmo sobre FCCD 1 sea muy similar sobre algún otro problema del conjunto FCCD.
- En general los problemas del conjunto FCCD difíciles de optimizar por su alta severidad de cambio, aunque no favorece el análisis de los efectos de la pérdida de diversidad durante el proceso de optimización.

5.4.3. Experimento III: Comparación de la respuesta inmune con otras reacciones al cambio

Con la intención de mostrar los beneficios del uso de una reacción al cambio basada en AIS, el presente experimento se divide en 2 partes.

Parte A

Para entender el papel de la respuesta inmune en el algoritmo I-CGDE3 se generan las siguientes versiones: CGDE3-A, CGDE3-B, DC-CGDE3-A, DC-CGDE3-B, DC-CGDE3 y *d*-GDE3 usando las reacciones al cambio utilizadas por los algoritmos DNSGA-II [53], DC-NSGA-II [54], DC-MOEA[23] y *d*CMOEA[25].

La Tabla 5.13 describe brevemente cada una de las reacciones al cambio consideradas.

Respuesta al cambio	Descripción
CGDE3-A	Introduce 20% de soluciones aleatorias.
CGDE3-B	Introduce 20% de soluciones mutadas.
DC-CGDE3-A	Un 20 $\%$ de soluciones aleatorias y factibles se generan de
	manera iterada en un máximo de 5 intentos.
DC-CGDE3-B	Un 20 % de soluciones mutadas y factibles se generan de
	manera iterada en un máximo de 5 intentos.
DC-CGDE3	Después de introducir 20 % de soluciones aleatorias, se cruza
	cada individuo infactible con la solución factible más cercana
	a él. Se escoge entre los dos hijos y el padre infactible a aquel
	con menor violación de restricciones.
d-CGDE3	Cruza a individuos infactibles con aquellas soluciones factibles
	dominados por 0 o 1 individuo en la población (es necesario
	que exista al menos un individuo factible).

Tabla 5.13: Reacciones al cambio en las variantes de I-CGDE3

Parte B

Con el objetivo de identificar aquellas cualidades de la respuesta inmune que pueden beneficiar al proceso de optimización en otros DCMOEAs, se reemplaza la reacción al cambio originalmente usada en los algoritmos DNSGA-II, DC-NSGA-II, DC-MOEA y *d*CMOEA por la respuesta inmune descrita en este trabajo, obteniendo los algoritmos I-DNSGA-II, IDC-NSGA-II, IDC-MOEA e I-*d*CMOEA, respectivamente.

Parte A: Comparación de la respuesta inmune con otras reacciones al cambio bajo CG-DE3

La siguientes conclusiones se obtienen del análisis estadístico mostrado en la Tabla 5.14 y resumidos en la Tabla 5.15.

Tabla 5.14: Media (μ) y desviación estándar (σ) en el formato " $\mu(\sigma)$ " de los resultados en los indicadores \overline{HVR} , $\overline{IGD+}$ y \overline{MS} para las variaciones a la reacción al cambio del algoritmo I-CGDE3 en los problemas DCTP y FCCD. Los mejores resultados se resaltan en negritas.

DCI	ГР М.	I-CGDE3	CGDE3-A	CGDE3-B	DC-CGDE3	d-CGDE3
1	\overline{HVR}	0.9911(0.0015)	0.9896(0.0045)	0.9911(0.001)	0.988(0.0074)	0.991(0.0013)
1	$\overline{IGD+}$	0.0077(0.0024)	0.0098(0.007)	0.0078(0.0024)	0.0134(0.0155)	0.008(0.0026)
	\overline{MS}	0.986(0.0367)	0.9782(0.052)	0.9939(0.0159)	0.9504(0.0832)	0.9853(0.0315)
0	\overline{HVR}	0.9968(0.0002)	0.9968(0.0002)	0.9366(0.1354)	0.886(0.119)	0.9963(0.0019)
Z	$\overline{IGD+}$	0.003(0.0001)	0.0029(0.0001)	0.0957(0.2241)	0.2248(0.228)	0.0042(0.0068)
	\overline{MS}	0.9988(0.0005)	0.9987(0.0005)	0.9287(0.1654)	0.7303(0.2381)	0.9926(0.0318)
	\overline{HVR}	0.9823(0.0019)	0.9824(0.0026)	0.7247(0.163)	0.9319(0.0768)	0.982(0.0023)
3	$\overline{IGD+}$	0.0188(0.0017)	0.0195(0.0056)	0.4499(0.3097)	0.1293(0.1524)	0.0184(0.0021)
	\overline{MS}	0.9947(0.001)	0.9873(0.0273)	0.7285(0.1959)	0.8757(0.1389)	0.9949(0.0009)
4	\overline{HVR}	0.7464(0.0427)	0.6577(0.0816)	×	0.7353(0.0475)	0.7548(0.0465)
4	$\overline{IGD+}$	0.1996(0.0477)	0.3537(0.1622)	×	0.2201(0.0643)	0.1873(0.0579)
	\overline{MS}	0.862(0.0565)	0.8245(0.0805)	×	0.8406(0.0738)	0.8799(0.0459)
E	\overline{HVR}	0.9757(0.0019)	0.9757(0.0033)	0.87(0.1464)	0.8499(0.1146)	0.976(0.0019)
9	$\overline{IGD+}$	0.0043(0.0003)	0.0043(0.0004)	0.0295(0.0337)	0.026(0.0223)	0.0044(0.0004)
	\overline{MS}	0.9755(0.0149)	0.97(0.0335)	0.8867(0.1501)	0.6708(0.208)	0.9762(0.0089)
C	\overline{HVR}	0.9849(0.0004)	0.985(0.0003)	0.9849(0.0003)	0.9848(0.0004)	0.9848(0.0005)
0	$\overline{IGD+}$	0.0082(0.0002)	0.0081(0.0001)	0.0082(0.0002)	0.0082(0.0002)	0.0083(0.0003)
	\overline{MS}	0.9994(0.0002)	0.9995(0.0002)	0.9993(0.0003)	0.9994(0.0003)	0.9993(0.0004)
	\overline{HVR}	0.9882(0.0066)	0.9762(0.0131)	0.965(0.0259)	0.9644(0.0161)	0.9857(0.0091)
1	$\overline{IGD+}$	0.0246(0.0164)	0.041(0.0282)	0.063(0.0619)	0.0576(0.03)	0.0342(0.0304)
	\overline{MS}	0.9851(0.0161)	0.9714(0.0495)	0.9572(0.0955)	0.9758(0.0213)	0.9617(0.0593)
	\overline{HVR}	0.9693(0.0458)	0.9456(0.1118)	0.9013(0.1175)	0.9756(0.0535)	0.9562(0.0731)
8	$\overline{IGD+}$	0.0317(0.0526)	0.0787(0.1864)	0.1082(0.1668)	0.0381(0.1272)	0.0825(0.1684)
	\overline{MS}	0.9766(0.0475)	0.9548(0.0973)	0.9629(0.062)	0.9736(0.0858)	0.9459(0.0937)
FCC	CD M.	I-CGDE3	CGDE3-A	CGDE3-B	DC-CGDE3	d-CGDE3
1	\overline{HVR}	0.9356(0.0066)	0.8949(0.0212)	0.1734(0.0207)	0.8811(0.0321)	0.9189(0.0079)
T	$\overline{IGD+}$	0.0573(0.0048)	0.095(0.0207)	4.5821(0.3356)	0.1102(0.0342)	0.0727(0.007)
	\overline{MS}	0.9777(0.0036)	0.9624(0.008)	2.7369(0.2011)	0.9557(0.011)	0.9703(0.0047)
	\overline{HVR}	0.9597(0.0039)	0.9508(0.0102)	0.229(0.0163)	0.9265(0.0167)	0.9501(0.004)
2	$\overline{IGD+}$		0.0677(0.0100)	9 = 1014(0.0004)	0.0076(0.0207)	a a = a = a (a a a = a)
	1	0.0556(0.0051)	0.0075(0.0129)	3.5914(0.2324)	0.0976(0.0207)	0.0679(0.0052)
	\overline{MS}	$0.0556(0.0051) \\ 0.9853(0.0025)$	0.0675(0.0129) 0.9809(0.0053)	3.5914(0.2324) 2.0342(0.1312)	0.0976(0.0207) 0.9694(0.0084)	0.0679(0.0052) 0.9804(0.0037)
	$\frac{\overline{MS}}{\overline{HVR}}$	$\begin{array}{c} 0.0556(0.0051)\\ 0.9853(0.0025)\\ \hline 0.9377(0.0059) \end{array}$	$\begin{array}{c} 0.0675(0.0129) \\ 0.9809(0.0053) \\ 0.9136(0.0175) \end{array}$	$\begin{array}{c} 3.5914(0.2324) \\ 2.0342(0.1312) \\ \hline 0.2069(0.0207) \end{array}$	$\begin{array}{c} 0.0976(0.0207) \\ 0.9694(0.0084) \\ 0.8896(0.0241) \end{array}$	$\begin{array}{c} 0.0679(0.0052) \\ 0.9804(0.0037) \\ 0.9203(0.0059) \end{array}$
3	$\frac{\overline{MS}}{\overline{MS}}$ $\frac{\overline{HVR}}{\overline{IGD+}}$	$\begin{array}{c} 0.0556(0.0051)\\ 0.9853(0.0025)\\ 0.9377(0.0059)\\ 0.0572(0.0057)\end{array}$	$\begin{array}{c} 0.0675(0.0129)\\ 0.9809(0.0053)\\ 0.9136(0.0175)\\ 0.0802(0.0172)\end{array}$	$\begin{array}{c} 3.5914(0.2324) \\ 2.0342(0.1312) \\ 0.2069(0.0207) \\ 4.8352(0.3276) \end{array}$	$\begin{array}{c} 0.0976(0.0207)\\ 0.9694(0.0084)\\ 0.8896(0.0241)\\ 0.1029(0.0228) \end{array}$	$\begin{array}{c} 0.0679(0.0052)\\ 0.9804(0.0037)\\ 0.9203(0.0059)\\ 0.0733(0.0057) \end{array}$
3	$\frac{\overline{MS}}{\overline{MS}}$ $\frac{\overline{HVR}}{\overline{IGD+}}$ \overline{MS}	$\begin{array}{c} 0.0556(0.0051)\\ 0.9853(0.0025)\\ \hline 0.9377(0.0059)\\ 0.0572(0.0057)\\ 0.9773(0.003) \end{array}$	$\begin{array}{c} 0.0675(0.0129)\\ \hline 0.9809(0.0053)\\ \hline 0.9136(0.0175)\\ \hline 0.0802(0.0172)\\ \hline 0.9693(0.0069)\\ \end{array}$	$\begin{array}{c} 3.5914(0.2324)\\ \hline 2.0342(0.1312)\\ \hline 0.2069(0.0207)\\ \hline 4.8352(0.3276)\\ \hline 2.9774(0.2034) \end{array}$	$\begin{array}{c} 0.0976(0.0207)\\ \hline 0.9694(0.0084)\\ \hline 0.8896(0.0241)\\ \hline 0.1029(0.0228)\\ \hline 0.9582(0.01)\\ \end{array}$	$\begin{array}{c} 0.0679(0.0052)\\ 0.9804(0.0037)\\ \hline 0.9203(0.0059)\\ 0.0733(0.0057)\\ 0.9701(0.004) \end{array}$
3	$ \frac{\overline{MS}}{\overline{MS}} $ $ \frac{\overline{HVR}}{\overline{IGD+}} $ $ \overline{MS} $ $ \overline{HVR} $	$\begin{array}{c} 0.0556(0.0051)\\ 0.9853(0.0025)\\ \hline 0.9377(0.0059)\\ 0.0572(0.0057)\\ \hline 0.9773(0.003)\\ \hline 0.9599(0.0047) \end{array}$	$\begin{array}{c} 0.0675(0.0129)\\ 0.9809(0.0053)\\ \hline 0.9136(0.0175)\\ 0.0802(0.0172)\\ \hline 0.9693(0.0069)\\ \hline 0.9435(0.0118) \end{array}$	$\begin{array}{c} 3.5914(0.2324)\\ 2.0342(0.1312)\\ 0.2069(0.0207)\\ 4.8352(0.3276)\\ 2.9774(0.2034)\\ 0.2259(0.012) \end{array}$	$\begin{array}{c} 0.0976(0.0207)\\ 0.9694(0.0084)\\ \hline 0.8896(0.0241)\\ 0.1029(0.0228)\\ \hline 0.9582(0.01)\\ \hline 0.9297(0.0171) \end{array}$	$\begin{array}{c} 0.0679(0.0052)\\ 0.9804(0.0037)\\ 0.9203(0.0059)\\ 0.0733(0.0057)\\ 0.9701(0.004)\\ 0.9503(0.0046)\\ \end{array}$
3	$ \frac{\overline{MS}}{\overline{MS}} $ $ \frac{\overline{HVR}}{\overline{IGD+}} $ $ \frac{\overline{HVR}}{\overline{IGD+}} $	$\begin{array}{c} 0.0556(0.0051)\\ 0.9853(0.0025)\\ \hline 0.9377(0.0059)\\ 0.0572(0.0057)\\ 0.9773(0.003)\\ \hline 0.9599(0.0047)\\ 0.0553(0.0058) \end{array}$	$\begin{array}{c} 0.0675(0.0129)\\ 0.9809(0.0053)\\ \hline 0.9136(0.0175)\\ 0.0802(0.0172)\\ 0.9693(0.0069)\\ \hline 0.9435(0.0118)\\ 0.0766(0.0152)\\ \end{array}$	$\begin{array}{c} 3.5914(0.2324)\\ 2.0342(0.1312)\\ \hline 0.2069(0.0207)\\ 4.8352(0.3276)\\ \hline 2.9774(0.2034)\\ \hline 0.2259(0.012)\\ 3.629(0.2567)\\ \end{array}$	$\begin{array}{c} 0.0976(0.0207)\\ 0.9694(0.0084)\\ 0.8896(0.0241)\\ 0.1029(0.0228)\\ \hline 0.9582(0.01)\\ \hline 0.9297(0.0171)\\ 0.095(0.0219)\\ \end{array}$	$\begin{array}{c} 0.0679(0.0052)\\ 0.9804(0.0037)\\ 0.9203(0.0059)\\ 0.0733(0.0057)\\ 0.9701(0.004)\\ \hline 0.9503(0.0046)\\ 0.0674(0.006)\\ \end{array}$
3	$\frac{\overline{MS}}{\overline{HVR}}$ $\frac{\overline{HVR}}{\overline{IGD+}}$ $\frac{\overline{HVR}}{\overline{IGD+}}$ \overline{MS}	$\begin{array}{c} 0.0556(0.0051)\\ 0.9853(0.0025)\\ 0.9377(0.0059)\\ 0.0572(0.0057)\\ 0.9773(0.003)\\ 0.9599(0.0047)\\ 0.0553(0.0058)\\ 0.9857(0.0025)\\ \end{array}$	$\begin{array}{c} 0.0675(0.0129)\\ 0.9809(0.0053)\\ \hline 0.9136(0.0175)\\ 0.0802(0.0172)\\ 0.9693(0.0069)\\ \hline 0.9435(0.0118)\\ 0.0766(0.0152)\\ 0.9771(0.0062)\\ \end{array}$	$\begin{array}{c} 3.5914(0.2324)\\ 2.0342(0.1312)\\ \hline 0.2069(0.0207)\\ 4.8352(0.3276)\\ \hline 2.9774(0.2034)\\ \hline 0.2259(0.012)\\ 3.629(0.2567)\\ 2.0838(0.1424)\\ \end{array}$	$\begin{array}{c} 0.0976(0.0207)\\ 0.9694(0.0084)\\ \hline 0.8896(0.0241)\\ 0.1029(0.0228)\\ \hline 0.9582(0.01)\\ \hline 0.9297(0.0171)\\ 0.095(0.0219)\\ \hline 0.9709(0.0088)\\ \end{array}$	$\begin{array}{c} 0.0679(0.0052)\\ 0.9804(0.0037)\\ 0.9203(0.0059)\\ 0.0733(0.0057)\\ 0.9701(0.004)\\ \hline 0.9503(0.0046)\\ 0.0674(0.006)\\ 0.9802(0.0038)\\ \end{array}$
3 4 5		$\begin{array}{c} 0.0556(0.0051)\\ 0.9853(0.0025)\\ 0.9377(0.0059)\\ 0.0572(0.0057)\\ 0.9773(0.003)\\ 0.9599(0.0047)\\ 0.0553(0.0058)\\ 0.9857(0.0025)\\ 0.9386(0.0084)\\ \end{array}$	$\begin{array}{c} 0.0675(0.0129)\\ 0.9809(0.0053)\\ \hline 0.9136(0.0175)\\ 0.0802(0.0172)\\ 0.9693(0.0069)\\ \hline 0.9435(0.0118)\\ 0.0766(0.0152)\\ 0.9771(0.0062)\\ \hline 0.9214(0.0141)\\ \end{array}$	$\begin{array}{r} 3.5914(0.2324)\\ 2.0342(0.1312)\\ \hline 0.2069(0.0207)\\ 4.8352(0.3276)\\ 2.9774(0.2034)\\ \hline 0.2259(0.012)\\ 3.629(0.2567)\\ 2.0838(0.1424)\\ \hline 0.1753(0.0208) \end{array}$	$\begin{array}{c} 0.0976(0.0207)\\ 0.9694(0.0084)\\ 0.8896(0.0241)\\ 0.1029(0.0228)\\ 0.9582(0.01)\\ \hline 0.9297(0.0171)\\ 0.095(0.0219)\\ 0.9709(0.0088)\\ \hline 0.8873(0.0243)\\ \end{array}$	$\begin{array}{c} 0.0679(0.0052)\\ 0.9804(0.0037)\\ 0.9203(0.0059)\\ 0.0733(0.0057)\\ 0.9701(0.004)\\ 0.9503(0.0046)\\ 0.0674(0.006)\\ 0.9802(0.0038)\\ 0.9202(0.0126)\\ \end{array}$
3 4 5		$\begin{array}{c} 0.0556(0.0051)\\ 0.9853(0.0025)\\ \hline 0.9377(0.0059)\\ 0.0572(0.0057)\\ 0.9773(0.003)\\ \hline 0.9599(0.0047)\\ 0.0553(0.0058)\\ 0.9857(0.0025)\\ \hline 0.9386(0.0084)\\ 0.0562(0.0076)\\ \end{array}$	$\begin{array}{c} 0.0673(0.0129)\\ 0.9809(0.0053)\\ \hline 0.9136(0.0175)\\ 0.0802(0.0172)\\ 0.9693(0.0069)\\ \hline 0.9435(0.0118)\\ 0.0766(0.0152)\\ 0.9771(0.0062)\\ \hline 0.9214(0.0141)\\ 0.0708(0.0121)\\ \end{array}$	$\begin{array}{c} 3.5914(0.2324)\\ 2.0342(0.1312)\\ \hline 0.2069(0.0207)\\ 4.8352(0.3276)\\ \hline 2.9774(0.2034)\\ \hline 0.2259(0.012)\\ 3.629(0.2567)\\ \hline 2.0838(0.1424)\\ \hline 0.1753(0.0208)\\ 4.5759(0.3647)\\ \end{array}$	$\begin{array}{c} 0.0976(0.0207)\\ 0.9694(0.0084)\\ \hline 0.8896(0.0241)\\ 0.1029(0.0228)\\ \hline 0.9582(0.01)\\ \hline 0.9297(0.0171)\\ 0.095(0.0219)\\ \hline 0.9709(0.0088)\\ \hline 0.8873(0.0243)\\ 0.1059(0.0267)\\ \end{array}$	$\begin{array}{c} 0.0679(0.0052)\\ 0.9804(0.0037)\\ 0.9203(0.0059)\\ 0.0733(0.0057)\\ 0.9701(0.004)\\ 0.9503(0.0046)\\ 0.0674(0.006)\\ 0.9802(0.0038)\\ 0.9202(0.0126)\\ 0.0722(0.0094)\\ \end{array}$
3 4 5		$\begin{array}{c} 0.0556(0.0051)\\ 0.9853(0.0025)\\ \hline 0.9377(0.0059)\\ 0.0572(0.0057)\\ \hline 0.9773(0.003)\\ \hline 0.9599(0.0047)\\ 0.0553(0.0058)\\ \hline 0.9857(0.0025)\\ \hline 0.9386(0.0084)\\ 0.0562(0.0076)\\ \hline 0.9766(0.0052)\\ \end{array}$	$\begin{array}{c} 0.0675(0.0129)\\ 0.9809(0.0053)\\ 0.9136(0.0175)\\ 0.0802(0.0172)\\ 0.9693(0.0069)\\ \hline 0.9435(0.0118)\\ 0.0766(0.0152)\\ 0.9771(0.0062)\\ \hline 0.9214(0.0141)\\ 0.0708(0.0121)\\ 0.9704(0.0057)\\ \end{array}$	$\begin{array}{c} 3.3914(0.2324)\\ 2.0342(0.1312)\\ \hline 0.2069(0.0207)\\ 4.8352(0.3276)\\ \hline 2.9774(0.2034)\\ \hline 0.2259(0.012)\\ 3.629(0.2567)\\ \hline 2.0838(0.1424)\\ \hline 0.1753(0.0208)\\ 4.5759(0.3647)\\ \hline 2.7407(0.2361)\\ \end{array}$	$\begin{array}{c} 0.0976(0.0207)\\ 0.9694(0.0084)\\ 0.8896(0.0241)\\ 0.1029(0.0228)\\ 0.9582(0.01)\\ \hline 0.9297(0.0171)\\ 0.095(0.0219)\\ 0.9709(0.0088)\\ \hline 0.8873(0.0243)\\ 0.1059(0.0267)\\ 0.956(0.0081)\\ \end{array}$	$\begin{array}{c} 0.0679(0.0052)\\ 0.9804(0.0037)\\ 0.9203(0.0059)\\ 0.0733(0.0057)\\ 0.9701(0.004)\\ 0.9503(0.0046)\\ 0.0674(0.006)\\ 0.9802(0.0038)\\ 0.9202(0.0126)\\ 0.0722(0.0094)\\ 0.9671(0.0059)\\ \end{array}$
3 4 5 6		$\begin{array}{c} 0.0556(0.0051)\\ 0.9853(0.0025)\\ 0.9377(0.0059)\\ 0.0572(0.0057)\\ 0.9773(0.003)\\ 0.9599(0.0047)\\ 0.0553(0.0058)\\ 0.9857(0.0025)\\ 0.9386(0.0084)\\ 0.0562(0.0076)\\ 0.9766(0.0052)\\ 0.9635(0.0025)\\ \end{array}$	$\begin{array}{c} 0.0675(0.0129)\\ 0.9809(0.0053)\\ 0.9136(0.0175)\\ 0.0802(0.0172)\\ 0.9693(0.0069)\\ \hline 0.9435(0.0118)\\ 0.0766(0.0152)\\ 0.9771(0.0062)\\ \hline 0.9214(0.0141)\\ 0.0708(0.0121)\\ 0.9704(0.0057)\\ \hline 0.9511(0.0106)\\ \end{array}$	$\begin{array}{r} 3.5914(0.2324)\\ 2.0342(0.1312)\\ 0.2069(0.0207)\\ 4.8352(0.3276)\\ 2.9774(0.2034)\\ \hline 0.2259(0.012)\\ 3.629(0.2567)\\ 2.0838(0.1424)\\ \hline 0.1753(0.0208)\\ 4.5759(0.3647)\\ 2.7407(0.2361)\\ \hline 0.2349(0.0135)\\ \end{array}$	$\begin{array}{c} 0.0976(0.0207)\\ 0.9694(0.0084)\\ 0.8896(0.0241)\\ 0.1029(0.0228)\\ 0.9582(0.01)\\ \hline 0.9297(0.0171)\\ 0.095(0.0219)\\ 0.9709(0.0088)\\ \hline 0.8873(0.0243)\\ 0.1059(0.0267)\\ 0.956(0.0081)\\ \hline 0.9316(0.0161)\\ \end{array}$	$\begin{array}{c} 0.0679(0.0052)\\ 0.9804(0.0037)\\ 0.9203(0.0059)\\ 0.0733(0.0057)\\ 0.9701(0.004)\\ \hline 0.9503(0.0046)\\ 0.0674(0.006)\\ 0.9802(0.0038)\\ \hline 0.9202(0.0126)\\ 0.0722(0.0094)\\ 0.9671(0.0059)\\ \hline 0.9526(0.0054)\\ \hline \end{array}$
3 4 5 6		$\begin{array}{c} 0.0556(0.0051)\\ 0.9853(0.0025)\\ 0.9377(0.0059)\\ 0.0572(0.0057)\\ 0.9773(0.003)\\ 0.9599(0.0047)\\ 0.0553(0.0058)\\ 0.9857(0.0025)\\ 0.9386(0.0084)\\ 0.0562(0.0076)\\ 0.9766(0.0052)\\ 0.9635(0.0025)\\ 0.0511(0.0035)\\ \end{array}$	$\begin{array}{c} 0.0673(0.0129)\\ 0.9809(0.0053)\\ 0.9136(0.0175)\\ 0.0802(0.0172)\\ 0.9693(0.0069)\\ 0.9435(0.0118)\\ 0.0766(0.0152)\\ 0.9771(0.0062)\\ 0.9214(0.0141)\\ 0.0708(0.0121)\\ 0.9704(0.0057)\\ 0.9511(0.0106)\\ 0.0679(0.0151)\\ \end{array}$	$\begin{array}{c} 3.5914(0.2324)\\ 2.0342(0.1312)\\ 0.2069(0.0207)\\ 4.8352(0.3276)\\ 2.9774(0.2034)\\ 0.2259(0.012)\\ 3.629(0.2567)\\ 2.0838(0.1424)\\ 0.1753(0.0208)\\ 4.5759(0.3647)\\ 2.7407(0.2361)\\ 0.2349(0.0135)\\ 3.6504(0.238)\\ \end{array}$	$\begin{array}{c} 0.0976(0.0207)\\ 0.9694(0.0084)\\ 0.8896(0.0241)\\ 0.1029(0.0228)\\ 0.9582(0.01)\\ \hline 0.9297(0.0171)\\ 0.095(0.0219)\\ 0.9709(0.0088)\\ \hline 0.8873(0.0243)\\ 0.1059(0.0267)\\ 0.956(0.0081)\\ \hline 0.9316(0.0161)\\ 0.0931(0.0211)\\ \end{array}$	$\begin{array}{c} 0.0679(0.0052)\\ 0.9804(0.0037)\\ 0.9203(0.0059)\\ 0.0733(0.0057)\\ 0.9701(0.004)\\ 0.9503(0.0046)\\ 0.0674(0.006)\\ 0.9802(0.0038)\\ 0.9202(0.0126)\\ 0.0722(0.0094)\\ 0.9671(0.0059)\\ 0.9526(0.0054)\\ 0.0658(0.0069)\\ \end{array}$
3 4 5 6		$\begin{array}{c} 0.0556(0.0051)\\ 0.9853(0.0025)\\ 0.9377(0.0059)\\ 0.0572(0.0057)\\ 0.9773(0.003)\\ 0.9599(0.0047)\\ 0.0553(0.0058)\\ 0.9857(0.0025)\\ 0.9386(0.0084)\\ 0.0562(0.0076)\\ 0.9766(0.0052)\\ 0.9635(0.0025)\\ 0.0511(0.0035)\\ 0.9843(0.0025)\\ \end{array}$	$\begin{array}{c} 0.0675(0.0129)\\ 0.9809(0.0053)\\ 0.9136(0.0175)\\ 0.0802(0.0172)\\ 0.9693(0.0069)\\ 0.9435(0.0118)\\ 0.0766(0.0152)\\ 0.9771(0.0062)\\ 0.9214(0.0141)\\ 0.0708(0.0121)\\ 0.9704(0.0057)\\ 0.9511(0.0106)\\ 0.0679(0.0151)\\ 0.9775(0.0069)\\ \end{array}$	$\begin{array}{c} 3.5914(0.2324)\\ 2.0342(0.1312)\\ 0.2069(0.0207)\\ 4.8352(0.3276)\\ 2.9774(0.2034)\\ 0.2259(0.012)\\ 3.629(0.2567)\\ 2.0838(0.1424)\\ 0.1753(0.0208)\\ 4.5759(0.3647)\\ 2.7407(0.2361)\\ 0.2349(0.0135)\\ 3.6504(0.238)\\ 2.0823(0.1471)\\ \end{array}$	$\begin{array}{c} 0.0976(0.0207)\\ 0.9694(0.0084)\\ 0.8896(0.0241)\\ 0.1029(0.0228)\\ 0.9582(0.01)\\ \hline 0.9297(0.0171)\\ 0.095(0.0219)\\ 0.9709(0.0088)\\ \hline 0.8873(0.0243)\\ 0.1059(0.0267)\\ 0.956(0.0081)\\ \hline 0.9316(0.0161)\\ 0.0931(0.0211)\\ 0.9685(0.0086)\\ \end{array}$	$\begin{array}{c} 0.0679(0.0052)\\ 0.9804(0.0037)\\ 0.9203(0.0059)\\ 0.0733(0.0057)\\ 0.9701(0.004)\\ 0.9503(0.0046)\\ 0.0674(0.006)\\ 0.9802(0.0038)\\ 0.9202(0.0126)\\ 0.0722(0.0094)\\ 0.9671(0.0059)\\ 0.9526(0.0054)\\ 0.0658(0.0069)\\ 0.9787(0.0044)\\ \end{array}$
3 4 5 6 7		$\begin{array}{c} 0.0556(0.0051)\\ 0.9853(0.0025)\\ 0.9377(0.0059)\\ 0.0572(0.0057)\\ 0.9773(0.003)\\ 0.9599(0.0047)\\ 0.0553(0.0058)\\ 0.9857(0.0025)\\ 0.9386(0.0084)\\ 0.0562(0.0076)\\ 0.9766(0.0052)\\ 0.9635(0.0025)\\ 0.0511(0.0035)\\ 0.9843(0.0025)\\ 0.9404(0.005)\\ \end{array}$	$\begin{array}{c} 0.0675(0.0129)\\ 0.9809(0.0053)\\ 0.9136(0.0175)\\ 0.0802(0.0172)\\ 0.9693(0.0069)\\ 0.9435(0.0118)\\ 0.0766(0.0152)\\ 0.9771(0.0062)\\ 0.9214(0.0141)\\ 0.0708(0.0121)\\ 0.9704(0.0057)\\ 0.9511(0.0106)\\ 0.0679(0.0151)\\ 0.9775(0.0069)\\ 0.9227(0.0181)\\ \end{array}$	$\begin{array}{c} 3.5914(0.2324)\\ 2.0342(0.1312)\\ 0.2069(0.0207)\\ 4.8352(0.3276)\\ 2.9774(0.2034)\\ 0.2259(0.012)\\ 3.629(0.2567)\\ 2.0838(0.1424)\\ 0.1753(0.0208)\\ 4.5759(0.3647)\\ 2.7407(0.2361)\\ 0.2349(0.0135)\\ 3.6504(0.238)\\ 2.0823(0.1471)\\ 0.2052(0.0202)\\ \end{array}$	$\begin{array}{c} 0.0976(0.0207)\\ 0.9694(0.0084)\\ 0.8896(0.0241)\\ 0.1029(0.0228)\\ 0.9582(0.01)\\ \hline 0.9297(0.0171)\\ 0.095(0.0219)\\ 0.9709(0.0088)\\ \hline 0.8873(0.0243)\\ 0.1059(0.0267)\\ 0.956(0.0081)\\ \hline 0.9316(0.0161)\\ 0.0931(0.0211)\\ 0.9685(0.0086)\\ \hline 0.894(0.0293)\\ \end{array}$	$\begin{array}{c} 0.0679(0.0052)\\ 0.9804(0.0037)\\ 0.9203(0.0059)\\ 0.0733(0.0057)\\ 0.9701(0.004)\\ 0.9503(0.0046)\\ 0.0674(0.006)\\ 0.9802(0.0038)\\ 0.9202(0.0126)\\ 0.0722(0.0094)\\ 0.9671(0.0059)\\ 0.9526(0.0054)\\ 0.0658(0.0069)\\ 0.9787(0.0044)\\ 0.924(0.0097)\\ \end{array}$
$ \begin{array}{c} 3\\ -4\\ -5\\ -6\\ -7\\ 7 \end{array} $		$\begin{array}{c} 0.0556(0.0051)\\ 0.9853(0.0025)\\ 0.9377(0.0059)\\ 0.0572(0.0057)\\ 0.9773(0.003)\\ 0.9599(0.0047)\\ 0.0553(0.0058)\\ 0.9857(0.0025)\\ 0.9386(0.0084)\\ 0.0562(0.0076)\\ 0.9766(0.0052)\\ 0.9635(0.0025)\\ 0.9843(0.0025)\\ 0.9404(0.005)\\ 0.0563(0.0041)\\ \end{array}$	$\begin{array}{c} 0.0675(0.0129)\\ 0.9809(0.0053)\\ 0.9136(0.0175)\\ 0.0802(0.0172)\\ 0.9693(0.0069)\\ \hline 0.9435(0.0118)\\ 0.0766(0.0152)\\ 0.9771(0.0062)\\ \hline 0.9214(0.0141)\\ 0.0708(0.0121)\\ 0.9704(0.0057)\\ \hline 0.9511(0.0106)\\ 0.0679(0.0151)\\ 0.9775(0.0069)\\ \hline 0.9227(0.0181)\\ 0.0721(0.0158)\\ \end{array}$	$\begin{array}{c} 3.5914(0.2324)\\ 2.0342(0.1312)\\ 0.2069(0.0207)\\ 4.8352(0.3276)\\ 2.9774(0.2034)\\ \hline 0.2259(0.012)\\ 3.629(0.2567)\\ 2.0838(0.1424)\\ \hline 0.1753(0.0208)\\ 4.5759(0.3647)\\ 2.7407(0.2361)\\ \hline 0.2349(0.0135)\\ 3.6504(0.238)\\ 2.0823(0.1471)\\ \hline 0.2052(0.0202)\\ 4.9633(0.4258)\\ \end{array}$	$\begin{array}{c} 0.0976(0.0207)\\ 0.9694(0.0084)\\ 0.8896(0.0241)\\ 0.1029(0.0228)\\ 0.9582(0.01)\\ \hline 0.9297(0.0171)\\ 0.095(0.0219)\\ 0.9709(0.0088)\\ \hline 0.8873(0.0243)\\ 0.1059(0.0267)\\ 0.956(0.0081)\\ \hline 0.9316(0.0161)\\ 0.0931(0.0211)\\ 0.9685(0.0086)\\ \hline 0.894(0.0293)\\ 0.102(0.0313)\\ \end{array}$	$\begin{array}{c} 0.0679(0.0052)\\ 0.9804(0.0037)\\ 0.9203(0.0059)\\ 0.0733(0.0057)\\ 0.9701(0.004)\\ 0.9503(0.0046)\\ 0.0674(0.006)\\ 0.9802(0.0038)\\ 0.9202(0.0126)\\ 0.0722(0.0094)\\ 0.9671(0.0059)\\ 0.9526(0.0054)\\ 0.0658(0.0069)\\ 0.9787(0.0044)\\ 0.924(0.0097)\\ 0.0714(0.0081)\\ \end{array}$
		$\begin{array}{c} 0.0556(0.0051)\\ 0.9853(0.0025)\\ 0.9377(0.0059)\\ 0.0572(0.0057)\\ 0.9773(0.003)\\ 0.9773(0.003)\\ 0.9599(0.0047)\\ 0.0553(0.0058)\\ 0.9857(0.0025)\\ 0.9386(0.0084)\\ 0.0562(0.0076)\\ 0.9766(0.0052)\\ 0.9635(0.0025)\\ 0.0511(0.0035)\\ 0.9843(0.0025)\\ 0.9404(0.005)\\ 0.0563(0.0041)\\ 0.9765(0.0045)\\ \end{array}$	$\begin{array}{c} 0.0675(0.0129)\\ 0.9809(0.0053)\\ 0.9136(0.0175)\\ 0.0802(0.0172)\\ 0.9693(0.0069)\\ 0.9435(0.0118)\\ 0.0766(0.0152)\\ 0.9771(0.0062)\\ 0.9214(0.0141)\\ 0.0708(0.0121)\\ 0.9704(0.0057)\\ 0.9511(0.0106)\\ 0.0679(0.0151)\\ 0.9775(0.0069)\\ 0.9227(0.0181)\\ 0.0721(0.0158)\\ 0.9707(0.0097)\\ \end{array}$	$\begin{array}{c} 3.3914(0.2324)\\ 2.0342(0.1312)\\ 0.2069(0.0207)\\ 4.8352(0.3276)\\ 2.9774(0.2034)\\ \hline 0.2259(0.012)\\ 3.629(0.2567)\\ 2.0838(0.1424)\\ \hline 0.1753(0.0208)\\ 4.5759(0.3647)\\ 2.7407(0.2361)\\ \hline 0.2349(0.0135)\\ 3.6504(0.238)\\ 2.0823(0.1471)\\ \hline 0.2052(0.0202)\\ 4.9633(0.4258)\\ 3.0896(0.2742)\\ \end{array}$	$\begin{array}{c} 0.0976(0.0207)\\ 0.9694(0.0084)\\ 0.8896(0.0241)\\ 0.1029(0.0228)\\ 0.9582(0.01)\\ \hline 0.9297(0.0171)\\ 0.095(0.0219)\\ 0.9709(0.0088)\\ \hline 0.8873(0.0243)\\ 0.1059(0.0267)\\ 0.956(0.0081)\\ \hline 0.9316(0.0161)\\ 0.0931(0.0211)\\ 0.9685(0.0086)\\ \hline 0.894(0.0293)\\ 0.102(0.0313)\\ 0.9605(0.0121)\\ \end{array}$	$\begin{array}{c} 0.0679(0.0052)\\ 0.9804(0.0037)\\ 0.9203(0.0059)\\ 0.0733(0.0057)\\ 0.9701(0.004)\\ \hline 0.9503(0.0046)\\ 0.9503(0.0046)\\ 0.9802(0.0038)\\ \hline 0.9802(0.0038)\\ 0.9202(0.0126)\\ 0.0722(0.0094)\\ 0.9671(0.0059)\\ \hline 0.9526(0.0054)\\ 0.0658(0.0069)\\ 0.9787(0.0044)\\ \hline 0.924(0.0097)\\ 0.0714(0.0081)\\ 0.9681(0.0066)\\ \hline \end{array}$
	\overline{MS} \overline{HVR} $\overline{IGD+}$ \overline{MS} \overline{HVR} \overline{HVR} $\overline{IGD+}$ \overline{MS} \overline{HVR}	$\begin{array}{c} 0.0556(0.0051)\\ 0.9853(0.0025)\\ 0.9377(0.0059)\\ 0.0572(0.0057)\\ 0.9773(0.003)\\ 0.9773(0.003)\\ 0.9599(0.0047)\\ 0.0553(0.0058)\\ 0.9857(0.0025)\\ 0.9386(0.0084)\\ 0.0562(0.0076)\\ 0.9766(0.0052)\\ 0.9635(0.0025)\\ 0.9843(0.0025)\\ 0.9843(0.0025)\\ 0.9843(0.0025)\\ 0.9404(0.005)\\ 0.9765(0.0041)\\ 0.9765(0.0045)\\ 0.9628(0.0033)\\ \end{array}$	$\begin{array}{c} 0.0675(0.0129)\\ 0.9809(0.0053)\\ 0.9136(0.0175)\\ 0.0802(0.0172)\\ 0.9693(0.0069)\\ 0.9435(0.0118)\\ 0.0766(0.0152)\\ 0.9771(0.0062)\\ 0.9214(0.0141)\\ 0.0708(0.0121)\\ 0.9704(0.0057)\\ 0.9511(0.0106)\\ 0.0679(0.0151)\\ 0.9775(0.0069)\\ 0.9227(0.0181)\\ 0.0721(0.0158)\\ 0.9707(0.0097)\\ 0.9537(0.0094)\\ \end{array}$	$\begin{array}{c} 3.5914(0.2324)\\ 2.0342(0.1312)\\ 0.2069(0.0207)\\ 4.8352(0.3276)\\ 2.9774(0.2034)\\ 0.2259(0.012)\\ 3.629(0.2567)\\ 2.0838(0.1424)\\ 0.1753(0.0208)\\ 4.5759(0.3647)\\ 2.7407(0.2361)\\ 0.2349(0.0135)\\ 3.6504(0.238)\\ 2.0823(0.1471)\\ 0.2052(0.0202)\\ 4.9633(0.4258)\\ 3.0896(0.2742)\\ 0.2349(0.011)\\ \end{array}$	$\begin{array}{c} 0.0976(0.0207)\\ 0.9694(0.0084)\\ 0.8896(0.0241)\\ 0.1029(0.0228)\\ 0.9582(0.01)\\ 0.9297(0.0171)\\ 0.095(0.0219)\\ 0.9709(0.0088)\\ \hline 0.8873(0.0243)\\ 0.1059(0.0267)\\ 0.956(0.0081)\\ \hline 0.9316(0.0161)\\ 0.0931(0.0211)\\ 0.9685(0.0086)\\ \hline 0.894(0.0293)\\ 0.102(0.0313)\\ 0.9605(0.0121)\\ 0.9361(0.0132)\\ \hline \end{array}$	$\begin{array}{c} 0.0679(0.0052)\\ 0.9804(0.0037)\\ 0.9203(0.0059)\\ 0.0733(0.0057)\\ 0.9701(0.004)\\ 0.9503(0.0046)\\ 0.0674(0.006)\\ 0.9802(0.0038)\\ 0.9202(0.0126)\\ 0.0722(0.0094)\\ 0.9671(0.0059)\\ 0.9526(0.0054)\\ 0.0658(0.0069)\\ 0.9787(0.0044)\\ 0.924(0.0097)\\ 0.0714(0.0081)\\ 0.9681(0.0066)\\ 0.9519(0.0057)\\ \end{array}$
	\overline{MS} \overline{HVR} $\overline{IGD+}$	$\begin{array}{c} 0.0556(0.0051)\\ 0.9853(0.0025)\\ 0.9377(0.0059)\\ 0.0572(0.0057)\\ 0.9773(0.003)\\ 0.9773(0.003)\\ 0.9599(0.0047)\\ 0.0553(0.0058)\\ 0.9857(0.0025)\\ 0.9386(0.0084)\\ 0.0562(0.0076)\\ 0.9766(0.0052)\\ 0.9635(0.0025)\\ 0.9843(0.0025)\\ 0.9843(0.0025)\\ 0.9843(0.0025)\\ 0.9843(0.0045)\\ 0.9628(0.0033)\\ 0.9518(0.0045)\\ \end{array}$	$\begin{array}{c} 0.0673(0.0129)\\ 0.9809(0.0053)\\ 0.9136(0.0175)\\ 0.0802(0.0172)\\ 0.9693(0.0069)\\ 0.9435(0.0118)\\ 0.0766(0.0152)\\ 0.9771(0.0062)\\ 0.9214(0.0141)\\ 0.0708(0.0121)\\ 0.9704(0.0057)\\ 0.9511(0.0106)\\ 0.0679(0.0151)\\ 0.9775(0.0069)\\ 0.9227(0.0181)\\ 0.0721(0.0158)\\ 0.9707(0.0097)\\ 0.9537(0.0094)\\ 0.0643(0.0128)\\ \end{array}$	$\begin{array}{r} 3.5914(0.2324)\\ 2.0342(0.1312)\\ 0.2069(0.0207)\\ 4.8352(0.3276)\\ 2.9774(0.2034)\\ 0.2259(0.012)\\ 3.629(0.2567)\\ 2.0838(0.1424)\\ 0.1753(0.0208)\\ 4.5759(0.3647)\\ 2.7407(0.2361)\\ 0.2349(0.0135)\\ 3.6504(0.238)\\ 2.0823(0.1471)\\ 0.2052(0.0202)\\ 4.9633(0.4258)\\ 3.0896(0.2742)\\ 0.2349(0.011)\\ 3.7051(0.1956)\\ \end{array}$	$\begin{array}{c} 0.0976(0.0207)\\ 0.9694(0.0084)\\ 0.8896(0.0241)\\ 0.1029(0.0228)\\ 0.9582(0.01)\\ \hline 0.9297(0.0171)\\ 0.0956(0.0219)\\ 0.9709(0.0088)\\ \hline 0.8873(0.0243)\\ 0.1059(0.0267)\\ 0.956(0.0081)\\ \hline 0.9316(0.0161)\\ 0.0931(0.0211)\\ 0.9685(0.0086)\\ \hline 0.894(0.0293)\\ 0.102(0.0313)\\ 0.9605(0.0121)\\ \hline 0.9361(0.0132)\\ 0.0884(0.0184)\\ \end{array}$	$\begin{array}{c} 0.0679(0.0052)\\ 0.9804(0.0037)\\ 0.9203(0.0059)\\ 0.0733(0.0057)\\ 0.9701(0.004)\\ 0.9503(0.0046)\\ 0.0674(0.006)\\ 0.9802(0.0038)\\ 0.9202(0.0126)\\ 0.0722(0.0094)\\ 0.9671(0.0059)\\ 0.9526(0.0054)\\ 0.0658(0.0069)\\ 0.9787(0.0044)\\ 0.924(0.0097)\\ 0.0714(0.0081)\\ 0.9681(0.0066)\\ 0.9519(0.0057)\\ 0.0665(0.0076)\\ \end{array}$

Tabla 5.15: Resumen de resultados de la prueba Wilcoxon rank-sum con 95% de confianza (Experi-
mento III, Parte A). Los símbolos "+", "-" y "=" se entienden como; I-CGDE3 tuvo un comportamiento
significativamente superior, inferior o sin diferencias significativas.

Reacción	-	HVR	Ē	$\overline{IGD+}$			\overline{MS}		
I-CGDE3	+	=	—	+	=	—	+	=	—
CGDE3-A	11	5	0	10	5	1	8	8	0
CGDE3-B	12	4	0	12	5	0	12	4	0
DC-CGDE3	13	3	0	13	3	0	13	3	0
d-CGDE3	8	8	0	8	8	0	8	8	0
Total	44	20	0	43	21	0	41	23	0

En general, la respuesta inmune muestra superioridad en problemas de prueba con cambios severos y un comportamiento similar a otras reacciones al cambio cuando la severidad de cambio es reducida. Lo anterior se debe principalmente a que la respuesta inmune considera a las soluciones no dominadas con baja violación de restricciones como buenas soluciones para guiar la búsqueda al nuevo POF, permitiéndole a I-CGDE3 converger de manera más acelerada.

De manera particular, a diferencia de las reacciones al cambio de DC-MOEA y dCMOEA, la respuesta inmune no hace uso de un proceso de recombinación con las soluciones no dominadas, reduciendo el posible sesgo a una convergencia sobre el nuevo conjunto de soluciones no dominadas, esto produce mayor capacidad de exploración pero reduce el aprovechamiento de la información sobre la ubicación del nuevo conjunto de soluciones no dominadas, por lo que en los problemas DCTP no hay una diferencia significativa en los resultados.

Un caso particular ocurre para CGDE3-B, el cual es incapaz de converger a la nueva región factible en el problema DCTP 4 y al los nuevos POF en los problemas FCCD debido a la reducción de aporte de diversidad ocasionado por introducir únicamente soluciones mutadas.

Por otra parte, para CGDE3-A el indicador \overline{MS} describe de manera errónea una mejora en el desempeño sobre DCTP 8, FCCD 1, 3, 5, 6 y 7 en comparación a I-CGDE3. Dado que el nulo aprovechamiento de la información presente en las soluciones anteriores reduce la capacidad de convergencia de CGDE3-A, mostrando significativamente peores valores en \overline{HVR} y $\overline{IGD+}$ (Tabla 5.14).

Parte B: Comparación de la respuesta inmune con otras reacciones al cambio sobre cada DCMOEA considerado

La resultados estadísticos obtenidos de la comparación entre los algoritmos DC-MOEA, dCMOEA, DC-NSGA-II y DNSGA-II-A y sus respectivas versiones al reemplazar sus reacciones al cambio por la respuesta inmune, IDC-MOEA, I-dCMOEA, IDC-NSGA-II y I-DNSGA-II-A son presentados en las Tablas 5.16, 5.17, 5.18 y 5.19 y resumidos en la Tabla 5.20.

Tabla 5.16: Media (μ) y desviación estándar (σ) en el formato " $\mu(\sigma)$ " de los resultados en los indicadores \overline{HVR} , $\overline{IGD+}$ y \overline{MS} para el algoritmo DC-MOEA y su versión IDC-MOEA, la cual usa a la respuesta inmune de I-CGDE3 como reacción al cambio. Los mejores resultados se resaltan en negritas.

				-		
		DC	TP		FCC	CD
		IDC-MOEA	DC-MOEA		IDC-MOEA	DC-MOEA
1	\overline{HVR}	0.9886(0.0006)	0.9887(0.0006)		0.6716(0.0152)	0.6376(0.0205)
	$\overline{IGD+}$	0.0090(0.0005)	0.0091(0.0004)		0.2906(0.0197)	0.3365(0.0344)
	\overline{MS}	0.98(0.0145)	0.984(0.0109)		0.8845(0.0089)	0.8713(0.0081)
	\overline{FR}	1.0(0.0)	1.0(0.0)		1.0(0.0)	1.0(0.0001)
9	\overline{HVR}	0.9951(0.0004)	0.9959(0.0004)		0.7984(0.01)	0.7732(0.0127)
	$\overline{IGD+}$	0.0039(0.0003)	0.0033(0.0002)		0.2508(0.0117)	0.2768(0.016)
	\overline{MS}	0.9979(0.0029)	0.9985(0.0019)		0.9031(0.0073)	0.8898(0.0082)
	\overline{FR}	1.0(0.0)	1.0(0.0)		1.0(0.0)	1.0(0.0)
2	\overline{HVR}	0.9664(0.0019)	0.9703(0.0027)		0.6719(0.0159)	0.6334(0.0196)
0	$\overline{IGD+}$	0.0333(0.004)	0.0324(0.0069)		0.2892(0.0173)	0.3331(0.0252)
	\overline{MS}	0.9857(0.0099)	0.9821(0.0135)		0.8842(0.008)	0.866(0.0097)
	\overline{FR}	0.9997(0.0008)	0.9995(0.0012)		1.0(0.0001)	1.0(0.0)
4	\overline{HVR}	0.7743(0.1836)	0.7831(0.1437)		0.8036(0.0111)	0.7693(0.0116)
4	$\overline{IGD+}$	0.2143(0.0285)	0.1735(0.0229)		0.247(0.013)	0.2825(0.0177)
	\overline{MS}	0.9699(0.0184)	0.9813(0.0143)		0.9044(0.0074)	0.8872(0.0094)
	\overline{FR}	0.7863(0.1605)	0.7397(0.1732)		1.0(0.0)	1.0(0.0)
5	HV	0.972(0.0022)	0.9714(0.0024)		0.6854(0.0176)	0.6446(0.0173)
0	$\overline{IGD+}$	0.0062(0.0005)	0.0062(0.0003)		0.2897(0.0182)	0.3352(0.0189)
	\overline{MS}	0.9614(0.0077)	0.9637(0.0064)		0.8808(0.0088)	0.8617(0.0101)
	\overline{FR}	0.9999(0.0004)	1.0(0.0)		1.0(0.0)	1.0(0.0)
6	\overline{HVR}	0.9834(0.0004)	0.9844(0.0004)		0.8115(0.0124)	0.7792(0.016)
0	$\overline{IGD+}$	0.0091(0.0004)	0.0084(0.0002)		0.2456(0.0156)	0.2836(0.0246)
	\overline{MS}	0.9944(0.0039)	0.9949(0.0028)		0.8996(0.0078)	0.8843(0.01)
	\overline{FR}	0.9998(0.0007)	0.9994(0.0014)		1.0(0.0)	1.0(0.0001)
7	\overline{HVR}	0.9941(0.0004)	0.9956(0.0007)		0.683(0.0164)	0.637(0.0189)
'	$\overline{IGD+}$	0.0072(0.001)	0.0069(0.0017)		0.2915(0.0167)	0.3401(0.0227)
	\overline{MS}	0.9938(0.0086)	0.9948(0.0068)		0.8795(0.0072)	0.8535(0.0098)
	\overline{FR}	0.999(0.0042)	0.9992(0.0036)		1.0(0.0001)	1.0(0.0001)
8	\overline{HVR}	0.4891(0.4145)	0.4133(0.2705)		0.8109(0.0104)	0.7846(0.0133)
0	$\overline{IGD+}$	3.502(0.0012)	5.0269(2.5995)		0.248(0.0145)	0.2779(0.0197)
	\overline{MS}	0.9767(0.0322)	1.1343(0.0772)		0.899(0.0074)	0.8817(0.0081)
	\overline{FR}	0.6963(0.2085)	1.0(0.0)		1.0(0.0)	1.0(0.0001)

Tabla 5.17: Media (μ) y desviación estándar (σ) en el formato " $\mu(\sigma)$ " de los resultados en los indicadores \overline{HVR} , $\overline{IGD+}$ y \overline{MS} para el algoritmo dCMOEA y su versión I-dCMOEA, la cual usa a la respuesta inmune de I-CGDE3 como reacción al cambio. Los mejores resultados se resaltan en negritas.

		DC	TP	1	FFCD			
		I-dCMOEA	dCMOEA		I-dCMOEA	dCMOEA		
1	\overline{HVR}	0.9887(0.0008)	0.989(0.0006)		0.9083(0.0082)	0.8846(0.0133)		
	$\overline{IGD+}$	0.0093(0.0012)	0.0089(0.0004)		0.0819(0.0076)	0.1036(0.0141)		
	\overline{MS}	0.9913(0.0222)	0.9982(0.0027)		0.9662(0.0054)	0.9576(0.0073)		
	\overline{FR}	1.0(0.0)	1.0(0.0)		1.0(0.0)	1.0(0.0)		
2	\overline{HVR}	0.9932(0.0007)	0.993(0.0008)		0.9477(0.0052)	0.9366(0.0047)		
	$\overline{IGD+}$	0.007(0.0008)	0.0072(0.0008)		0.0704(0.0069)	0.0844(0.006)		
	\overline{MS}	0.9984(0.0009)	0.9984(0.0008)		0.9801(0.005)	0.975(0.0046)		
	\overline{FR}	1.0(0.0)	1.0(0.0)		1.0(0.0)	1.0(0.0)		
2	\overline{HVR}	0.9739(0.0018)	0.9735(0.0015)		0.91(0.0099)	0.8927(0.0088)		
5	$\overline{IGD+}$	0.0273(0.0022)	0.0274(0.0022)		0.0816(0.0089)	0.0981(0.0094)		
	\overline{MS}	0.9921(0.0015)	0.9922(0.0012)		0.9655(0.0055)	0.9593(0.0068)		
	\overline{FR}	1.0(0.0)	1.0(0.0)		1.0(0.0)	1.0(0.0)		
4	\overline{HVR}	0.8256(0.0144)	0.824(0.0158)		0.9493(0.0053)	0.9387(0.0077)		
4	$\overline{IGD+}$	0.1361(0.0095)	0.1357(0.0144)		0.0688(0.0069)	0.0829(0.011)		
	\overline{MS}	0.9026(0.0269)	0.9107(0.0162)		0.9817(0.0032)	0.9764(0.005)		
	\overline{FR}	1.0(0.0)	1.0(0.0)		1.0(0.0)	1.0(0.0)		
5	\overline{HVR}	0.9735(0.0028)	0.9727(0.0019)		0.9106(0.0156)	0.8921(0.0106)		
0	$\overline{IGD+}$	0.0089(0.0015)	0.0088(0.0011)		0.0815(0.0146)	0.0992(0.0105)		
	\overline{MS}	0.9794(0.008)	0.9826(0.0073)		0.9646(0.0067)	0.9547(0.008)		
	\overline{FR}	1.0(0.0)	1.0(0.0)		1.0(0.0)	1.0(0.0)		
6	\overline{HVR}	0.6055(0.2327)	0.5737(0.2554)		0.9487(0.0051)	0.9372(0.0053)		
0	$\overline{IGD+}$	2.7072(2.1512)	3.1293(2.7319)		0.0698(0.0065)	0.0844(0.006)		
	\overline{MS}	1.0241(0.0245)	1.0288(0.0193)		0.9778(0.0049)	0.9721(0.0044)		
	\overline{FR}	1.0(0.0)	1.0(0.0)		1.0(0.0)	1.0(0.0)		
7	\overline{HVR}	0.9825(0.049)	0.9911(0.0026)		0.9156(0.0062)	0.9015(0.0075)		
1	$\overline{IGD+}$	0.04(0.1346)	0.0163(0.0079)		0.0783(0.007)	0.0936(0.009)		
	\overline{MS}	0.9608(0.1392)	0.9837(0.0313)		0.963(0.0076)	0.9528(0.01)		
	\overline{FR}	1.0(0.0)	1.0(0.0)		1.0(0.0)	1.0(0.0)		
8	\overline{HVR}	0.3793(0.2383)	0.4939(0.2421)		$0.9516(\overline{0.0038})$	0.9389(0.0053)		
	$\overline{IGD+}$	4.2218(2.4801)	3.2217(2.2058)		0.0658(0.0049)	0.0831(0.0076)		
	\overline{MS}	0.9856(0.1536)	0.9847(0.1785)		0.9807(0.0029)	0.9738(0.0046)		
	\overline{FR}	1.0(0.0)	1.0(0.0)		1.0(0.0)	1.0(0.0)		

Tabla 5.18: Media (μ) y desviación estándar (σ) en el formato " $\mu(\sigma)$ " de los resultados en los indicadores \overline{HVR} , $\overline{IGD+}$ y \overline{MS} para el algoritmo DC-NSGA-II-A y su versión IDC-NSGA-II, la cual usa a la respuesta inmune de I-CGDE3 como reacción al cambio. Los mejores resultados se resaltan en negritas.

		DC	CTP	FFCD				
		IDC-NSGA-II	DC-NSGA-II-A	IDC-NSGA-II	DC-NSGA-II-A			
1	\overline{HVR}	0.9874(0.0007)	0.9875(0.0007)	0.5914(0.0236)	0.4502(0.0372)			
	$\overline{IGD+}$	0.0094(0.0006)	0.0094(0.0005)	0.3628(0.0263)	0.6636(0.0737)			
	\overline{MS}	0.9767(0.0172)	0.9798(0.0114)	0.8622(0.0102)	0.8641(0.0285)			
	\overline{FR}	1.0(0.0)	1.0(0.0)	1.0(0.0001)	1.0(0.0002)			
2	\overline{HVR}	0.9949(0.0005)	0.9954(0.0005)	0.7583(0.0206)	0.5978(0.0358)			
	$\overline{IGD+}$	0.0039(0.0002)	0.0037(0.0003)	0.303(0.0273)	0.5376(0.0739)			
	\overline{MS}	0.9988(0.0007)	0.9988(0.0009)	0.8911(0.0132)	0.8552(0.02)			
	\overline{FR}	0.9998(0.0009)	1.0(0.0)	1.0(0.0001)	1.0(0.0001)			
9	\overline{HVR}	0.9673(0.0022)	0.9665(0.0028)	0.6183(0.0223)	0.4374(0.0381)			
0	$\overline{IGD+}$	0.0325(0.0041)	0.0331(0.0045)	0.3482(0.0248)	0.6367(0.082)			
	\overline{MS}	0.9878(0.0093)	0.986(0.0103)	0.8709(0.0081)	0.8393(0.0169)			
	\overline{FR}	0.9997(0.0011)	0.9998(0.0007)	1.0(0.0001)	0.9999(0.0002)			
4	\overline{HVR}	0.7867(0.0748)	0.7815(0.0862)	0.7564(0.0174)	0.5891(0.0447)			
4	$\overline{IGD+}$	0.1788(0.1215)	0.1728(0.0213)	0.3079(0.0219)	0.5403(0.0655)			
	\overline{MS}	0.9618(0.0145)	0.9412(0.0458)	0.8879(0.0091)	0.8449(0.0132)			
	\overline{FR}	0.8592(0.0844)	0.7502(0.1285)	1.0(0.0)	1.0(0.0)			
5	\overline{HVR}	0.9727(0.0022)	0.9715(0.0029)	0.5881(0.022)	0.4701(0.0307)			
5	$\overline{IGD+}$	0.0062(0.0005)	0.0063(0.0005)	0.3788(0.0279)	0.6788(0.1197)			
	\overline{MS}	0.9607(0.0059)	0.9618(0.0067)	0.8547(0.01)	0.8743(0.0506)			
	\overline{FR}	0.9999(0.0004)	1.0(0.0)	1.0(0.0001)	1.0(0.0001)			
6	\overline{HVR}	0.9426(0.0923)	0.963(0.064)	0.7679(0.0191)	0.631(0.0398)			
0	$\overline{IGD+}$	0.204(0.4362)	0.1011(0.2956)	0.2997(0.0247)	0.5087(0.0712)			
	\overline{MS}	0.9974(0.01)	0.9607(0.039)	0.8903(0.0078)	0.8499(0.0126)			
	\overline{FR}	0.9997(0.0008)	0.9991(0.0016)	1.0(0.0001)	1.0(0.0001)			
7	\overline{HVR}	0.9943(0.0004)	0.9947(0.002)	0.6165(0.0284)	0.4524(0.0437)			
1	$\overline{IGD+}$	0.0068(0.0007)	0.0098(0.0048)	0.3659(0.0316)	0.6655(0.1243)			
	\overline{MS}	0.9968(0.0009)	0.977(0.0221)	0.8646(0.0079)	0.8466(0.0278)			
	\overline{FR}	1.0(0.0)	0.9998(0.0013)	0.9999(0.0001)	1.0(0.0001)			
8	\overline{HVR}	3.234(0.4096)	0.3423(0.2192)	0.7636(0.0221)	0.607(0.0326)			
	$\overline{IGD+}$	5.224(0.0013)	5.2156(2.3205)	0.3095(0.0313)	0.5429(0.06)			
	\overline{MS}	0.996(0.006)	1.0342(0.1359)	0.8849(0.009)	0.8434(0.0097)			
	\overline{FR}	0.4855(0.2309)	1.0(0.0)	1.0(0.0)	1.0(0.0001)			

Tabla 5.19: Media (μ) y desviación estándar (σ) en el formato " $\mu(\sigma)$ " de los resultados en los indicadores \overline{HVR} , $\overline{IGD+}$ y \overline{MS} para el algoritmo DNSGA-II-A y su versión I-DNSGA-II, la cual usa a la respuesta inmune de I-CGDE3 como reacción al cambio. Los mejores resultados se resaltan en negritas.

		DC	TP	1	FF	CD
		I-DNSGA-II	DNSGA-II-A		I-DNSGA-II	DNSGA-II-A
1	\overline{HVR}	0.9873(0.0008)	0.9864(0.0014)		0.5135(0.0301)	0.3935(0.0284)
	$\overline{IGD+}$	0.0098(0.0009)	0.0112(0.0017)		0.5508(0.0878)	0.8507(0.0869)
	\overline{MS}	0.9693(0.0204)	0.9347(0.026)		0.8478(0.0251)	0.9106(0.0366)
	\overline{FR}	1.0(0.0)	1.0(0.0)		1.0(0.0)	1.0(0.0)
0	\overline{HVR}	0.9941(0.0006)	0.9941(0.0008)		0.6749(0.0324)	0.5346(0.0378)
	$\overline{IGD+}$	0.0044(0.0003)	0.0044(0.0005)		0.4214(0.0453)	0.6682(0.0809)
	\overline{MS}	0.9977(0.0025)	0.9974(0.0025)		0.8472(0.0108)	0.8527(0.0191)
	\overline{FR}	1.0(0.0)	1.0(0.0)		1.0(0.0)	1.0(0.0)
2	\overline{HVR}	0.9621(0.0024)	0.9619(0.0029)		0.4986(0.0376)	0.4069(0.0281)
0	$\overline{IGD+}$	0.0398(0.0071)	0.0426(0.0073)		0.5354(0.0695)	0.8778(0.1098)
	\overline{MS}	0.9801(0.0096)	0.9698(0.0151)		0.8314(0.0158)	0.9258(0.0494)
	\overline{FR}	1.0(0.0)	1.0(0.0)		1.0(0.0)	1.0(0.0)
4	\overline{HVR}	0.8136(0.018)	0.7805(0.0303)		0.6765(0.0421)	0.5349(0.0398)
4	$\overline{IGD+}$	0.162(0.021)	0.2(0.0626)		0.4204(0.0626)	0.6579(0.0853)
	\overline{MS}	0.8641(0.0297)	0.7873(0.0664)		0.8487(0.0138)	0.8414(0.0178)
	\overline{FR}	1.0(0.0)	1.0(0.0)		1.0(0.0)	1.0(0.0)
5	\overline{HVR}	0.9685(0.0029)	0.9718(0.0026)		0.5275(0.0412)	0.3939(0.0308)
	$\overline{IGD+}$	0.0062(0.0006)	0.0064(0.0008)		0.5461(0.084)	0.8879(0.1189)
	\overline{MS}	0.9525(0.0098)	0.9558(0.0095)		0.8367(0.027)	0.9133(0.0427)
	\overline{FR}	1.0(0.0)	0.9999(0.0004)		1.0(0.0)	1.0(0.0)
6	\overline{HVR}	0.5723(0.2318)	0.4446(0.2083)		0.6748(0.0311)	0.5468(0.041)
	$\overline{IGD+}$	3.1068(2.3118)	4.33(2.2225)		0.4485(0.0488)	0.7052(0.094)
	\overline{MS}	1.0266(0.0196)	0.9594(0.0773)		0.8436(0.0101)	0.8577(0.0188)
	\overline{FR}	1.0(0.0)	1.0(0.0)		1.0(0.0)	1.0(0.0)
7	\overline{HVR}	0.9935(0.0003)	0.9927(0.0007)		0.5157(0.0324)	0.4153(0.0288)
1	$\overline{IGD+}$	0.0072(0.0007)	0.0085(0.0016)		0.5288(0.0612)	0.8763(0.1125)
	\overline{MS}	0.989(0.0143)	0.978(0.0181)		0.8269(0.0183)	0.9152(0.0447)
	\overline{FR}	1.0(0.0)	1.0(0.0)		1.0(0.0)	1.0(0.0)
8	\overline{HVR}	0.5529(0.2301)	0.2605(0.2279)		0.6847(0.0382)	0.5599(0.0379)
	$\overline{IGD+}$	3.1661(2.0558)	6.0689(2.6649)		0.4352(0.0569)	0.68(0.0892)
	\overline{MS}	1.0982(0.0608)	1.0068(0.1952)		0.8484(0.009)	0.8492(0.0221)
	\overline{FR}	1.0(0.0)	1.0(0.0)		1.0(0.0)	1.0(0.0)

Con respuesta inmune	\overline{HVR}		$\overline{IGD+}$			\overline{MS}			\overline{FR}			
IDC-MOEA	+	=	—	+	=	—	+	=	—	+	=	_
DC-MOEA	9	2	5	9	3	4	9	6	1	1	14	1
\mathbf{I} - $d\mathbf{CMOEA}$	+	=	—	+	=	—	+	=	—	+	=	_
dCMOEA	8	8	0	8	8	0	8	8	0	0	16	0
IDC-NSGA-II-A	+	=	—	+	=	—	+	=	—	+	=	_
DC-NSGA-II-A	8	4	4	9	4	3	8	8	0	1	14	1
I-DNSGA-II	+	=	—	+	=	—	+	=	_	+	=	_
DNSGA-II-A	13	2	1	13	3	0	5	4	7	0	16	0
Total	38	16	10	39	18	7	30	26	8	2	60	2

Tabla 5.20: Resumen de resultados de la prueba Wilcoxon rank-sum con 95% de confianza (Experimento III: Parte B). Los símbolos "+", "-" y "=" se entienden como; I-CGDE3 tuvo un comportamiento significativamente superior, inferior y sin diferencias significativas.

En conclusión la respuesta inmune permite obtener mejores resultados en problemas con alta severidad de cambio, donde los POF son continuos, las restricciones producen una alta disconexidad en la región factible o ésta es cercana al POF. Así también, tiene un mal desempeño en situaciones en que los cambios son pequeños de un tiempo a otro y los POFs son discretos o altamente discontinuo.

Entre IDCMOEA y DC-MOEA (Tabla 5.16), la respuesta inmune genera soluciones más lejanas al nuevo POF ocasionando una reducción en su capacidad de convergencia por lo que la reacción al cambio de DC-MOEA resulta ser más competitiva en problemas caracterizados por tener POFs dicontinuos o discretos (DCTP 2-4) y este mismo comportamiento en $\overline{IGD+}$ y \overline{HV} se presenta en DCTP 6. Por lo contrario, en DCTP 1 y DCTP 8 la respuesta inmune se beneficia de una mayor capacidad de exploración debido a que DCTP 1 posee un POF continuo con una región factible cercana a él y en DCTP 8 las restricciones ocasionan disconexidades severas en su región factible. IDC-MOEA tiene un comportamiento superior para FCCD en los indicadores $\overline{IGD+}$, \overline{HV} y \overline{MS} .

Para *d*CMOEA y I-*d*CMOEA (Tabla 5.17), ambas respuestas al cambio consideran una alta inserción de diversidad, así en DCTP no existen diferencias significativas entre sus resultados. Por otro lado, la respuesta al cambio de *d*CMOEA prioriza la reparación de soluciones infactibles y dominadas ocasionado una convergencia lenta al no considerar soluciones infactibles con buen valor de aptitud, tal como lo hace la respuesta inmune, la cual permite tener un comportamiento significativamente mejor en FCCD.

Reemplazar la reacción al cambio original de DC-NSGA-II-A por la respuesta inmune produce resultados desfavorable con el conjunto de problemas de prueba DCTP (Tabla 5.18). Los resultados obtenidos en DCTP 2, 4, 7 y 8 muestran una importante reducción en los valores de \overline{HVR} , de manera similar para $\overline{IGD+}$ en DCTP 2, 4 y 8. Únicamente se obtienen buenos resultados en DCTP con $\overline{IGD+}$ para DCTP 7 y con \overline{MS} en DCTP 6. Mientras que en FCCD se obtienen mejores resultados en \overline{HVR} y $\overline{IGD+}$ usando la respuesta inmune. Para \overline{MS} , FCCD 1 y FCDD 5 son los únicos problemas en que DC-NSGA-II-A y IDC-NSGA-II tienen un comportamiento similar, en el resto la respuesta inmune es significativamente mejor.

La reacción al cambio de DNSGA-II es la más simple de todas la consideradas, no aprovecha la información de soluciones anteriores para guiar la búsqueda y su aporte de diversidad es reducido, por

lo que reemplazarla por la respuesta inmune beneficia al desempeño en la mayoría de los problemas sobresaliendo en DCTP 1, 2, 4, 7 y 8 y FCCD 2, 4 y 8 (Tabla 5.19). De manera similar, en DCTP 5 se obtienen mejores resultados para \overline{HVR} y $\overline{IGD+}$ al reemplazar la inserción de soluciones aleatorias por la respuesta inmune.

5.5. Aportes al diseño de DCMOEA

- Se analizó el comportamiento de la DE en DCMOEAs.
- Los resultados estadísticos permitieron identificar las cualidades de la respuesta inmune y escenarios en que ésta es útil.
- Se propuso un factor de mutación adaptativo que hace uso de la información en la población de descendientes para mejorar la capacidad de generar soluciones con mejor valor de aptitud.
- En el presente trabajo se mostraron las ventajas y desventajas de introducir un mecanismo elitista para la DE en distintos escenarios.

Capítulo 6

Conclusiones y trabajo futuro

6.1. Conclusiones

En este trabajo se generó una versión del algoritmo Inmune GDE3 [22] para tratar con DCMOPs (I-CGDE3). Esta nueva versión de Inmune GDE3 introduce un factor de mutación adaptativo basado en la variación del radio de factibilidad en la población de vectores *trials* generados en cada generación y modifica el proceso de selección y almacenamiento de soluciones no dominadas del enfoque original.

La actuación del algoritmo propuesto I-CGDE3, fue comparada con cuatro algoritmos del estado del arte usando los problemas de prueba FCCD [25] y DCTP [54], los cuales consideran cambios severos y tenues en el POF y POS, discontinuidades en la región factible y POF, además poseen la cualidad de ser escalables.

Los resultados estadísticos en los indicadores de desempeño \overline{HVR} , $\overline{IGD+}$ y \overline{MS} muestran la competitividad de I-CGDE3 para resolver DCMOPs, al obtenerse con él resultados significativamente mejores en al menos el 60 % de los problemas de prueba considerados a distintas frecuencias de cambio. I-CGDE3 posee una alta capacidad de convergencia sin una reducción abrupta de la diversidad, la alta capacidad de convergencia se relaciona directamente al uso de dos versiones de DE y un factor de mutación que le permite una transición entre búsqueda global y búsqueda local. Por otra parte, la respuesta inmune permite evita una reducción abrupta de la diversidad tras un cambio al introducir soluciones hipermutadas generadas basándose en el enfoque del principio de selección clonal.

Adicional a lo anterior, se mostró el buen desempeño que posee la respuesta inmune en problemas con alta frecuencia de cambio mismo que son considerados más difíciles de optimizar por tener un número más limitado de evaluaciones permitidas.

6.2. Trabajo futuro

Como trabajo futuro se propone adaptar el algoritmo I-CGDE3 para poder lidiar con más de dos objetivos y multi-restricciones, ya que la versión propuesta es susceptible a la escalabilidad de los problemas de optimización. Así también, no fue comparado su desempeño en problemas de DCMOPs con restricciones de igualdad.

Se espera que en trabajos futuros relacionados al mecanismo de manejo de restricciones, se considere la necesidad de medir la sensibilidad a las restricciones durante el proceso de optimización. Como se mostró, I-CGDE3 usa un valor ω constante que define la probabilidad con la cual se usará DE/best/1/bin. Es conveniente diseñar un mecanismo que mida la necesidad de usar la versión elitista de DE para acelerar la convergencia. Esta medida debe estar basada en la información proporcionada por la población durante cada generación y ser autoadaptiva.

Por último, consideramos que un reto interesante es el diseñar un algoritmo para DCMOPs, basado en DE, con un desempeño sobresaliente respecto a los DCMOEAs ya propuestos, cuyos parámetros; factor de mutación y coeficiente de cruza sean autoadaptativos.

Bibliografía

- S. Kukkonen, J. L. S. Kukkonen y J. Lampinen, "GDE3: the third evolution step of generalized differential evolution", en 2005 IEEE Congress on Evolutionary Computation, vol. 1, 2005, 443-450 Vol.1. DOI: 10.1109/CEC.2005.1554717.
- Q. Zhang y H. Li, "MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition", *IEEE Transactions on Evolutionary Computation*, vol. 11, n.º 6, págs. 712-731, 2007. DOI: 10.1109/TEVC.2007.892759.
- K. Deb, A. Pratap, S. Agarwal y T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II", *IEEE Transactions on Evolutionary Computation*, vol. 6, n.º 2, págs. 182-197, 2002.
 DOI: 10.1109/4235.996017.
- [4] H. Jain y K. Deb, "An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach", Evolutionary Computation, IEEE Transactions on, vol. 18, págs. 602-622, 2014. DOI: 10.1109/TEVC.2013.2281534.
- [5] A. Sundaram, "Combined Heat and Power Economic Emission Dispatch Using Hybrid NSGA II-MOPSO Algorithm Incorporating an Effective Constraint Handling Mechanism", *IEEE Access*, vol. 8, págs. 13748-13768, 2020. DOI: 10.1109/ACCESS.2020.2963887.
- [6] G. Ismayilov y H. R. Topcuoglu, "Dynamic Multi-Objective Workflow Scheduling for Cloud Computing Based on Evolutionary Algorithms", en 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion), 2018, págs. 103-108. DOI: 10.1109/UCC-Companion.2018.00042.
- [7] X. Huang, Y. Lin, T. Chung y S. Luo, "Electric vehicles reform stragety based on Multi-Objective Dynamic Programming", en 2011 International Conference on Electronics, Communications and Control (ICECC), 2011, págs. 3715-3718. DOI: 10.1109/ICECC.2011.6067989.
- [8] F. Atiah y M. Helbig, "Effects of Decision Models on Dynamic Multi-objective Optimization Algorithms for Financial Markets", 2019, págs. 762-770. DOI: 10.1109/CEC.2019.8790275.
- [9] M. Ben Ouada, I. Boudali y M. Tagina, "A Hybrid Multiobjective Optimization Approach for Dynamic Problems: Evolutionary Algorithm Using Hypervolume Indicator", en *Hybrid Intelligent* Systems, A. M. Madureira, A. Abraham, N. Gandhi y M. L. Varela, eds., Cham: Springer International Publishing, 2020, págs. 208-218, ISBN: 978-3-030-14347-3.

- [10] R. Jiao, S. Zeng, C. Li y W. Pedrycz, "Evolutionary Constrained Multi-objective Optimization using NSGA-II with Dynamic Constraint Handling", en 2019 IEEE Congress on Evolutionary Computation (CEC), 2019, págs. 1634-1641. DOI: 10.1109/CEC.2019.8790172.
- [11] Z. Zhu, X. Tian, C. Xia, L. Chen e Y. Cai, "A Shift Vector Guided Multiobjective Evolutionary Algorithm Based on Decomposition for Dynamic Optimization", *IEEE Access*, vol. 8, págs. 38 391-38 403, 2020. DOI: 10.1109/ACCESS.2020.2974324.
- [12] L. Cao, L. Xu, E. D. Goodman, C. Bao y S. Zhu, "Evolutionary Dynamic Multiobjective Optimization Assisted by a Support Vector Regression Predictor", *IEEE Transactions on Evolutionary Computation*, vol. 24, n.º 2, págs. 305-319, 2020. DOI: 10.1109/TEVC.2019.2925722.
- [13] X. Luo, Z. Wang, R. Guan, Z. Zhan e Y. Gao, "A Distributed Multiple Populations Framework for Evolutionary Algorithm in Solving Dynamic Optimization Problems", *IEEE Access*, vol. 7, págs. 44372-44390, 2019. DOI: 10.1109/ACCESS.2019.2906121.
- [14] C. Peng, H.-L. Liu y E. D. Goodman, "Handling multi-objective optimization problems with unbalanced constraints and their effects on evolutionary algorithm performance", Swarm and Evolutionary Computation, vol. 55, pág. 100 676, 2020, ISSN: 2210-6502. DOI: 10.1016/j.swevo. 2020.100676.
- [15] J. Ou, J. Zheng, G. Ruan, Y. Hu, J. Zou, M. Li, S. Yang y X. Tan, "A pareto-based evolutionary algorithm using decomposition and truncation for dynamic multi-objective optimization", *Applied Soft Computing*, vol. 85, pág. 105 673, 2019, ISSN: 1568-4946. DOI: 10.1016/j.asoc.2019.105673.
- [16] Y. Wu, L. Shi y X. Liu, "A new dynamic strategy for dynamic multi-objective optimization", *Information Sciences*, vol. 529, págs. 116 -131, 2020, ISSN: 0020-0255. DOI: 10.1016/j.ins.2020. 04.011.
- [17] Y. Hu, J. Zheng, J. Zou, S. Yang, J. Ou y R. Wang, "A dynamic multi-objective evolutionary algorithm based on intensity of environmental change", *Information Sciences*, vol. 523, págs. 49 -62, 2020, ISSN: 0020-0255. DOI: 10.1016/j.ins.2020.02.071. dirección: http://www.sciencedirect.com/science/article/pii/S0020025520301614.
- [18] R. Liu, L. Peng, J. Liu y J. Liu, "A diversity introduction strategy based on change intensity for evolutionary dynamic multiobjective optimization", *Soft Computing*, vol. 24, 2020. DOI: 10.1007/s00500-020-05175-1.
- Y. Yang, J. Liu y S. Tan, "A constrained multi-objective evolutionary algorithm based on decomposition and dynamic constraint-handling mechanism", *Applied Soft Computing*, vol. 89, pág. 106104, 2020, ISSN: 1568-4946. DOI: 10.1016/j.asoc.2020.106104. dirección: http://www.sciencedirect.com/science/article/pii/S1568494620300442.
- [20] Z. Fan, H. Li, C. Wei, W. Li, H. Huang, X. Cai y Z. Cai, "An improved epsilon constraint handling method embedded in MOEA/D for constrained multi-objective optimization problems", 2016, págs. 1-8. DOI: 10.1109/SSCI.2016.7850224.

- [21] T. Kawachi, J. Kushida, A. Hara y T. Takahama, "Efficient Constraint Handling based on the Adaptive Penalty Method with Balancing the Objective Function Value and the Constraint Violation", en 2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA), 2019, págs. 121-128. DOI: 10.1109/IWCIA47330.2019.8955094.
- [22] M.-G. Martinez-Penaloza y E. Mezura-Montes., "Immune Generalized Differential Evolution for dynamic multi-objective environments: An empirical study", *Knowledge-Based Systems*, vol. 142, págs. 192 -219, 2018, ISSN: 0950-7051. DOI: 10.1016/j.knosys.2017.11.037.
- [23] R. Azzouz, S. Bechikh, L. B. Said y W. Trabelsi, "Handling time-varying constraints and objectives in dynamic evolutionary multi-objective optimization", *Swarm and Evolutionary Computation*, vol. 39, págs. 222 -248, 2018, ISSN: 2210-6502. DOI: 10.1016/j.swevo.2017.10.005.
- [24] H. Jain y K. Deb, "An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach", *IEEE Transactions on Evolutionary Computation*, vol. 18, n.º 4, págs. 602-622, 2014. DOI: 10.1109/TEVC.2013.2281534.
- [25] Q. Chen, J. Ding, S. Yang y T. Chai, "A Novel Evolutionary Algorithm for Dynamic Constrained Multiobjective Optimization Problems", *IEEE Transactions on Evolutionary Computation*, vol. 24, n.º 4, págs. 792-806, 2020. DOI: 10.1109/TEVC.2019.2958075.
- [26] M. Farina, K. Deb y P. Amato, "Dynamic multiobjective optimization problems: test cases, approximations, and applications", *IEEE Transactions on Evolutionary Computation*, vol. 8, n.º 5, págs. 425-442, 2004. DOI: 10.1109/TEVC.2004.831456.
- [27] J. A. L. Kenneth Price Rainer M. Storn, Differential evolution a practical approach to global optimization, 1.^a ed., ép. Natural Computing Series. Springer, 2005, ISBN: 9783540209508,3540209506. dirección: http://gen.lib.rus.ec/book/index.php?md5=075363fe86981cb26dde261b885b0905.
- [28] R. Storn, "On the usage of differential evolution for function optimization", en Proceedings of North American Fuzzy Information Processing, 1996, págs. 519-523. DOI: 10.1109/NAFIPS.1996.
 534789.
- [29] S. J. de-la-Cruz-Martínez y E. Mezura-Montes, "Boundary Constraint-Handling Methods in Differential Evolution for Mechanical Design Optimization", en 2020 IEEE Congress on Evolutionary Computation (CEC), 2020, págs. 1-8. DOI: 10.1109/CEC48606.2020.9185495.
- [30] E. Mezura-Montes, J. Velazquez-Reyes y C. Coello, "Modified Differential Evolution for Constrained Optimization", 2006, págs. 25 -32. DOI: 10.1109/CEC.2006.1688286.
- [31] E. Y. C. Wong y H. Y. K. Lau, "Advancement in the twentieth century in artificial immune systems for optimization: Review and future outlook", en 2009 IEEE International Conference on Systems, Man and Cybernetics, 2009, págs. 5195-4202. DOI: 10.1109/ICSMC.2009.5346835.
- [32] L. De Castro y F. Von Zuben, "Learning and Optimization Using the Clonal Selection Principle", Evolutionary Computation, IEEE Transactions on, vol. 6, págs. 239-251, 2002. DOI: 10.1109/ TEVC.2002.1011539.

- [33] S. Aldhaheri, D. Alghazzawi, L. Cheng, A. Barnawi y B. A. Alzahrani, "Artificial Immune Systems Approaches to Secure the Internet of Things: A Systematic Review of the Literature and Recommendations for Future Research", J. Netw. Comput. Appl., vol. 157, 2020, ISSN: 1084-8045. DOI: 10.1016/j.jnca.2020.102537.
- [34] J. Kennedy y R. Eberhart, "Particle swarm optimization", en Proceedings of ICNN'95 International Conference on Neural Networks, vol. 4, 1995, 1942-1948 vol.4. DOI: 10.1109/ICNN.1995. 488968.
- [35] D. Karaboga, "An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report - TR06", Technical Report, Erciyes University, 2005.
- [36] H. Ishibuchi, N. Akedo e Y. Nojima, "Behavior of Multiobjective Evolutionary Algorithms on Many-Objective Knapsack Problems", *IEEE Transactions on Evolutionary Computation*, vol. 19, págs. 264-283, 2015.
- [37] R. Agrawal, K. Deb y R. Agrawal, "Simulated Binary Crossover for Continuous Search Space", *Complex Systems*, vol. 9, 2000.
- [38] S. Kukkonen y J. Lampinen, "Comparison of generalized differential evolution algorithm to other multi-objective evolutionary algorithms", en Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004, 2004, págs. 1-20.
- [39] S. Kukkonen y J. Lampinen, "Comparison of generalized differential evolution algorithm to other multi-objective evolutionary algorithms", en Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004, 2004, págs. 1-20.
- [40] S. Kukkonen y K. Deb, "Improved pruning of non-dominated solutions based on crowding distance for bi-objective optimization problems", en *IEEE Congress on Evolutionary Computation, CEC* 2006, 2006, págs. 1179-1186. DOI: 10.1109/CEC.2006.1688443..
- [41] C. Peng, H.-L. Liu y F. Gu, "An evolutionary algorithm with directed weights for constrained multi-objective optimization", *Applied Soft Computing*, vol. 60, págs. 613 -622, 2017, ISSN: 1568-4946. DOI: 10.1016/j.asoc.2017.06.053.
- [42] M. Asafuddoula, T. Ray, R. Sarker y K. Alam, "An adaptive constraint handling approach embedded MOEA/D", en 2012 IEEE Congress on Evolutionary Computation, 2012, págs. 1-8. DOI: 10.1109/CEC.2012.6252868.
- [43] M. Ameca-Alducin, M. hasani shoreh, W. Blaikie, F. Neumann y E. Mezura-Montes, "A Comparison of Constraint Handling Techniques for Dynamic Constrained Optimization Problems", 2018, págs. 1-8. DOI: 10.1109/CEC.2018.8477750.
- [44] W. Nakawiro, "A Comparative Study on Constraint Handling for Solving Economic Dispatch by Evolutionary Algorithms", en 2018 International Electrical Engineering Congress (iEECON), 2018, págs. 1-4. DOI: 10.1109/IEECON.2018.8712170.
- [45] Y. G. Woldesenbet, G. G. Yen y B. G. Tessema, "Constraint Handling in Multiobjective Evolutionary Optimization", *IEEE Transactions on Evolutionary Computation*, vol. 13, n.º 3, págs. 514-525, 2009. DOI: 10.1109/TEVC.2008.2009032.

- [46] Z. Wang, J. Wei e Y. Zhang, "A Multi-constraint Handling Techniquebased Niching Evolutionary Algorithm for Constrained Multi-objective optimization Problems", en 2020 IEEE Congress on Evolutionary Computation (CEC), 2020, págs. 1-6. DOI: 10.1109/CEC48606.2020.9185519.
- [47] A. Vodopija, A. Oyama y B. Filipič, "Ensemble-Based Constraint Handling in Multiobjective Optimization", en Proceedings of the Genetic and Evolutionary Computation Conference Companion, ép. GECCO '19, Prague, Czech Republic: Association for Computing Machinery, 2019, 2072–2075, ISBN: 9781450367486. DOI: 10.1145/3319619.3326909.
- [48] R. Mallipeddi y P. N. Suganthan, "Ensemble of Constraint Handling Techniques", IEEE Transactions on Evolutionary Computation, vol. 14, n.º 4, págs. 561-579, 2010. DOI: 10.1109/TEVC.2009. 2033582.
- [49] K. Deb, "An efficient constraint handling method for genetic algorithms", Computer Methods in Applied Mechanics and Engineering, vol. 186, n.º 2, págs. 311 -338, 2000, ISSN: 0045-7825. DOI: 10.1016/S0045-7825(99)00389-8.
- [50] M. Laumanns, L. Thiele y E. Zitzler, "An efficient, adaptive parameter variation scheme for metaheuristics based on the Epsilon-constraint method", *European Journal of Operational Research*, vol. 169, págs. 932-942, 2006. DOI: 10.1016/j.ejor.2004.08.029.
- [51] T. P. Runarsson y Xin Yao, "Stochastic ranking for constrained evolutionary optimization", *IEEE Transactions on Evolutionary Computation*, vol. 4, n.º 3, págs. 284-294, 2000. DOI: 10. 1109/4235.873238.
- [52] Y. G. Woldesenbet, G. G. Yen y B. G. Tessema, "Constraint Handling in Multiobjective Evolutionary Optimization", *IEEE Transactions on Evolutionary Computation*, vol. 13, n.º 3, págs. 514-525, 2009. DOI: 10.1109/TEVC.2008.2009032.
- [53] K. Deb, U. B. Rao N. y S. Karthik, "Dynamic Multi-objective Optimization and Decision-Making Using Modified NSGA-II: A Case Study on Hydro-thermal Power Scheduling", en *Evolutionary Multi-Criterion Optimization*, S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu y T. Murata, eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, págs. 803-817, ISBN: 978-3-540-70928-2.
- R. Azzouz, S. Bechikh y L. Ben Said, "Multi-objective Optimization with Dynamic Constraints and Objectives: New Challenges for Evolutionary Algorithms", 2015. DOI: 10.1145/2739480. 2754708.
- [55] J. D. Knowles y D. W. Corne, "Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy", *Evolutionary Computation*, vol. 8, n.º 2, págs. 149-172, 2000. DOI: 10.1162/106365600568167.
- [56] Jingqiao Zhang y A. C. Sanderson, "JADE: Self-adaptive differential evolution with fast and reliable convergence performance", en 2007 IEEE Congress on Evolutionary Computation, 2007, págs. 2251-2258. DOI: 10.1109/CEC.2007.4424751.
- [57] Y. Zhang y J. Gou, "Adaptive Differential Evolution Algorithm Based on Restart Mechanism and Direction Information", *IEEE Access*, vol. 7, págs. 166 803-166 814, 2019. DOI: 10.1109/ ACCESS.2019.2953776.

- [58] J. Ramos, M. Leon y N. Xiong, "MPADE: An Improved Adaptive Multi-Population Differential Evolution Algorithm Based on JADE", en 2018 IEEE Congress on Evolutionary Computation (CEC), 2018, págs. 1-8. DOI: 10.1109/CEC.2018.8477764.
- [59] J. Brest, S. Greiner, B. Boskovic, M. Mernik y V. Zumer, "Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems", *Evolutionary Computation, IEEE Transactions on*, vol. 10, págs. 646-657, 2007. DOI: 10.1109/TEVC.2006. 872133.
- [60] M. Martínez-Peñaloza y E. Mezura-Montes, "Immune generalized differential evolution for dynamic multiobjective optimization problems", en 2015 IEEE Congress on Evolutionary Computation (CEC), 2015, págs. 1918-1925. DOI: 10.1109/CEC.2015.7257120.
- [61] N. Cortés y C. Coello, "Multiobjective Optimization Using Ideas from the Clonal Selection Principle", 2003, págs. 158-170, ISBN: 978-3-540-40602-0. DOI: 10.1007/3-540-45105-6_22.
- [62] G. Lamont y D. V. Veldhuizen, "Multiobjective evolutionary algorithms: classifications, analyses, and new innovations", 1999.
- [63] H. Ishibuchi, H. Masuda, Y. Tanigaki e Y. Nojima, "Modified Distance Calculation in Generational Distance and Inverted Generational Distance", 2015, págs. 110-125, ISBN: 978-3-319-15891-4. DOI: 10.1007/978-3-319-15892-1_8.
- [64] C. Goh y K. C. Tan, "A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization", *IEEE Transactions on Evolutionary Computation*, vol. 13, n.º 1, págs. 103-127, 2009. DOI: 10.1109/TEVC.2008.920671.
- [65] K. Deb, A. Pratap y T. Meyarivan, "Constrained Test Problems for Multi-objective Evolutionary Optimization", en *Evolutionary Multi-Criterion Optimization*, E. Zitzler, L. Thiele, K. Deb, C. A. Coello Coello y D. Corne, eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, págs. 284-298, ISBN: 978-3-540-44719-1.
- [66] M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle y M. Birattari, "The irace Package: Iterated Racing for Automatic Algorithm Configuration", *Operations Research Perspectives*, vol. 3, ene. de 2011. DOI: 10.1016/j.orp.2016.09.002.
- [67] A. Blot, A. Pernet, L. Jourdan, M. Kessaci-Marmion y H. Hoos, "Automatically Configuring Multi-objective Local Search Using Multi-objective Optimisation", *Evolutionary Multi-Criterion Optimization. EMO 2017.Lecture Notes in Computer Science*, vol. 10173, págs. 43-58, 2017. DOI: 10.1007/978-3-319-54157-0_5.
- [68] R. Tanabe y A. Oyama, "A note on constrained multi-objective optimization benchmark problems", 2017 IEEE Congress on Evolutionary Computation (CEC), 2017. DOI: 10.1109/cec. 2017.7969433.

6.3. Anexos

6.3.1. DCTP

DCTP1

$$Min(f_{1}(\vec{X},t), f_{2}(\vec{X},t))$$

$$f_{1}(\vec{X},t) = x_{1}$$

$$f_{2}(\vec{X},t) = t * g(\vec{X},t) * \exp(-f_{1}(\vec{X},t)/g(\vec{X},t))$$

$$c_{1}(\vec{X},t) = (f_{2}(\vec{X},t)/t) - (0.858 * \exp(-0.541 * f_{1}(\vec{X},t)))$$

$$c_{2}(\vec{X},t) = (f_{2}(\vec{X},t)/t) - (0.728 * \exp(-0.295 * f_{1}(\vec{X},t)))$$

$$x_{i} \in [0,1], \ i = 1, 2, \dots, d$$

$$(6.1)$$

DCTP2 a DCTP8

$$\begin{aligned} Min(f_{1}(\vec{X},t),f_{2}(\vec{X},t)) \\ f_{1}(\vec{X},t) &= x_{1} \\ f_{2}(\vec{X},t) &= t * g(\vec{X},t) * \left(1 - \sqrt{\frac{f_{1}(\vec{X},t)}{g(\vec{X},t)}}\right)^{2} \\ g(\vec{X},t) &= t + \sum_{i=2}^{d} (x_{i} - sin(0.01\pi t)) \\ s. a. \ c_{j}(\vec{X},t) &= (f_{2}(\vec{X},t)/t - e_{j}) * cos(\theta_{j}) - f_{1}(\vec{X},t) * sin(\theta_{j}) \\ &\geq a_{j} * |sin[b_{j} * \pi * ((f_{2}(\vec{X},t)/t - e_{j}) * sin(\theta_{j})) + f_{1}(\vec{X},t) * cos(\theta_{j}))^{s_{j}}]|^{d_{j}} \\ &j = 1, 2, \dots, S \\ &x_{i} \in [0,1], i = 1, 2, \dots, d \end{aligned}$$
(6.2)

	d	S	a	b	c	d	e	θ
DCTP1	30	-	-	-	-	-	-	-
DCTP2	30	1	0.2	10	1	6	1	-0.2π
DCTP3	30	1	1	10	1	0.5	1	-0.2π
DCTP4	30	1	0.75	10	1	0.5	1	-0.2π
DCTP5	30	1	0.1	10	2	0.5	1	-0.2π
DCTP6	30	1	40	0.5	1	2	-2	-0.1π
DCTP7	30	1	40	5	1	6	0	-0.05π
DCTP8	30	9	40	0.5	1	2	-2	0.1π
DO110	50		-10	2	1	6	0	-0.05π

Tabla 6.1: Parámetros para los problemas DCTP de [54]

6.4. FCCD

$$\begin{split} \min(f_{1}(\vec{X},t),f_{2}(\vec{X},t)) & f_{1}(\vec{X},t) = (1+g(\vec{X},t))*(h(\vec{X},t) + A*sin(W_{t}*\pi*h(\vec{X},t))) \\ f_{2}(\vec{X},t) = (1+g(\vec{X},t))*(s(t) - h(\vec{X},t) + A*sin(W_{t}*\pi*h(\vec{X},t))) \\ g(\vec{X},t) = \sum_{i=2}^{d} (x_{i} - (1 - 0.9*sin(0.2*t)))^{2} \\ h(\vec{X},t) = x_{1} \\ s. a. \ \cos(\theta)*(f_{2}(\vec{X},t) - e) - sin(\theta)*f_{1}(\vec{X},t) - m(t) \\ & \geq a*|sin(b*\pi*(sin(\theta')*(f_{2}(\vec{X},t) - e) + cos(\theta')*f_{1}(\vec{X},t))^{c})|^{d} \\ f_{1}(\vec{X},t) + f_{2}(\vec{X},t) - z(t) < 0 \\ & z(t) > m(t) \end{split}$$
(6.3)

Los parámetros originales para FCCD se muestran en la Tabla 6.2. Los parámetros comunes para los ocho problemas de prueba son: $\theta = -0.25\pi$, a = 0.2, b = 4, c = 1, d = 6, e = 1, $\theta' = -\frac{\pi}{16}$, A = 0.05 y z(t) = 6.

Las entradas de las variables de decisión son $x_1 \in [0,1]$ y $x_j \in [0,2]$, para j = 1, 2, ... 10.

	Parámetros	Caso 1	Caso 2
		$W_t = 2$	$W_t = 6 * sin(0.2 * \pi * (t+1))$
Tipo1	s(t) = max(3.5 - 0.14 * t, 0.7 + 0.14 * t)	FCCD1	FCCD2
	m(t) = max(1.43 - 0.05 * t, 0.43 + 0.05 * t)		
Tipo 2	s(t) = max(2.5 - 0.05 * t, 1.5 + 0.05 * t)	FCCD3	FCCD4
	m(t) = max(1.16 - 0.075 * t, -0.34 + 0.075 * t)		
Tipo 3	s(t) = min(2.1 + 0.14 * t, 4.9 - 0.14 * t)	FCCD5	FCCD6
	m(t) = min(0.93 + 0.05 * t, 1.93 - 0.05 * t)		
Tipo 4	s(t) = min(2 + 0.05 * t, 3 - 0.05 * t)	FCCD7	FCCD8
	m(t) = min(0.41 + 0.075 * t, 1.91 - 0.075 * t)		

Tabla 6.2: Parámetros para los problemas de prueba FCCD

Las implicaciones de los valores escogidos para los parámetros de las restricciones son descritas en [65].