Programa de estudio de experiencia educativa

I. Área académica

Área Académica Técnica

2.-Programa educativo

Química Industrial

3.- Campus

Orizaba

4.-Dependencia/Entidad

Facultad de Ciencias Químicas

6Nombre de la experiencia		7 Área de formación	
5 Código	educativa	Principal	Secundaria
QICQ 18006	Análisis Instrumental	D	AFEL

8.-Valores de la experiencia educativa

Créditos	Teoría	Práctica	Total horas	Equivalencia (s)
П	4	3	105	Ninguna

9.-Modalidad

10.-Oportunidades de evaluación

Curso-Laboratorio	ABGHJK=Todas
	- ,

II.-Requisitos

Pre-requisitos	Co-requisitos
Ninguno	Ninguno

12.-Características del proceso de enseñanza aprendizaje

Individual / Grupal	Máximo	Mínimo
Grupal	40	10

I3.-Agrupación natural de la Experiencia educativa

14.-Proyecto integrador

Academia de Ciencias Químicas	lo aplica
-------------------------------	-----------

15.-Fecha

Elaboración	Modificación	Aprobación
Enero 2020		Junio 2020

16.-Nombre de los académicos que participaron

M. en C. Josué Antonio Del Ángel Zumaya, Dra. Guadalupe Vivar Vera,	Dr.
Francisco Erik González Jiménez.	

17.-Perfil del docente

Licenciatura o Ingeniería en Química o áreas afines a la experiencia educativa, preferentemente con estudios de posgrado en el área de conocimiento.

18.-Espacio

19.-Relación disciplinaria

Intrafacultad Interdisciplinaria

20.-Descripción

El Análisis Instrumental forma parte AFD, (con 4 horas teóricas y 3 horas prácticas, I I créditos), y tiene la finalidad de que el estudiante obtenga los conocimientos teóricos y prácticos necesarios para conocer y comprender los conceptos básicos de la experiencia educativa, así como sus fundamentaciones y aplicaciones en las investigaciones de los análisis químicos mediante instrumentación, el cual facilite la compresión de los resultados que arroje el análisis de un analito.

El sustentante adquirirá habilidades en el análisis instrumental, selección y muestreo del analito, aplicando técnicas generales y especializadas en el control de calidad y elaboración de evidencias de desempeño: ensayos, mapas conceptuales a través de la consulta a diversas fuentes de información, que deberán ser entregados de forma oportuna y pertinente, para presentarlos en plenarias, que propicie el debate y retroalimentación del docente, en los contenidos siguientes: muestreo, análisis químicos clásicos e instrumentales, fundamentación y aplicación de los fenómenos físicos y químicos de la materia.

21.-Justificación

El análisis instrumental conjunta los conocimientos de Química, Química Inorgánica y Química Analítica, en los cuales se encuentran involucradas todas las operaciones fundamentales para el control de análisis químico de cualquier proceso industrial o de

Universidad Veracruzana Dirección General del Área Académica Técnica Licenciatura en Química Industrial

investigación, logrando una concienciación y aprendizaje de los saberes necesarios, que le dan fundamento al Programa Educativo de Química Industrial, dentro del marco analítico y transformación de la materia prima, productos intermedios y productos terminados industrializados y/ o investigación, logrando de esta manera el aprendizaje y los saberes con conocimientos teóricos y prácticos, sobre luz ultravioleta, infrarrojo, absorción atómica, resonancia magnética nuclear, cromatografía, las cuales son operaciones fundamentales que necesita comprender el químico industrial para su desarrollo profesional en la industria y/o laboratorios de investigación.

22.-Unidad de competencia

El estudiante analiza los fundamentos de los métodos instrumentales, así como los fenómenos de interacción entre la materia y energía y la interpretación adecuada de los resultados analíticos obtenidos para el control de calidad, que le permita determinar y cuantificar las operaciones fundamentales de los análisis fisicoquímicos empleando criterios técnicos y metodológicos, mediante disciplina, responsabilidad y colaboración.

23.-Articulación de los ejes

Los estudiantes investigan en grupos en un ambiente de trabajo de respeto, tolerancia y responsabilidad los contenidos de la experiencia educativa como son: selección de la materia prima, muestreo, determinaciones fisicoquímicas (eje teórico) para comprender las transformaciones y los distintos análisis que se efectúan en las diferentes muestras, en la búsqueda de las características ya mencionadas. Elaborando mapas conceptuales, ensayos, carteles, exponiéndolo en plenarias, propiciando con ello la discusión y debate de las propuestas.

24.-Saberes

Teóricos	Heurísticos	Axiológicos
Interacción de la radiación con la materia. Ley de Lamber y Beer. Desviaciones a las Leyes (instrumentales, físicas y químicas) Espectrofotometría en el U.V. y visible Fundamento de la espectroscopia UV/ Visible. Componentes de los instrumentos. (Lámparas, monocromadores,	 Aplicación de metodología analítica Disposición para investigar, aplicar, desarrollar y registrar las metodologías químicas estudiadas Elaboración y presentación de mapas conceptuales Investigación a diferentes escalas 	 Trabajo en equipo y colaboración para el adecuado desarrollo de prácticas de laboratorio y el reporte de resultados Tolerancia a la frustración en el proceso de aprendizaje y desarrollo de experimentos en laboratorio. Compromiso con su profesión y la sociedad.

Universidad Veracruzana Dirección General del Área Académica Técnica Licenciatura en Química Industrial

recipientes para muestra,
detectores). Diagramas de
Sistemas Ópticos de
espectrofotómetros de un
haz de radiación y doble
dispersión.
Métodos Analíticos de

cuantificación en el visible. Precisión, confiabilidad, selectividad, sensibilidad de los métodos analíticos, aplicación estadística. Curvas de Calibración, rango útil, método de Adición de Patrón, métodos de cuantificación de sustancias y mezclas de dos componentes. Valoraciones fotométricas en la Región UV. Curvas de valoración Aplicación de las valoraciones.

Espectroscopia infrarroja

Fundamento de la espectroscopia infrarroja. Componentes de los instrumentos. (Lámparas, monocromadores, tipos de celdas, detectores). Diagramas de Sistemas Ópticos de espectrofotómetros. Métodos Analíticos de cuantificación en el infrarrojo. Interpretación de cromatogramas. Aplicaciones del infrarrojo. Emisión y absorción

atómica

Descripción Cualitativa de los fenómenos absorción y emisión atómica.

- Comparación
- Relaciones
- Análisis
- Síntesis

- Responsabilidad en toma de decisiones.
- Respeto al medio ambiente procurando la disminución de residuos tóxicos en los análisis químicos realizados su profesión con un comportamiento ético el reporte en resultados.

	,
Procesos y condiciones de	
atomización de las	
muestras. Componentes	
de los espectrofotómetros	
de Absorción atómica.	
Interferencias Analíticas	
(de matriz, químicas y por	
ionización)	
Métodos de	
Cuantificación.	
Refractrometría.	
Fundamento de	
refractometría.	
Componentes del	
Refractómetro de Abbe.	
Aplicaciones Cualitativas y	
Cuantitativas de índice de	
refracción.	
Polarimetría	
Fundamentos de	
polarimetría.	
Componentes del	
Polarímetro. Ecuación de	
Biot. Determinación del	
Peso Normal de un azúcar	
Norma Oficial para	
determinar la pureza de la	
Sacarosa.	
Cromatografía	
Fundamentos básicos	
Cromatografía en papel y	
placa (TLC), en columna	
(CC), y HPLC.	

25.-Estrategias metodológicas

	De aprendizaje	De enseñanza		
•	Búsqueda y consultas de fuentes de	•	Organización y rotación de equipo de	
	información.		trabajo para exposiciones plenarias.	
•	Lecturas, síntesis e interpretación.	•	Exposiciones con apoyo tecnológico	
•	Mapas conceptuales.		variado, dependiendo de los	
•	Discusión grupal de la búsqueda,		contenidos a tratar.	
	síntesis y mapas conceptuales.	•	Mapas conceptuales.	
•	Discusión acerca del uso y valor del	•	Tareas para estudio independiente.	
	conocimiento de las operaciones		Retroalimentación.	

	fundamentales	de	equipos
	instrumentales.		
•	Elaboración de car	teles.	

26.-Apoyos educativos

Materiales didácticos	Recursos didácticos
• Libros	Proyector para computadora
Fotocopias.	Computadores con red inalámbrica
Películas.	• Pintarrón.
Presentaciones.	
Plataformas de información	

27.-Evaluación del desempeño

Evidencia (s) de desempeño	Criterios de desempeño	Ámbito(s) de aplicación	Porcentaje
Trabajos escritos (tareas)	Entrega de trabajos escritos encargados desde la plataforma o en clases	Extraclase	15
Demostración del dominio del conocimiento teórico.	Realización de examen teórico por unidad.	Aula de clases	40
Asistencia a clases	Asistencia puntual a la clase	Aula de clases	5
Trabajo en equipo en el laboratorio.	Puntualidad. Organización para trabajo en equipo. Inocuidad durante el desarrollo de productos.	Laboratorio	15
Bitácoras	Realización de bitácoras diariamente, Bibliografía actualizada, mínimo 5 referencia bibliográficas.	Espacios libres	10
Reporte de prácticas semanales. Entrega de reportes en equipo por semana después de haber realizado la práctica, bibliografía actualizada, mínimo 5 referencia bibliográficas		Espacios libres	5

na ca al	
al	

Entrega de manual.	Entrega de manual al final del curso por equipo de todas las practicas realizadas. Bibliografía actualizada, mínimo 15	Espacios libres	10
	actualizada, mínimo 15 referencia bibliográficas		

28.-Acreditación

Para acreditar esta experiencia educativa, el estudiante deberá cubrir el 80% de asistencia y haber presentado con idoneidad y pertinencia cada evidencia de desempeño, es decir, que en cada una de ellas haya obtenido cuando menos el 60%. La parte teórica corresponde al 60% y al laboratorio el 40%.

29.-Fuentes de información

Básicas

- Douglas A. Skoog, Stanley R. Crouch, F. James Holler (2008). Principios de Análisis Instrumental. Sexta edición. México; Editorial Cengage Learning.
- Francis Rouessac (2003). Análisis Químico. Métodos y Técnicas Instrumentales Modernas. Quinta edición. España; Editorial McGraw-Hill Interamericana.
- Lucas Hernández Hernández, Claudio González Pérez (2002). Introducción al Análisis Instrumental. Primera Edición. España: Editorial Ariel, S.A.
- María Isabel Sierra Alonso, Damián Pérez Quintanilla, Santiago Gómez Ruiz (2010).
 Análisis Instrumental. España; Editorial@netbibl.com.
- Raquel Bermejo Moreno, Antonio Moreno Ramírez (2014). Análisis Instrumental.
 España; Editorial Síntesis, S.A.

Complementarias

- D.A. Skoog, D.M.West y F.J. Holler (1995). Química Analítica. Sexta Edición. México; Editorial Mc Graw Hill.
- Daniel C. Harris (2001). Análisis Químico Cuantitativo. Segunda Edición. Barcelona. Editorial Reverte, S. A.
- Daniel C. Harris (2001). Análisis Químico Cuantitativo. Segunda Edición. Barcelona. Editorial Reverte, S. A.
- R.A. Day y A.L. Underwood (1995). Química Analítica Cuantitativa. Quinta Edición. México: Editorial Prentice Hall.
- Biblioteca virtual UV