Programa de estudio de experiencia educativa

Espectroscopía

I. Área académica

Área Académica Técnica

2.-Programa educativo

Licenciatura en Química Industrial

3.- Campus

Orizaba

4.-Dependencia/Entidad

Facultad de Ciencias Químicas

F C(d)	6Nombre de la experiencia		7 Area de formación		
5 Código	educativa	Principal	Secundaria		
QICQ 18017	Espectroscopía	О	AFEL		

8.-Valores de la experiencia educativa

Créditos	Teoría	Práctica	Total horas	Equivalencia (s)
6	3	0	45	Ninguna

9.-Modalidad

10.-Oportunidades de evaluación

Curso ABGHJK=Todas

II.-Requisitos

Pre-requisitos	Co-requisitos
Ninguno	Ninguno

12.-Características del proceso de enseñanza aprendizaje

Individual / Grupal	M áximo	Mínimo
Grupal	40	10

13.-Agrupación natural de la Experiencia educativa

14.-Proyecto integrador

Ciencias Químicas	No aplica
-------------------	-----------

15.-Fecha

Elaboración	Modificación	A probación
Enero 2020		Junio 2020

16.-Nombre de los académicos que participaron

Dr. Rodolfo Peña Rodríguez, Dr. José María Rivera Villanueva, Dra. Esmeralda Sánchez Pavón, Dra. Sharon Rosete Luna.

17.-Perfil del docente

Licenciatura en Químico Industrial o en áreas afines a la experiencia educativa, preferentemente con postgrado afín al área de conocimiento.

18.-Espacio

19.-Relación disciplinaria

Intrafacultades	Interdisciplinario
-----------------	--------------------

20.-Descripción

Esta experiencia educativa se localiza en el AFD, cuenta con 3 horas teóricas, 0 prácticas y 6 créditos que integran el plan de estudios 2020.

Su propósito es la interpretación de los espectros de resonancia magnética nuclear de protón y carbono 13 en una y dos dimensiones de compuestos de interés industrial. Es indispensable para el estudiante asociar la influencia que presenta un campo magnético artificial y la excitación con radiofrecuencia sobre una molécula orgánica que se esté analizando, así como, poder interpretar los resultados obtenidos de dicho análisis, para su desarrollo se proponen las estrategias metodológicas de investigación documental, resolución de problemas y exposiciones. Por lo tanto, el desempeño de la unidad de competencia se evidencia mediante exámenes parciales, presentaciones orales, realización de tareas y resolución de problemas.

21.-Justificación

Esta experiencia educativa aporta al perfil de egreso del químico industrial los saberes necesarios para la deducción de moléculas orgánicas de interés a partir de los espectros de resonancia magnética nuclear de protón y carbono trece. Lo anterior facilita al alumno la identificación de moléculas nuevas o existentes utilizadas en el ámbito laboral del químico industrial.

22.-Unidad de competencia

El estudiante analiza las propiedades que tiene la materia al ser sometida a un campo magnético artificial y cómo los núcleos de los átomos (¹H y ¹³H, principalmente) se ven afectados al ser irradiados con ondas de radio, así como la correlación que existen entre los mismos átomos y otros núcleos de interés; mediante la caracterización de moléculas orgánicas a partir de los espectros en una dimensión y de correlación, de manera objetiva y responsables que le permita resolver problemas en el área de la química industrial.

23.-Articulación de los ejes

Los alumnos reflexionan en grupo en un marco de orden y respeto mutuo, sobre la resonancia magnética nuclear de protón, carbono 13 y otros núcleos de interés; y asocia el comportamiento de la materia al ser irradiada con ondas de radio estado dentro de un campo magnético artificial en equipo eje axiológico; elaboran exámenes escritos y exposiciones orales. Finalmente discuten en grupo su propuesta.

24.-Saberes

Teóricos	Heurísticos	Axiológicos
Resonancia magnética nuclear de protón (RMN ¹H) • Introducción (Instrumentación y manejo de muestra) • Interpretación de espectros (Desplazamiento químico, multiplicidad, constante de acoplamiento e integración). • Correlación estructura-espectro. • Acoplamiento de protón con otros núcleos. • Desplazamiento químico equivalente.	 Reconoce los conceptos relacionados con las bases generales de la espectrometría de resonancia magnética nuclear. Asocia el comportamiento de la materia al ser irradiada por ondas de radio mientras está sometida a un campo magnético homogéneo. Aplica la integración de la información de la espectrometría para la resolución de problemas estructurales reales. 	 Honestidad para la realización de las evidencias de desempeño y de los exámenes escritos Responsabilidad entrega sus evidencias de desempeño en tiempo y forma Contesta los ejercicios y los exámenes con objetividad Respeto a los comentarios emitidos por sus compañeros y profesor

Resonancia magnética nuclear de carbono 13 (RMN ¹³ C)
 Introducción y teoría. Desplazamiento químico y grupos funcionales. Interpretación de un
espectro simple de ¹³ C Resonancia magnética nuclear en dos dimensiones
 Resonancia bidimensional. Espectrometría de correlación. COSY. HETCOR. HMQC. HMBC.
Resonancia magnética nuclear de otros núcleos importantes. • 15N • 19F • 29Si • 31P

25.-Estrategias metodológicas

	De aprendizaje		De enseñanza
•	Búsqueda de información bibliográfica	•	Exposición oral del profesor con ayuda
	Correspondiente, para su comprensión		de contenidos bibliográficos y
	y su aplicación		audiovisuales.
•	Soluciones problemas de correlación	•	Soluciones guiadas a problemas de
	estructura química-espectro.		correlación estructura química-
•	Discusión y propuestas de solución de		espectro.
	problemas estructura-espectro grupal	•	Discusión y solución de problemas
	e individual.		estructura-espectro grupal e individual.

•	De acuerdo con los saberes teóricos,
	se llevará a cabo un curso externo en un instituto de reconocido prestigio en el área.

26.-Apoyos educativos

Materiales didácticos	Recursos didácticos
 Libros y Revistas de divulgación espectroscópica científica Fotocopias de espectros y tablas 	ComputadoraData showConexión a internet
 estadísticas de consulta Exposición de archivos electrónicos de IH, 13C, entre otros átomos de interés. 	PintaronBibliotecaBiblioteca virtual.
 Citas electrónicas (Internet) 	

27.-Evaluación del desempeño

Evidencia (s) de desempeño	Criterios de desempeño	Ámbito(s) de aplicación	Porcentaje
Examen escrito.	Resolución acertada de reactivos.	Aula	50
Tareas/EMINUS	Entrega puntual y elaboradas a mano/digitalizada.	Aula/Virtual	15
Exposición con apoyo tecnológico variado.	Análisis de la información disponible. Calidad en la presentación, dominio del tema expuesto y manejo de preguntas.	Aula	20
Discusión de problemas.	Interpretación y resolución de espectros en clase.	Aula	15

28.-Acreditación

Para acreditar esta EE el estudiante deberá haber presentado con idoneidad y pertinencia cada evidencia de desempeño, es decir, que en cada una de ellas haya obtenido cuando menos el 60%, además de cumplir el porcentaje de asistencia establecido en el estatuto de alumnos 2008.

29.-Fuentes de información

Básicas

- Cooper, J.W. (2000). Spectroscopy Techniques for Organic Chemists, Editorial Wiley.
- Duddec K, H., Dietrich, W., Tóth. (2000) Elucidación estructural por RMN (2da ed)
 Editorial Springer-Verlag Ibérica.
- Field, L. D.; Sternhell, S.; Kalman J. R. (2002). Organic Structures from Spectra (3rd ed) Editorial Wiley.
- Joseph-Nathan P, Díaz Torres E. (1993). Elementos de Resonancia Magnetica. Grupo Editorial Iberoamericana.
- Pretsch, E.; Bühlmann, P.; Affolter C. (2000). Structure Determination of Organic Compounds: Tables of Spectral Data (4th ed.) Editorial Springer.
- Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identification of Organic Compounds (7th ed.) E.E.U.U. Editorial John Wiley & Son.

Complementarias

- Biblioteca virtual UV
- Artículos de revistas en el buscador: www.sciecedirect.com y scifinder.cas.org
- https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Exercises%3A_Organic_Chemistry/Exercises%3A_McMurry/I3.E%3A_Structure_Determination%3A_Nuclear_Magnetic_Resonance_Spectroscopy_(Exercises)