Programa de estudio de experiencia educativa

I. Área académica

Área Académica Técnica

2.-Programa educativo

Química Industrial

3.- Campus

Orizaba

4.-Dependencia/Entidad

Facultad de Ciencias Químicas

F Cád:	6Nombre de la experiencia	7 Area de formación	
5 Código	educativa	Principal	Secundaria
QICQ18009	Identificación estructural de compuestos orgánicos	D	AFEL

8.-Valores de la experiencia educativa

Créditos	Teoría	Práctica	Total horas	Equivalencia (s)
6	3	0	45	Ninguna

9.-Modalidad

10.-Oportunidades de evaluación

Curso	ABGHJK=Todas
-------	--------------

II.-Requisitos

Pre-requisitos	Co-requisitos
Ninguno	Ninguno

12.-Características del proceso de enseñanza aprendizaje

Individual / Grupal	Máximo	Mínimo
Grupal	40	10

I3.-Agrupación natural de la Experiencia educativa

14.-Proyecto integrador

Ciencias Químicas	No aplica
-------------------	-----------

15.-Fecha

Elaboración	Modificación	A probación
Enero 2020		Junio 2020

16.-Nombre de los académicos que participaron

Dr. Rodolfo Peña Rodríguez, Dr. José María Rivera Villanueva, Dra. Esmeralda Sánchez Pavón, Dra. Sharon Rosete Luna, Dr. Daniel J. Ramírez Herrera.

17.-Perfil del docente

Licenciatura en Químico Industrial o en estudios afines a la experiencia educativa, preferentemente con postgrado afín al área de conocimiento.

18.-Espacio

19.-Relación disciplinaria

Intrafacultades	Interdisciplinaria
-----------------	--------------------

20.-Descripción

Esta experiencia educativa se localiza en el AFD, cuenta con 3 horas teóricas, 0 horas prácticas y 6 créditos que integran el plan de estudios 2020.

Su propósito es la interpretación de los espectros obtenidos del análisis de moléculas de interés industrial. Es indispensable para el estudiante asociar la absorción de una región específica del espectro electromagnético, los diferentes grupos funcionales con la respuesta de los instrumentos de medición e interpretar los resultados obtenidos a partir de la misma; para su desarrollo se proponen las estrategias metodológicas de investigación documental, resolución de problemas y exposiciones. Por lo tanto, el desempeño de la unidad de competencia se evidencia mediante exámenes parciales, presentaciones orales, realización de tareas y resolución de problemas.

21.-Justificación

La Identificación estructural de compuestos orgánicos aporta al perfil de egreso del químico industrial, los saberes necesarios para la interpretación de diversos espectros de moléculas de interés y la aprobación de materias primas, productos intermedios y terminados. Lo anterior facilita al alumno la caracterización asertiva de las moléculas utilizadas en los diversos campos de actuación del químico industrial.

22.-Unidad de competencia

El estudiante asocia las regiones del espectro electromagnético con los fenómenos de absorción de la espectroscopia ultravioleta-visible e infrarroja, así como los patrones de fragmentación de una molécula orgánica; a través de la interpretación y resolución de espectros de materias primas, productos intermedios y terminados de sustancias de interés industrial, de manera objetiva y responsable que le permita resolver problemas en el área de la química.

23.-Articulación de los ejes

Los alumnos reflexionan en grupo en un marco de orden y respeto mutuo, sobre el espectro electromagnético, la espectroscopia UV-Vis, infrarroja y la espectrometría de masas; y comprende el comportamiento de la materia al ser irradiada con regiones del espectro electromagnético, así como, la medición de masa carga de un compuesto en equipo eje axiológico; elaboran exámenes escritos y exposiciones orales. Finalmente discuten en grupo su propuesta.

24.-Saberes

Espectrometría de	
masas.	
- Métodos de	
ionización.	
- Analizadores de	
masas.	
- Interpretación de	
espectros de masas.	
- Espectros de mases	
por grupos funcionales	

25.-Estrategias metodológicas

De aprendizaje	De enseñanza
Búsqueda de información bibliográfica Correspondiente, para su comprensión y su aplicación	• Exposición oral del profesor con ayuda de contenidos bibliográficos y audiovisuales.
Soluciones problemas de correlación estructura química-espectro.	 Soluciones guiadas a problemas de correlación estructura química- espectro.
 Discusión y propuestas de solución de problemas estructura-espectro grupal e individual 	 Discusión y solución de problemas estructura-espectro grupal e individual

26.-Apoyos educativos

Materiales didácticos	Recursos didácticos
Libros y Revistas de	Computadora
divulgación. espectroscópica	Data show
científica.	Conexión a internet
 Fotocopias de espectros y tablas 	Pintaron
estadísticas de consulta.	Biblioteca virtual
• Exposición de archivos electrónicos de	
UV, IR y EM.	
Citas electrónicas(internet)	
Material de la Biblioteca	

27.-Evaluación del desempeño

Evidencia (s) de desempeño	Criterios de desempeño	Ámbito(s) de aplicación	Porcentaje
Examen escrito	Resolución acertada de reactivos.	Aula	50

Tareas/EMINUS	Entrega puntual y elaboradas a mano/digitalizada.	Aula/Virtual	15
Exposición con apoyo tecnológico variado.	Análisis de la información disponible. Calidad en la presentación, dominio del tema expuesto y manejo de preguntas.	Aula	20
Discusión de problemas.	Interpretación y resolución de espectros en clase.	Aula	15

28.-Acreditación

Para acreditar esta EE el estudiante deberá haber presentado con idoneidad y pertinencia cada evidencia de desempeño, es decir, que en cada una de ellas haya obtenido cuando menos el 60%, además de cumplir el porcentaje de asistencia establecido en el estatuto de alumnos 2008.

29.-Fuentes de información

Básicas

- Conley, R. T. (1980). Espectroscopía infrarroja. Barcelona. Editorial Alhambra.
- Cooper, J.W. (2000). Spectroscopy Techniques for Organic Chemists. Editorial Wiley.
- Esteban L. (2005) La Espectrometría de Masa en Imágenes, España. Editorial ACK Acknowledge Comunicaciones.
- Field, L. D.; Sternhell, S; Kalman J. R. (2002). Organic Structures from Spectra (3rd ed). Editorial Wiley.
- Gross, J. H. (2002) Mass Spectrometry. Editorial Springer.
- McLafferty F. (2005). Interpretación de los espectros de masas. (8th ed) Editorial Reverté.
- Pretsch, E.; Bühlmann, P; Affolter C. (2000). Structure Determination of Organic Compounds: Tables of Spectral Data. (4th ed). Berlin. Editorial Springer.
- Rao, C. N. Espectroscopia visible y ultravioleta. (1970) Madrid. Editorial Alhambra.
- Roeges N. (1999). A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, NY, Ed. Wiley.
- Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. (2004). Spectrometric Identification of Organic Compounds (7th ed), Editorial Wiley.

Complementarias

- Biblioteca virtual UV
- Artículos científicos: www.sciecedirect.com y scifinder.cas.org
- https://organicchemistrydata.org/hansreich/resources/nmr/?page=nmr-content%2F
- https://canal.uned.es/video/5a6f11cab1111f9f508b46f6
- https://www.masterorganicchemistry.com/2016/11/29/ir-spectroscopy-some-simple-practice-problems/