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Abstract. This paper deals with distribution aspects of endogenous en-
vironments, in this case, distribution refers to the deployment in several
machines across a network. A recognized challenge is the achievement of
distributed transparency, a mechanism that allows the agent working in
a distributed environment to maintain the same level of abstraction as in
local contexts. In this way, agents do not have to deal with details about
network connections, which hinders their abstraction level, and the way
they work in comparison with locally focused environments, reducing
flexibility. This work proposes a model that creates a distinctive layer
for environment distribution, which the agents do not manage directly
but can exploit as part of infrastructure services. The proposal is in the
context of JaCaMo, the Multi-Agent Programming framework that com-
bines the Jason, CArtAgO, and MOISE technologies, specially focusing
on CArtAgO, which provides the means to program the environment.
The proposal makes an extensive use of the concept of workspace to or-
ganize the environment and transparently manage different distributed
sites.

Keywords: Distributed environments, Endogenous environments, En-
vironment Programming, JaCaMo framework.

1 Introduction

Traditionally, agents are conceived as entities situated in an environment, which
they can perceive and modify through actions, also reacting to changes in it
accordingly [16]. Not only that, but the agents’ goal is to achieve an environment
desired state. This conception of environment, as the locus of agent perception,
action, reaction, interaction, and goals, stays true in current MAS development.

Two general perspectives are adopted when defined the concept of envi-
ronment in MAS: exogenous, and endogenous [14]. The exogenous perspective
is rooted in Artificial Intelligence, conceiving the environment as the external
world, separated to the actual MAS, which can be only perceived and acted upon
by agents. An example of this conception can be found in EIS [1]. In contrast,
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the endogenous perspective, grown in the context of Agent-Oriented Software
Engineering (AOSE) [10], conceives the environment as a first class abstraction
for MAS engineering [17], that not only can be perceived and acted upon, but
it can also provide services and tools for the agents to aid them in their tasks,
and as such, it is designed and implemented as part of the whole system. An
example of this conception is found in CArtAgO [13].

From a Software Engineering point of view, environments can also be of two
types: local, and distributed. In the local case, the entirety of the environment
is centralized in a single process, being the easiest case for implementation.
Distributed environments, on the other hand, entail multiple processes, possibly
across a network, to contain the environment, and presents various challenges
in the implementation and conceptualization side. In this work, we expose the
idea that, from the agents point of view, there should not be any difference
between local and distributed environments, the right level of abstraction should
be encouraged instead, recognizing this by the term Distributed Transparency.

Distribution is not a new topic in MAS, multiple MAS technologies such as
JADE [2], have a mature support for it, but it is mostly centered in agent com-
munication and interaction, not on the endogenous conception of environment
which this works entails. In this regard, JaCaMo [4] is a better example, as it
supports endogenous distributed environments. This support is practical, but it
lacks distributed transparency as there is a clear conceptual distinction between
local and distributed environments, so agents, and agent plan programmers, need
to handle the difference, reducing in this way the flexibility of the system, and
forcing the programmer to change the level of abstraction in each case.

Scalability and fault tolerance are also issues when dealing with distribution,
a flexible configuration is required in order to deploy the system in different
settings, allowing it to grow or change as network problems arise. A good example
of a distributed deployment system for JADE is [6]. Returning to the case of
JaCaMo, there is no support for fault tolerance, and it lacks proper configuration
facilities for distributed deployment.

This work proposes an extension to the Agents & Artifacts model of JaCaMo
for modeling distributed transparent environments, while giving insights of how
to address distributed deployment and fault tolerance. The outcome is an im-
plemented JaCaMo-oriented infrastructure and Agent API that gives support to
the mentioned requirements, while extending the dynamics and possibilities of
MAS programming in general.

The paper is organized as follows. Section 2 briefly introduces the JaCaMo
framework, addressing its distributed model. Section 3 introduces the problems
present in the JaCaMo distributed model, presenting a proposal to solve them,
first in an intuitive and informal manner, and then formally. Section 4 features
different aspects of the implementation, such as the general architecture, and
configuration and deployment. Section 5 discusses a case study that shows how
the new JaCaMo-oriented implementation approach compares to current Ja-
CaMo, giving code examples. Being a work in progress, section 6 discusses vari-



ous topics regarding future work, including proper evaluation and fault tolerance
implementation. Finally, section 7 closes this paper with a conclusion.

2 Background

Although the discussion here is about endogenous environments in general, we
adopt the JaCaMo [4] framework to implement our proposed model and guide
our discussion, this is due the fact that, to the best of our knowledge, it has the
most mature implementation of endogenous environments for MAS. As such, a
brief introduction of JaCaMo is presented in this section. JaCaMo is the result
of the orthogonal composition of three technologies for MAS: Jason [5] (taken
as a proper name inspired by Greek mythology), CArtAgO [13] (Common AR-
Tifact infrastructure for AGents Open environments), and MOISE [9] (Model of
Organisation for multI-agent SystEms).

Jason provides the means for programming autonomous agents. It is an agent
oriented programming language that entails the Belief-Desire-Intention (BDI)
approach, it is based on the abstract language AgentSpeak(L) [12]. Apart from
its solid BDI theoretical foundations, the language offers several facilities for
programming Java powered, communicative MAS. Communication in Jason is
based on Speech Acts, as defined in KQML [7].

CArtAgO provides the means to program the environment, following an en-
dogenous approach where the environment is part of the programmable system.
In CArtAgO terms, the aspects that characterize a model for environment pro-
gramming are the following [14]: 1) Action model: how to perform actions in
the environment. 2) Perception model: how to retrieve information from the
environment. 3) Environment computational model: how to represent the envi-
ronment in computational terms. 4) Environment data model: how to share data
between the agent and environment level to allow interoperability. 5) Environ-
ment distributed model: how to allow computational distributed environments.
Aspects 1-3 are directly supported by artifacts [11], which are dynamical sets of
computational entities that compose the environment and encapsulate services
and tools for the agents. Artifacts are organized and situated in workspaces,
which essentially are logical places (local or remote) where agents center their
attention and work. Aspect 5 is supported by workspaces, but also partially by
artifacts, as artifact actions can be executed remotely. Aspect 4, on the other
hand, depends on the underlying agent programming language used and is not
directly related to artifacts or workspaces.

MOISE provides the means to create agent organizations, which have the
aim to control and direct agent autonomy in a general purpose system. To this
end, it is possible to specify tree aspects: i) Structural, consisting on the different
agent groups and roles that take part in the organization; ii) Functional, defined
by social schemes, missions, and goals which direct the agent behaviour toward
organization ends; and finally iii) Normative, defined though norms that bind
roles to missions, constraining agent’s behaviour when entering a group and
playing a certain role.



2.1 JaCaMo and CArtAgO Distribution Model

As mentioned earlier, environment programming in JaCaMo is provided by
means of CArtAgO, considering distribution in its model. At the higher level,
distribution is achieved through workspaces, which serve as logical places where
agents may center their attention, and where artifacts are situated. Agents can
create, join, and quit workspaces. If an agent is in a workspace, it can use the
artifacts situated there.

At the low level, nodes enable distribution. A node is a CArtAgO process
that can be remote, where workspaces can be spawned. When a JaCaMo MAS
is deployed, it is contained in a default node, that node is also the default for
agents, which consider it as it’s local context, so workspaces created in that node
are also local workspaces, but workspaces created in different nodes are consid-
ered remote workspaces. The distinction between remote and local workspace is
not only conceptual, but also syntactical, requiring IP and port information at
the agent level to manipulate remote workspaces. Figure 1 depicts the current
CArtAgO environment model from the workspaces and nodes perspective. From
the figure, it is apparent the fact that there is no connection between nodes,
and in consequence between workspaces in different nodes, needing to explicitly
know the IP address and port of each node.

Fig. 1. Current CArtAgO environment model depicting multiple nodes and workspaces
deployed.

More concretely, the following code snippet shows the difference in the Ja-
CaMo API for the local and remote versions of join workspace, taking as a basis
figure 1 where default node represents the local node, and node2 a remote one:

1 joinWorkspace("main", WspId1);
2 joinRemoteWorkspace("workspace2", "192.168.0.2:8091", WspId2);



3 Proposal

Environment programming in JaCaMo comes with various shortcomings regard-
ing distributed settings, being the most important the fact that local and remote
workspaces are defined and treated differently, which derives in the following
problems: i) There is not distributed transparency for agents, being forced to
directly manipulate network information, making network distinctions between
workspaces. ii) The underlying environment topology is difficult to represent and
exploit by the agents as it does not follow any structure or workspace relations
beyond the sharing of the same node. All of these problems have the consequence
of reducing the abstraction level in which agents work, impacting flexibility and
environment exploitation as well.

Another problem is the lack of proper configuration facilities to allow the in-
clusion of remote workspaces information at deployment time, meaning that host
information for remote workspace spawning need to be hard-coded on the agent
programs or externally supported. To spawn a remote workspace, a CArtAgO
node needs to be running on the destination host, and there is not any integrated
facility to manage them automatically when needed. Furthermore, the current
distributed implementation does not exhibit any degree of fault tolerance, this
is specially important for possible network connection problems that may arise
in a distributed system.

In this section, a proposal to solve the identified problems is presented. A sep-
aration between environment and infrastructure is suggested. The environment
is represented as a hierarchical tree structure, which represents the topology.
In this tree, each node is a workspace which actual physical placement on the
distributed system is irrelevant. Workspaces may be deployed in different places,
but for the agents point of view, it only matters their placement in the topology.
A workspace may be the logical parent of another one, multiple workspaces can
be in the same physical place, and there is no restriction about how the topol-
ogy may be organized, e.g.; workspaces on the same physical place may be on
different branches. This allows to organize environments as it is usually done
in CArtAgO, but in a more structured way, also supporting remote workspaces
transparently.

In a practical sense, each workspace in the tree is represented by a path
starting at the root workspace, these paths brings the notion of logical place-
ment that agents require to organize and exploit their environment. We adopt
a Unix-like path format to represent this placement, but using a ”.” instead of
a ”/”, following Jason syntax. These paths are used by the agents to execute
environment related actions, such as creating new workspaces or joining one.
From the proposed JaCaMo API, there is no difference between local and re-
mote actions related to workspaces. For example, returning to the code snipped
presented in section 2.1 for joining local and remote workspaces, which it is re-
lated to figure 1; with the proposal, a workspace topology would be created, a
possibility is to have workspace2 and workspace3 as direct descendants of the
root workspace main, with this setting the associated code snipped is as follows:



1 joinWorkspace("main", WspId1);
2 joinWorkspace("main.workspace2", WspId2);

As in current CArtAgO, agents may work in multiple workspaces at the same
time, but the concept of current workspace is dropped since in actuality all the
joined workspaces should be considered the current context of working. Never-
theless, agent may specify the target workspace for an action. A new introduced
concept is the home workspace of an agent, which it is the workspace where the
agent is initially deployed, serving as a relative reference to other places in the
topology, providing a default place for the agent, and also serving as the default
workspace to execute actions when a target workspace is not specified.

On regard of the infrastructure, a layer is added to manage distribution, this
layer provides the required services for the agents to exploit their distributed
environment. These services include: i) Workspace management, so agents can
create, join, and quit workspaces no matter their physical placement; ii) Topology
inspection, so agents can reason about the current topology organization and do
searches concerning workspaces; iii) Workspace dynamics observation, so agents
can know when other agents manage workspaces, or when workspaces disconnect
and reconnect after a network problem; iv) Disconnection and fault tolerance to
manage and recuperate from network problems, which it is currently left as
future work, but initially designed as presented in section 6.2 . We believe that
the set of mentioned services do not only bring distributed support, but also
enhance the dynamics of MAS in general, extending its possibilities.

3.1 Formal description

JaCaMo assumes an endogeneous approach to MAS, i.e., the environment is an
explicit part of the system:

Definition 1. A MAS is composed by a set of agents (Ags), their environment
(Env), and an infrastructure (Infr) running both of them:

MAS = {Ags, Infr,Env}

The set of agents is composed by n ≥ 1 agents:

Ags = {a1, . . . , an}

Each agent, as usual, is composed by beliefs, actions, and other elements
equal to:

ai = {bels, acts, . . . }

By default, when created, an agent includes minimally:

ai = {joined(home)}, {join, quit, create}, . . . }
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Fig. 2. The intented view of an endogeneous environment.

which means that every agent believes he has joined a home workspace, and
has actions to join, quit, and create workspaces; and update the information
about the environment.

Figure 2 illustrates the intended view of the environnment in this proposal.
First, the environment, properly speaking, is a tree of workspaces, expressing
a kind of spatial relation among workspaces, e.g., the kitchen 1 is at the home
1. Second, nodes and hosts are not part of the environment, but are defined as
part of the infrastructure of the MAS, nevertheless, workspaces keep information
about its corresponding physical node.

The infrastructure is a layer hidden to the agents, that gives the low level
support to distribution, formally defined as:

Infr = {Nodes,Hosts}

where:

– Nodes = {node1, . . . , nodek} is a set of CArtAgO nodes, i.e.; processes,
possibly remote, where workspaces can be created. Each nodei is a tuple
⟨ni, SWsps, hi, port⟩, where ni is an unique identifier for the node; SWsps ⊆
W is the set of spawned workspaces in the node, containing at least a default
workspace for the node; hi is an identifier of the host computer where the
node exists; and port is the host port used by the node process.

– Hosts = {host1, . . . , hostp} is the set of available computer devices on the
distributed system. Each hosti is a tuple ⟨hi,HNodes, ip⟩, where hi is a host
unique identifier, HNodes ⊆ Nodes is a set of hosted nodes, and ip is the
IP address of the computer.

Formally, the environment Env is defined as a graph:

Env = {W,E}

where:



– W = {w1, . . . , wi} is a finite, non-empty set of i ≥ 1 workspaces that contain
artifacts. Each wi = ⟨idW, name, ni⟩, where idW is an unique identifier for
the workspace, name is a logical name, and ni is a reference to the CArtAgO
node in Infr that contains wi. The node element establishes a connection
between the environment and the infrastructure, in order to forward agent
actions to the destined physical place.

– E ⊂ W 2 is a set of edges over the workspaces, such that Env is minimally
connected, i.e., it is a rooted tree that represents the environment topology.

For instance, following Figure 2, Env = {W,E}, and considering for simplic-
ity only the name of each wi, such that:

– W = {main, home1, home2, living1, kitchen1, living2, kitchen2}
– E = {{main, home1}, {main, home2}, {home1, living1}, . . . }

The expression w1.w2 . . . .wn denotes a path on Env, if:

– wi ∈ W for i = 1, . . . , n;
– {wi−1, wi} ∈ E for i = 2, . . . , n.

Abusing a little bit of the notation, we can write w1. . . . .wn ∈ Env. For in-
stance, main.home1.living1 ∈ Env. Some useful operations over paths, include:

– last(w1.w2. . . . .wn) = wn

– butlast(w1.w2. . . . .wn−1.wn) = w1.w2. . . . .wn−1

– add(w,w1.w2. . . . .wn, Env) = w1.w2. . . . .wn.w. This involves adding w to
W , and {wn, w} to E in Env.

– del(w,w1.w2. . . . .wn.w,Env) = w1.w1. . . . .wn. This involves deleting w from
W , and {wn, w} from E in Env.

In what follows, the transition rules related to environment agent actions are
described, workspaces denote paths in the environment.

Joining a workspace An agent can ask himself about the workspaces he has
currently joined: agbels |= joined(w), if and only if, w is a workspace currently
joined by the agent. Recall that by default agbels |= joined(home). An agent can
join different worspaces concurrently, so that agbels |= joined(Ws) unifies Ws
with a list of the workspaces joined by the agent. Two transtion rules define the
behavior of the action join. First, an agent can join a worspace w, if and only if
w is a path in the environment Env and it is not believed to be already joined:

(join1)
join(w) | w ∈ Env ∧ agbels ̸|= joined(w)

⟨ag,Env⟩ → ⟨ag′, Env⟩

s.t. ag′bels = agbels ∪ {joined(w)}

Second, nothing happens if an agent tries to join a previously joined worspace:

(join2)
join(w) | agbels |= joined(w)

⟨ag,Env⟩ → ⟨ag,Env⟩

Any other use of join fails.



Quiting workspaces An agent can quit the workspace w if he believes he had
joined w. The agent forgets such belief.

(quit1)
quit(w) | agbels |= joined(w)

⟨ag,Env⟩ → ⟨ag′, Env⟩

s.t. ag′bels = agbels \ {joined(w)}

If the agent tries to quit a workspace he has not joined yet, nothing happens:

(quit2)
quit(w) | agbels ̸|= joined(w)

⟨ag,Env⟩ → ⟨ag,Env⟩

Creating workspaces An agent can create a workspace w, if it is not a path
in the environment, but butlast(w) is one:

(create1)
create(w) | w ̸∈ Env ∧ butlast(w) ∈ Env

⟨ag,Env⟩ → ⟨ag,Env′⟩

s.t. Env′ = add(last(w), butlast(w), Env)

Observe that the result of creating a workspace must be propagated to the
rest of the agents in the MAS. This could be done by the infrastructure, or
broadcasting the add operation. The actual node where the workspace is going
to be created is decided by the infrastructure following a policy, by default
the infrastructure spawns the workspace on the same node where its parent
workspace is running.

Trying to create an existing workspace does nothing:

(create2)
create(w) | w ∈ Env

⟨ag,Env⟩ → ⟨ag,Env⟩

4 Implementation

The model introduced on section 3 is open enough to allow different implemen-
tations. This section presents a practical possibility, intended to be integrated
with JaCaMo. The core implementation and main design choices are related to
the general architecture, and configuration and deployment.

4.1 General architecture

The architecture to support agent services is based on the concept of Node, which
refers to the Nodes element in Infr. Nodes represent independent CArtAgO
processes, possibly remote, running on a given host (Hosts element in Infr),



and associated to a port. Nodes are the main abstraction to manage workspaces
(W element in Env), and as such, they provide all the necessary tools to create,
join, and quit workspaces, as well as the means to communicate with other nodes
in order to maintain a consistent workspace topology, and properly dispatch
topology related events. The workspace topology corresponds to the E element
in Env. A NodeArtifact is the gateway used by an agent to interact with the node
services and to observe the distributed environment. There is a NodeArtifact in
each workspace, and every agent has access to one of them, which one depends
on its home workspace, which in turn it is intended to be on the same node as
the agent process.

Nodes communicate between each other following a centralized approach:
one node is designated as the central node, this is usually the node deployed by
default by JaCaMo, so every change on the topology is inspected and approved by
a single node, and the associated actions and events are dispatched from there.
This centralized approach makes possible to maintain a consistent topology,
avoiding run conditions. To exemplify node communication, the workflow for
creating a new workspace is the following:

– An agent that wants to create a workspace issues the action to its corre-
sponding NodeArtifact, passing a tree path.

– The artifact checks if the tree path is consistent with the topology tree, if it
is, it sends a request to the central node.

– The central node issues a request to the end node where the workspace is
actually going to exist. By default, it chooses as end node the same as the
parent workspace from the path given.

– The end node creates the workspace and returns control to the central node.
– The central node makes the corresponding changes to the workspace topol-

ogy and communicates the success to the original requesting node. It also
dispatches a create and tree change event to the other nodes.

As the node model is centralized, there exists the concern of a single point of
failure, that is why all nodes maintain redundant information about the topology,
so it is possible to recuperate from a central node dropping, as any node can take
the role of central node. The topology structure is also lightweight, which speeds
up the tree synchronization among nodes, this synchronization is only required
when there is a change in the topology. This redundancy also allows to boost
the efficiency of operations such as joining and quitting workspaces, since those
operations only need to read from the topology, so the local copy is used in those
cases. Communication with the central node is only required in cases where a
change in the topology is required. We believe that in traditional environment
management, it is more common for the agents to join and quit workspaces than
to create new ones.

4.2 MAS configuration and deployment

To ease the deployment of the distributed infrastructure is a goal of our overall
proposal, this means to be able to configure and launch the desired hosts, nodes,



and workspaces that will take part in the MAS from the start. It is also possible to
manually add new nodes after deployment. The idea is to extend the deployment
of JaCaMo, where only workspaces are considered. JaCaMo uses a text file known
as the JCM file to configure the deployment of the MAS. The intention is to
further include fields in this file to also configure host, and nodes for distributed
systems; and add the facilities to automatically launch CArtAgO nodes in remote
machines through a daemon service.

The changes to the JCM file include:

– Host configuration: assign a logical name and IP address to each host.
– Node configuration: assign a logical name for the node, i.e.; the name of the

default workspace; the related host name; and optionally a port number.
– Workspaces configuration: relate each workspace to a specific node.
– Lib file: the path to a jar file containing all the necessary files to launch

CArtAgO nodes. This includes custom artifacts binaries, third party li-
braries, custom classes binaries, and any configuration file. This file is in-
tended to be shared among all nodes.

5 Case study

In order to show how to exploit the proposed distributed model and implemen-
tation, and how it compares to the current version of JaCaMo, a small case
study is presented in this section. This case study pretends to show the new
proposed agent API, and the flexibility of the proposed model, focusing mainly
on workload distribution, which is one of the aspects that can be enhanced, but
other aspects such as fault tolerance, reactiveness on environment changes, and
more complex agent organizations and dynamics are also possible.

The case study consists on constantly fetching current weather information
for every city in a country, and with that information, construct weather predic-
tion models for each city, so the models could be consulted by end users through
a user interface. The construction of each model is an online learning [3] task
that can be heavy on the computational side, so work distribution is desirable.
To simplify the distributed setting, assume that the cities of the country are
divided in west-cities and east-cities, one computer is in charge of the models
from the west-cities, and another one from the models of the east-cities; fur-
thermore, information fetching need to be quick and constant, and also the end
user searching service, so one computer takes care of both. The described setting
yields a total of three different computers in the distributed system.

Workflow is modeled through 3 agent programs: fetcher, which fetches weather
information and forwards it to a destination depending the type of city; learner,
which task consist on creating online weather prediction models for each city
with the data provided by the fetcher agent; and finally, a searcher agent, which
attends end user requests to retrieve information from the learned models.

When implementing this case study in current JaCaMo some problems will
arise: the IP addresses of the different computers should be hard-coded in the
agent programs; every CArtAgO node representing a remote workspace should



be manually started in every computer on the distributed setting; startup plans
should be implemented in order to focus the attention of each agent in its des-
ignated place; when the searcher agent has to collect information about learned
models to attend a petition, it necessarily has to ask learner agents about its
location, not only considering the workspace but also the ip address where the
workspace is, making also necessary to distinguish between local and remote
workspaces when the agent intend to return the result to the end user. A better
solution using our new approach that solves all the mentioned problems, and
better exploits the environment is presented next.

– A possible JACAMO configuration file for this example, following the idea
from section 4.2, is the following. For the sake of clarity, artifact related
configuration, and MOISE related organization is not shown.

1 mas weather {
2 host c1 {
3 ip: 192.168.0.2
4 }
5 host c2 {
6 ip: 192.168.0.3
7 }
8 node west {
9 host: c1

10 port: 8080
11 }
12 node east {
13 host: c2
14 port: 8080
15 }
16 agent fetcher : fetcher.asl {
17 home: main
18 }
19 agent west_learner : learner.asl {
20 home: main.west
21 }
22 agent east_learner : learner.asl {
23 home: main.east
24 }
25 agent searcher : searcher.asl {
26 join: main.central
27 }
28 lib_file : /home/system/wheather.jar
29 }

Note that workspaces main, main.west, and main.east are implicitly cre-
ated as they are the default workspaces for the nodes, e.g.; main is the node
deployed by default by JaCaMo.

In our proposed model, agents refer to workspaces only through their path
in the topology, giving in this way a more structured sense of placement. As
in UNIX file system paths, tree paths can be considered absolute or relative. A
path is relative from the home workspace of the agent, and should start with
a single dot, any other path is considered absolute and must begin at the root
workspace (by default main).

A simplified version of the agent programs is presented next.



– fetcher:

1 // creations and initializations omitted
2 +!fetch : true <-
3 getData(Data);
4 category(Data , Cat);
5 if(Cat == "west") {
6 .send(west_learner , tell , add(Data));
7 }
8 else {
9 .send(east_learner , tell , add(Data));

10 };
11 !fetch.

– learner:

1 // initialization of agent omitted
2 +add(Data): true <-
3 getCity(Data , City);
4 .concat(".", City , Path); //from home
5 createWorkspace(Path); //does nothing if already present
6 joinWorkspace(Path);// does nothing if already joined
7 // creations and initializations omitted
8 addData(Data)[wsp(Path)]; //route action to wsp
9 induceModel[wsp(Path)].

– searcher:

1 +search(Query) : true <-
2 //Query is just the name of the city
3 .concat(".*", Query , RegExp);
4 searchPaths("main", RegExp , [H | T]);
5 .length(List , Len);
6 if(Len > 0) {
7 joinWorkspace(H);
8 getForecast(Forecast)[wsp(H)];
9 quitWorkspace(H);

10 sendReply(Forecast);
11 }.

Some of the actions from the agent programs correspond to the API of the
proposed model, such actions are described as follows.

– joinWorkspace(+WspPath,−WspId): the agent adds a specified workspace
to its joined workspaces list, obtaining a workspace ID.

– quitWorkspace(+WspPath): removes a specified workspace from its joined
workspaces.

– createWorkspace(+WspPath): creates a new workspace on the specified
path. By default, the workspace will actually be spawned on the same
CArtAgO node as the parent workspace derived from WspPath, this allows
workload management for workspaces.

– searchPaths(+PointPath,+RegExp,−WspsPathList): returns a list with
the workspaces that follow a certain regular expression, the search is re-
stricted to the subtree given by PointPath. This action exemplifies how the
topology organization may be exploited.



It is worth mentioning that the actual API is more extensive, including per-
ception, events, and more actions related to the environment. For example, it
is possible for the agents to react to the creation of a new workspace through
the event created(WspPath), or analyze and exploit the current topology orga-
nization through the perception topology tree(List) where List is of the form:
[main, [subNode1, [subsubNode1, [...], subsubNodem]], ..., [subNoden]] .

As the example shows, agents do not concern about computer distribu-
tion, they simply work with workspaces: learner agents organize their work in
workspaces that can be on different computers; and the searcher agent can reach
any workspace directly, not relying on agent communication, but directly acting
though the knowledge of the topology. Deployment is also greatly enhanced since
the distributed setting is properly configured beforehand, and the launching of
nodes is automatic.

6 Discussion and future work

As a work in progress, our proposal still lacks a proper treatment of different
aspects such as evaluation, and fault tolerance. This sections briefly discusses
and outlines these topics, which are considered as immediate future work.

6.1 Evaluation

Our proposed model, while introduced in some formal way, still needs a proper
formal evaluation, for this end, the adoption of a more formal representation
such as the ones proposed in [8], and [15] seem to be required.

Concerning performance evaluation, with the adopted centralized model, it
is required to asses scalability issues that may arise as nodes are added to the
MAS. In case of finding such problems, we can still improve some of the required
subprocess, as the synchronization of the topology among all nodes, and event
propagation, which could be distributed.

6.2 Fault tolerance

Given the proposed architecture, connection loss is the same as node dropping,
and as such it directly impacts the topology tree structure used by agents as
all the corresponding workspaces are also lost. An intuitive idea of how fault
tolerance could be implemented following our design choices is described next.

Following the overall node organization introduced in section 4.1, all nodes
maintain a keepalive connection with the central node, and a ordered list of
connected nodes. If a node losses connection, then the central node issues the
corresponding dropping event to the rest of the nodes, and modifies the topology
tree structure accordingly. The disconnected node tries to establish a connection
with the rest of the nodes, following the order of the connected nodes list, this
being useful on the case that several nodes lost connection or the central node
dropped. With the available nodes (it may be only one), the node in the upper



position on the connected nodes list is designated as the new central node, issuing
the corresponding disconnection events and creating a new tree node structure
where every default workspace from the nodes is on the same level. The new
central node keeps trying to reconnect to the original central node for a period
of time.

When successfully reconnecting, the original central node will try to return
the topology to the way it was before the problem, but sometimes that would not
be possible, e.g.; when one of the nodes keep missed. It is strongly recommended
that every default workspace corresponding to a node is mounted on the same
upper tree level of the tree, that way when reconnecting, the tree structure
will keep consistent with the way it was before, otherwise the tree topology may
vary in an unexpected manner, which can be problematic on certain applications.
After the node tree structure is recreated, the reconnecting nodes return to work
with the original central node, and the central node triggers the corresponding
reconnection events.

7 Conclusion

The introduced model is a step forward to improve environment programming
for MAS, it addresses issues related to distribution, which are important for
a wide variety of applications. We see distributed transparency as the most
important contribution of this work, as Multi-Agent Systems are intended to
raise the level of abstraction in software development, as compared with other
industry established programming paradigms such as POO. Proper abstraction
levels for aspects such as concurrency management are already accomplished,
but distributed computing is still an important topic to improve.

With a solid foundation for distributed environment programming, it is pos-
sible to address new challenges like MAS interoperability, which refers to the
integration and collaboration of independent Multi-Agent Systems. An exten-
sion to the proposed model and implementation is envisaged to support MAS
interoperability features, such as MAS composition where two different MAS
can fuse together to extend the scope of their work; and also MAS attachment,
where a mobile MAS can temporally join a MAS in order to exploit services.
These features bring new possibilities to the dynamics of MAS in general, and
are also interesting from the software engineering point of view as they allows
an upper level of flexibility and scalability.
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