
Agent-Based Modeling and Simulation
Implementing a First Agent-Based Model

Dr. Alejandro Guerra-Hernández

Instituto de Investigaciones en Inteligencia Artificial
Universidad Veracruzana

Campus Sur, Calle Paseo Lote II, Sección Segunda No 112,
Nuevo Xalapa, Xalapa, Ver., México 91097

mailto:aguerra@uv.mx
https://www.uv.mx/personal/aguerra/abms

Doctorado en Inteligencia Artificial 2024

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 1 / 41

mailto:aguerra@uv.mx
https://www.uv.mx/personal/aguerra/abms

Introduction and Objectives

Credits

▶ These slides are based on the book of Railsback and Grimm [2],
chapter 4.

▶ Any difference with this source is my responsibility.
▶ This work is licensed under CC-BY-NC-SA 4.0 cbna

▶ To view a copy of this license, visit:

https://creativecommons.org/licenses/by-nc-sa/4.0/

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 2 / 41

https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction and Objectives Introduction

Programming in NetLogo

▶ From now on the focus will be on programming and using real ABMs
that address real scientific questions.

▶ The Mushroom Hunt model of session 2 was neither very agent-based
nor scientific, in ways we discuss in this chapter.

▶ You are going to start actually using an ABM to produce and analyze
meaningful output and address scientific questions.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 3 / 41

Introduction and Objectives Objectives

Learning Objectives

▶ Understand how to translate a model from its written description in
ODD format into NetLogo code.

▶ Understand how to define global, turtle, and patch variables.
▶ Become familiar with NetLogo’s most important primitives, such as

ask, set, let, create-turtles, ifelse, and one-of.
▶ Start learning good programming practices, such as making very small

changes and constantly checking them, and writing comments in your
code.

▶ Produce your own software for the Butterfly model described in the
previous session.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 4 / 41

ODD and NetLogo Correspondance

ODD Protocol

▶ We have introduce de ODD Protocol for describing an ABM, and as
an example provided the ODD formulation of a butterfly hill-topping
model.

▶ What do we do when it is time to make a model described in ODD
actually run in Netlogo?

▶ It turns out to be quiet straightforward because the organization of
ODD and NetLogo correspond closely.

▶ The major elements of an ODD formulation have corresponding
elements in NetLogo.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 5 / 41

ODD and NetLogo Correspondance

Purpose

▶ From now on, we will include the ODD descriptions of our ABMs on
NetLogo’s Information tab.

▶ These descriptions will the start with a short statement of the model’s
overall purpose.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 6 / 41

ODD and NetLogo Correspondance

Entities, State Variables, and Scales

▶ Basic entities for ABMs are built into NetLogo: the World of square
patches, turtles as mobile agents, and the observer.

▶ The state variables of the turtles and patches, and perhaps other
types of agents, are defined via turtles−own [] and
patches−own [] statements.

▶ The variables characterizing the global environment are defined in the
globals [] statement.

▶ In NetLogo, as in ODD, these variables are defined right at the start.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 7 / 41

ODD and NetLogo Correspondance

Process Overview and Scheduling

▶ This, exactly, is represented in the go procedure.
▶ Because a well designed go simply calls other procedures that

implement all the submodels, it provides an overview (but not the
detailed implementation) of all processes, and

▶ specifies their schedule, that is, the sequence in which they are
executed each tick.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 8 / 41

ODD and NetLogo Correspondance

Design Concepts

▶ These concepts describe the decisions made in designing a model and
so do not appear directly in the NetLogo code.

▶ However, NetLogo provides many primitives and interface tools to
support these concepts.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 9 / 41

ODD and NetLogo Correspondance

Initialization

▶ This corresponds to an element of every NetLogo program, the setup
procedure.

▶ Pushing the setup button should do everything described in the
Initialization element of ODD.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 10 / 41

ODD and NetLogo Correspondance

Input Data

▶ If the model uses a time series of data to describe the environment,
the program can use NetLogo’s input primitives to read the data from
a file.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 11 / 41

ODD and NetLogo Correspondance

Submodels

▶ The submodels of ODD correspond closely but not exactly to
procedures in NetLogo.

▶ Each of a model’s submodels should be coded in a separate NetLogo
procedure that is then called from the go procedure.

▶ Sometimes, though, it is convenient to break a complex submodel
into several smaller procedures.

▶ These correspondences between ODD and NetLogo make writing a
program from a model’s ODD formulation easy and straightforward.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 12 / 41

Butterfly Hilltopping From ODD to NetLogo

Hierarchical, step-by-step Development

▶ Program the overall structure of a model first, before starting any of
the details.

▶ Once the overall structure is in place, add the details one at a time.
▶ Before adding each new element (a procedure, a variable, an

algorithm requiring complex code), conduct some basic tests of the
existing code and save the file. This way, if a problem suddenly arises,
it very likely (although not always) was caused by the last little
change you made.

▶ First, let us create a new NetLogo program, save it, and include the
ODD description of the model on the Information tab.

▶ Yes, you must have the ODD description before start
programming your model.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 13 / 41

Butterfly Hilltopping From ODD to NetLogo

Create the new project

▶ Create a new NetLogo program (File/New).
▶ Save the program under the name butterfly-corridors.nlogo in

an appropriate folder (File/Save As...).
▶ Optionally, initialize the folder as a git repository and add the nlogo

file to be monitored.
▶ See the book of Belanger [1] for a brief introduction to Git.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 14 / 41

Butterfly Hilltopping From ODD to NetLogo

Using Git I

▶ In order to manage the project under Git, you need to install it first:
https://git-scm.com

▶ In a terminal define your user name as follows:
1 git config --global user.name "Alejandro Guerra-Hernández"

▶ Define also your email address:
2 git config --global user.email aguerra@uv.mx

▶ It is also possible to configure the name of the branch:
3 git config --global init.defaultBranch main

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 15 / 41

https://git-scm.com

Butterfly Hilltopping From ODD to NetLogo

Using Git II

▶ The brave way, in a terminal:

1. Move to the directory where you created the
butterfly-corridors.nlogo file.

2. Initialize the git repository:

4 git init

3. Add this file to the tracked files in the repository:

5 git add butterfly-corridors.nlogo

4. Do a first commit in the project:

6 git commit -m "The butterfly-corridor model has been created"

5. Commit every change in your model to keep their record.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 16 / 41

Butterfly Hilltopping From ODD to NetLogo

Using Github Desktop

▶ Alternatively, download the Github Desktop from:
https://desktop.github.com/download/

▶ Follow the same steps using the GUI:

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 17 / 41

https://desktop.github.com/download/

Butterfly Hilltopping From ODD to NetLogo

Add the ODD documentation

▶ Go to the page of Grimm’s book:
http://www.railsback-grimm-abm-book.com

▶ Download de ODD description of the butterfly model (chapter 4):
ButterflyModelODD.txt

▶ Go to the information tab in NetLogo, click the Edit button, and
paste in the model description accordingly.

▶ Observe that the description is a markdown document.
▶ The Help button opens a navigator with a guide for using

such format.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 18 / 41

http://www.railsback-grimm-abm-book.com

Butterfly Hilltopping From ODD to NetLogo

Add state variables

▶ Let us implement first the entities, state variables, and scales part of
the model.

▶ Go to the Code tab and insert:
1 globals []
2 patches−own []
3 turtles−own []

▶ Click on the Check button, there should be no error message.
▶ Since butterflies have no other state variables than their location, we

do not need to define new variables for the turtles.
▶ But patches have a variable for elevation, insert:

1 patches−own [elevation]

▶ NetLogo infers the type of the variables from the first value
assigned via the primitive set.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 19 / 41

Butterfly Hilltopping From ODD to NetLogo

Configuring the World

▶ Now, go to the Interface tab, click the Settings button, and
change Location of origin to Corner and Bottom Left; change the
number of columns and rows to 149.

▶ Turn off the two World wrap tick boxes, so that our model has closed
boundaries.

▶ If the world is too big, click again the Settings button, and set the
Patch size to 3 or so.

▶ Save the changes.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 20 / 41

Butterfly Hilltopping From ODD to NetLogo

Add an empty setup procedure

▶ At the end of the existing program, insert this:
1 to setup
2 ca
3 ask patches
4 [
5

6]
7 reset-ticks
8 end

▶ Click the Check button again to make sure the syntax of this code is
correct.

▶ Save the changes.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 21 / 41

Butterfly Hilltopping From ODD to NetLogo

Add elevations to the patches I

▶ Assigning elevations to the patches will create a topographical
landscape for the butterflies to move in.

▶ What should the landscape look like?
▶ The ODD description is incomplete: it simply says we start with a

simple artificial topography.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 22 / 41

Butterfly Hilltopping From ODD to NetLogo

Add elevations to the patches II

▶ To start it is a good idea to create simple scenarios for easily
predicting what should happen.

▶ Creating two hills will do. Add the following code to the setup
procedure:
1 ask patches
2 [
3 let elev1 100 - distancexy 30 30
4 let elev2 50 - distancexy 120 100
5

6 ifelse elev1 > elev2
7 [set elevation elev1]
8 [set elevation elev2]
9

10 set pcolor scale-color green elevation 0 100
11]

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 23 / 41

Butterfly Hilltopping From ODD to NetLogo

Add elevations to the patches III

▶ Add the corresponding button to setup the model:

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 24 / 41

Butterfly Hilltopping From ODD to NetLogo

Add butterflies I

▶ Now, lets create some agents. Enter the following code after the ask
patches statement:
1 crt 1
2 [
3 set size 2
4 setxy 85 95
5]

▶ Setup the model again to check if everything is fine.
▶ Let us implement the schedule:

1 to go
2 ask turtles [move]
3 end

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 25 / 41

Butterfly Hilltopping From ODD to NetLogo

Add butterflies II

▶ Add the skeleton for move to avoid errors:
1 to move
2

3 end

▶ The go procedure must be enhanced to stop after 1000 steps,
accordingly to the ODD description:
1 to go
2 ask turtles [move]
3 tick
4 if ticks >= 1000 [stop]
5 end

▶ Add the go button.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 26 / 41

Butterfly Hilltopping From ODD to NetLogo

Add butterflies III

▶ Let us implement the submodel for moving:
1 to move
2 ifelse random-float 1 < q
3 [uphill elevation]
4 [move-to one-of neighbors]
5 end

▶ Of course, you need to add q to the globals:
1 globals [q]

▶ and set it to, e.g., 0.4, in the setup:
1 set q 0.4

▶ Try your model, using pen−down

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 27 / 41

Butterfly Hilltopping From ODD to NetLogo

Add butterflies IV

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 28 / 41

Butterfly Hilltopping Missing issues

Missing issues

1. Comments.
2. Observations.
3. A realistic landscape.
4. An analysis of the model.
▶ The last three are adressed in the next session.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 29 / 41

Comments and the Full Program Using comments

Comments

▶ Comments are any text following a semicolon (;) on the same line in
the code.

▶ Such text is ignored by NetLogo and instead is for people.
▶ Comments are needed to make code easier for others to understand,

but they are also very useful to ourselves: after a few days or weeks
go by, you might not remember why you wrote some part of your
program as you did instead of in some other way.

▶ Putting a comment at the start of each procedure saying whether the
procedure is in turtle, patch, or observer context helps you write the
procedures by making you to think about their context, and it
makes revisions easier.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 30 / 41

Comments and the Full Program Using comments

Use Comments For

▶ Briefly describe what each procedure or nontrivial piece of the code is
supposed to do;

▶ Explain the meaning of variables;
▶ Document the context of each procedure; Keep track of what code

block or procedure is ended by “]” or end;
▶ and In long programs, visually separate procedures from each other by

using comment lines like this:
1 ; -------------------------------------

▶ To temporarily deactivate code statements.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 31 / 41

Comments and the Full Program Using comments

Don’t Use For

▶ Detailed and lengthy comments are no substitute for code that is
clearly written and easy to read!

▶ Especially in NetLogo, you should strive to write your code so you do
not need many comments to understand it.

▶ Use names for variables and procedures that are descriptive and make
your code statements read like human language.

▶ Use tabs and blank lines to show the code’s organization.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 32 / 41

Comments and the Full Program Using comments

Example

1 to move ; The butterfly move procedure
2 ifelse random-float 1 < q ; q is the probability of moving uphill

straighfordwardly.
3 [uphill elevation] ; move deterministically uphill
4 [move-to one-of neighbors] ; move randolmly around current location.
5 end ; end of move

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 33 / 41

Comments and the Full Program Use of the model

Observations

▶ So far, the model only produces visual output, which let us look for
obvious mistakes and see how the buttefly behaves.

▶ But for use the model for its scientific purpose –understanding the
emergence of virtual corridors, we need additional outputs that
quantify the width of the corridor used by a large number of
butterflies.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 34 / 41

Comments and the Full Program Use of the model

Landscape

▶ In order to make more scientific we need a landscape model.
▶ It is good to start programming and model testing and analysis with

artificial scenarios, but we do not want to restrict our analysis to such
cases.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 35 / 41

Comments and the Full Program Use of the model

Analysis

▶ We have not yet done any analysis on this model, e.g., to see how the
parameter q affects butterfly movemente and the appearance of the
virtual corridors.

▶ For now, play with the model asking What if...

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 36 / 41

Comments and the Full Program Use of the model

Modeling and Coding

▶ Since this course is about ABMs, we revisited the ODD protocol for
describing them,

▶ Showing how we can quiet directly translate an ODD description into
a NetLogo program.

▶ In scientific modeling we start by thinking about and writing down the
model design; ODD provides a productive, standard way to do this.

▶ Then, when we think we have enough of a design to implement on a
computer, we translate it into code so we can start testing and
revising the model.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 37 / 41

Comments and the Full Program Use of the model

Correspondance

▶ Although developed independently, NetLogo and the ODD protocol
have many similarities and correspond quiet closely.

▶ Both of them were developed by looking for the key characteristics of
ABMs in general and the basic ways that they are different from other
kinds of model (and, therefore, ways that their software must be
unique).

▶ These key characteristics were used to organize both ODD and
NetLogo, so it is natural that they correspond with each other.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 38 / 41

Comments and the Full Program Conclusions

Development techniques

1. Start modeling with the simplest version of the model conceivable
–ignore many, if not most, of the components and processes you
expect to include later.

2. Develop programs in a hierarchical way: start with the skeletons of
structures (procedures, ask commands, ifelse switches, etc.); test
these skeletons for syntax errors; and only then, step by step, add
“flesh to the bones” of the skeleton.

3. If your model will eventually include a complex or realistic
environment, start with a simplified artificial one.

4. Formatting your code nicely and providing appropriate comments
is well worth the tiny bit of time it takes.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 39 / 41

Comments and the Full Program Conclusions

Conceptual issues

▶ We wanted to develop a model that helps us understanding how and
where in a landscape virtual corridors of butterfly movement appear.

▶ The hypothesis is that corridors are not necessarily linked to
landscape features that are specially suitable for migration, but can
emerge from the interaction between topography and the movement
decisions of the butterflies.

▶ We represented these decisions in a most simple way: by telling the
butterflies to move uphill, but with their variability in movement
represented by the parameter q.

▶ The first results from a highly artificial landscape indicate that indeed
our movement rule has the potential to produce
virtual corridors, but we obviously have more to do.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 40 / 41

Comments and the Full Program Conclusions

Referencias I

[1] C Belanger. Git Apprentice. McGaheysville, VA, USA: Razeware LLC, 2020.

[2] SF Railsback and V Grimm. Agent-Based and Individual-Based Modeling. Second.
Princeton, NJ, USA: Princeton University Press, 2019.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 41 / 41

	Introduction and Objectives
	Introduction
	Objectives

	ODD and NetLogo
	Correspondance

	Butterfly Hilltopping
	From ODD to NetLogo
	Missing issues

	Comments and the Full Program
	Using comments
	Use of the model
	Conclusions

	References

