
Agent-Based Modeling and Simulation
Testing your programs

Dr. Alejandro Guerra-Hernández

Instituto de Investigaciones en Inteligencia Artificial
Universidad Veracruzana

Campus Sur, Calle Paseo Lote II, Sección Segunda No 112,
Nuevo Xalapa, Xalapa, Ver., México 91097

mailto:aguerra@uv.mx
https://www.uv.mx/personal/aguerra/abms

Doctorado en Inteligencia Artificial 2024

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 1 / 42

mailto:aguerra@uv.mx
https://www.uv.mx/personal/aguerra/abms

Credits

▶ These slides are based on the book of Railsback and Grimm [2],
chapter 6.

▶ Any difference with this source is my responsibility.
▶ This work is licensed under CC-BY-NC-SA 4.0 cbna

▶ To view a copy of this license, visit:

https://creativecommons.org/licenses/by-nc-sa/4.0/

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 2 / 42

https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction and Objectives Introduction

Ideas

▶ Many of the techniques in this session are about debugging, i.e.,
figuring out and fixing the causes of obvious mistakes.

▶ But then, focus is on software verification, i.e., verifying if your
software accurately implements your model formulation.

▶ In addition to testing the program, this requires:
▶ An independent description of the model, e.g., the ODD protocol.
▶ Documenting tests in order to convince our clients, e.g., thesis adviser,

reviewer, decision maker, etc.
▶ All this makes modeling more efficient, e.g., following a bottom-up

approach.
▶ Software testing is impossible to separate from model analysis.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 3 / 42

Introduction and Objectives Learning Objectives

Objectives

▶ To understand seven common types of software errors;
▶ To understand ten important debugging techniques, including writing

intermediate model results to output files for analysis in other
software; and

▶ Why and how to document software tests.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 4 / 42

Common Kinds of Errors Typographical Errors

Typographical Errors

▶ Typing the wrong text in NetLogo is solved by the syntax checker.
▶ Example. Writing ask turtlse instead of ask turtles.
▶ However it is easy to missname variables when copy-pasting.
▶ Example. Suppose you have the following line:

1 set xcor random-normal meanxcor stddev

and you copy-paste the code for working with y , editing it:
1 set ycor random-normal meanxcor stddev

You’ve forgot to change meanXcor!
▶ Sometimes, the View can help detecting such errors.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 5 / 42

Common Kinds of Errors Syntax Errors

Syntax Errors

▶ Forgetting to use brackets when required.
▶ Not leaving spaces between numbers and operators in mathematical

expressions.
▶ Example. Writing set xcor max-pxcor/2 instead of

set xcor max-pxcor / 2.
▶ The Syntax Checker is quite good detecting such errors, but it does

not warrant to find all syntax errors.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 6 / 42

Common Kinds of Errors Syntax Errors

Use of brackets

▶ A list of literal values, e.g., let l [a b c]
▶ A sequence of commands, i.e., a command block:

1 ask turtles [
2 forward 1
3 set pcolor blue
4]

▶ A conditional expression, e.g., if [xcor < 5]
▶ As part of the globals, extensions, breeds, and breeds-own

declarations, e.g., globals [v1 v2]
▶ A list of procedure arguments, e.g.,

to move-agent [agent dist] ... end
▶ An anonymous task: let t [[x y] -> (x + y)n]

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 7 / 42

Common Kinds of Errors Misunderstandings

Missunderstanding Primitives

▶ A primitive does not do what you think it does.
▶ Example. Forgetting that patch coordinates are integers, while turtle

coordinates are floats. So that the following statements can have
different results:
1 let neighbor-turtles turtles in-radius 2
2 let neighbor-turtles turtles-on patches in-radius 2

Moreover, they work differently in a turtle and a patch contexts:

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 8 / 42

Common Kinds of Errors Misunderstandings

More misunderstandings

▶ Differences between neighbors and in-radius.
▶ Excercise. Open an Agent Monitor for a patch close to the center on

the environment. Execute the following command:
1 ask neighbors [set pcolor red]

Observe the output when executing:
1 ask patches in-radius 1.5 [set pcolor blue]

Report your observations.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 9 / 42

Common Kinds of Errors World’s Settings

Wrong Display Settings

▶ The configuration of the world through the Interface tab is not visible
in the program.

▶ Changing the size, wrapping properties, or the origin can affect the
behavior of our programs.

▶ The primitive resize-world can be used explicitly in the setup
procedure to enhance visibility.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 10 / 42

Common Kinds of Errors Run-Time Errors

Run-Time Errors

▶ The program is free of syntax and logic errors, but eventually does
something that the computer can’t handle.

▶ Examples:
▶ Dividing by a variable that has a value of zero;
▶ Trying to put an object outside the world;
▶ Asking an agent to do something after dead;
▶ Raising a number to a power bigger than the computer’s memory;
▶ Trying to open a file already closed;
▶ Trying to delete a file that does not exists.

▶ Usually catch by the interpreter, but it is better to try to anticipate
such errors.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 11 / 42

Common Kinds of Errors Logic Errors

Logic Errors

▶ The kind of error most likely to cause real problems.
▶ The program executes and produces results, but these are wrong

because a logic mistake.
▶ Examples:

▶ A variable is not initialized;
▶ An equation is programmed wrongly;
▶ An incorrect condition in an if statement.

▶ Sometimes wrong results are obvions, but most of the time demand
careful testing.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 12 / 42

Common Kinds of Errors Formulation Errors

Formulation Errors

▶ These are not programming errors, but become apparent only after
the model software is written and executed.

▶ In building almost any model, some assumptions, algorithms, or
parameter values will have unexpected consequences and require
revision after the model is implemented and tested.

▶ Once these errors are detected and corrected, the model’s written
documentation must be updated accordingly.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 13 / 42

Techniques for Debugging and Testing NetLogo Syntax Checking

Syntax Checking

▶ Use the Check button in the Code tab.
▶ It is very good, but sometimes:

▶ Issue error statements that are unclear;
▶ Point to places in the code far away from the actual mistake,

particularly in embedded contexts.
▶ The key to efficiency is checking often (every line or two).
▶ Keep your code free of syntax errors, even if it is incomplete, e.g., add

skeleton procedures if required.
▶ Use also skeletons for control structures.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 14 / 42

Techniques for Debugging and Testing NetLogo Visual Aid

Visual Testing

▶ Take a look at the model’s results on the Interface to see if anything
is unexpected.

▶ Examples:
▶ Are there obvious problems, e.g., all turtles born in the same place

instead of randomly.
▶ Do strange patterns emerge after the model runs for a while, e.g., all

turtles die.
▶ You have to design your program to use the View effectively, e.g., use

color, shape, label, size to emphasize visually the characteristics of
the agents.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 15 / 42

Techniques for Debugging and Testing NetLogo Visual Aid

Tricks for Visual Testing

▶ You can start using the View to test your software long before the
software is complete, e.g., as soon as implementing setup.

▶ The primitive scale-color makes easy to shade the color of the
agents based on variable values.

▶ Labels in turtles and patches are very useful. e.g.,
set label energy-reserves.

▶ Reduce the size of the world or the number of agents when testing.
▶ Slow execution down if needed.
▶ Add a step button to your Interface.
▶ It is also possible to add buttons for each procedure in the

scheduling.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 16 / 42

Techniques for Debugging and Testing NetLogo Printing

Print Statements

▶ Insert statements that write information out to the display or to a file
so you can see what is going on, e.g., export-output, output,
print, show, type, and write.

▶ They can be used to detect the procedures when some problem
occurs, e.g., printing begin-end statements.

▶ Output the value of key variables at different times to diagnose why a
model behaves unexpectedly. See word.

▶ Plots and Monitors can be used in the same sense.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 17 / 42

Techniques for Debugging and Testing NetLogo Printing

Command center rearranged

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 18 / 42

Techniques for Debugging and Testing NetLogo Agent Monitors

Spot Tests with Agent Monitors

▶ Right-click your mouse on the View and open an Agent Monitor to
any patch, and to the turtles and links on the patch.

▶ They show the values of the variables of the selected objects.
▶ They can be used to spot test calculations by manually recording the

values, calculating by hand how they should change, and then
stepping the model to see if it match your expectations.

▶ Monitors can be created programmatically:
1 set size size + growth
2 if size < 0
3 [
4 inspect self
5 user-message (word "Turtle" who "has negative size")
6]

See also stop-inspecting.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 19 / 42

Techniques for Debugging and Testing NetLogo Stress Tests

Stress Tests

▶ Running a program with parameters and input data outside the
normal ranges.

▶ We can make very clear predictions of how the model should behave
under extreme conditions, e.g., q = 1 in the butterflies model means
they do not wander.

▶ Environmental conditions outside their normal range can also be used,
e.g., unrealistically variable or constant.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 20 / 42

Techniques for Debugging and Testing NetLogo Tests

Test Procedures

▶ They produce intermediate output (graph, text, or file) used only for
testing.

▶ They may require adding new state variables that are only for
observing what is going on.

▶ They can be invoke by adding buttons or through the command
center.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 21 / 42

Techniques for Debugging and Testing NetLogo Tests

Test Programs

▶ It can be hard to test a certain primitive, procedure or algorithm
within a large program.

▶ Write a separate short program to test the particular programming
idea.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 22 / 42

Techniques for Debugging and Testing NetLogo Tests

Example: Path recall I

▶ The code:
1 turtles−own [path]
2

3 to setup
4 ca
5 crt 1
6 [
7 set color red ; so we can tell initial path from return
8 set path (list patch-here) ; initialize the path list
9 pd;

10

11 repeat 100
12 [
13 rt (random 91 - 45)
14 fd 1
15 set path fput patch-here path
16]
17]
18 end ; end setup

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 23 / 42

Techniques for Debugging and Testing NetLogo Tests

Example: Path recall II

▶ An the test procedure:
1 to go-back
2 ask turtles
3 [
4 set color blue ; turtle returns trace blue
5 foreach path
6 [
7 a-patch -> set heading towards a-patch
8 fd 1
9]

10]
11 end ; go-back

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 24 / 42

Techniques for Debugging and Testing NetLogo Tests

Output

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 25 / 42

Techniques for Debugging and Testing NetLogo Reviews

Code Reviews

▶ Have your code read and reviewed by peers. Building a public code
and documentation repository is a good idea.

▶ Reviewer’s tasks include:
▶ Compare the code with the model formulation;
▶ Look for logical or typographical errors;
▶ Identify parts of the formulation left out or misrepresented in the

program;
▶ Identify important assumptions that are in the code but not in the

formulation;
▶ Make sure that the code is well organized and easy to understand.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 26 / 42

Techniques for Debugging and Testing NetLogo Statistical Analysis

Statistical Analysis of File Output

▶ One of the most systematic way to search for problems.
▶ Do stochastic events happen with the expected frequency?
▶ Do variables stay within the expected range?
▶ These are hypothesis-testing experiments.
▶ Example: Since the butterflies move randomly with probability 1 − q

they are supposed to move to the highest neighbor with a frequency
of q + 1−q

8 . How do you test it?

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 27 / 42

Techniques for Debugging and Testing NetLogo Statistical Analysis

Example: Testing butterflies movements I

▶ It requires creating an output file in the setup procedure:
1 ; Creating output file
2 if file-exists? "butterfliesTest.csv"
3 [file-delete "butterfliesTest.csv"]
4 file-open "butterfliesTest.csv"

▶ and closing it before stoping the system in th go procedure:
1 if ticks >= 1000
2 [
3 file-close
4 stop
5]

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 28 / 42

Techniques for Debugging and Testing NetLogo Statistical Analysis

Example: Testing butterflies movements II

▶ As well as producing the output in the move procedure:
1 to move ; The butterfly move procedure
2 ; write the elevation of all neighbors in the output
3 ask neighbors [file-type (word elevation ",")]
4

5 ifelse random-float 1 < q ; q is the probability of moving uphill
straighfordwardly.

6 [uphill elevation] ; move deterministically uphill
7 [move-to one-of neighbors] ; move randolmly around current location.
8

9 ; write the elevation turtle moved to
10 file-print elevation
11 end ; end of move

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 29 / 42

Techniques for Debugging and Testing NetLogo Statistical Analysis

Output Imported in Excel

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 30 / 42

Techniques for Debugging and Testing NetLogo Reimplementation

Independent Reimplementation of Submodels

▶ The only reliable way to verify software for any model is to program
the model at least twice, independently, and test if the same results
are obtained for all the implementations.

▶ Problem: Cost!
▶ At least reimplement key submodels in your language of preference

(other than NetLogo).
▶ Example. Following the previous examples, implement the butterfly

decision in the spread-sheet for comparison. Surprise, surprise, it is
not the same:
1 [uphill elevation]

than
1 [move-to max-one-of neighbors [elevation]]

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 31 / 42

Techniques for Debugging and Testing NetLogo Documentation

Documentation of Tests

▶ Document only the most important tests and debugging as the model
is programmed.

▶ But once it is ready, conduct and document a conclusive set of final
tests.

▶ Reasons to document:
▶ Gaining credibility by showing that the model was tested adequately;
▶ To help youself to repeat the tests.

▶ Recall the TRACE format [3].

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 32 / 42

Techniques for Debugging and Testing NetLogo Documentation

Description of Tests

▶ Documentation should describe:
▶ The kinds of tests that were used; and
▶ The methods and results of the comprehensive tests of the "final”

model .
▶ As simple as listing:

▶ Who delivered the code, at what stage(s) in its development;
▶ What patterns were observed visually and investigated;
▶ The parts of the model that were tested statistically against an

independent implementation; and
▶ The kinds of errors found and how they were corrected.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 33 / 42

Case Study Social Influence

Purpose and patterns

▶ Axelrod [1] proposed this model to show the consequences of a few
simple assumptions about how people (or groups) are influenced by
those around them.

▶ The model assumes that people or societies share culture locally, and
share more with others that are more similar to themselves.

▶ The models intends to explore one general pattern: that, even if
people tend to become more alike when they interact, differences in
culture persist over time.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 34 / 42

Case Study Social Influence

Entities, state variables, and scales

▶ Agents can be thought as homogeneous villages represented by sites
(patches) on the grid.

▶ The sites have state variables for each of five cultural features.
▶ Each feature has a value that is an integer between 0 and 9.
▶ A site’s culture is defined concatenating these values as a five-digit

string, e.g., 93452.
▶ The grid of sites is 10 × 10 patches in extent, with the space not

wrapped.
▶ Time and distance is not defined explicitly.
▶ Model runs continue until the system is stable, i.e., executing

1000 ticks with no change in the site state variables (which
can take approx. 80K ticks).

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 35 / 42

Case Study Social Influence

Process overview and scheduling

▶ The model includes two actions executed each time step:
Cultural interaction. Executed by one random chosen site. This site

randomly chooses a neighbor to the north, east,
south, or west. The site calculates how similar is this
neighbor in culture, and then stochastically decides
whether to interact by adopting one cultural feature
value of the neighbor.

Output. Several measures of how similar individuals are to
their neighbors, and how homogeneous the entire
model is, are updated.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 36 / 42

Case Study Social Influence

Technical novelties I

▶ The primitive myself, see the Dictionary to understand this reporter
and its difference with self.

▶ Example. ask turtles-here [set color [color] of myself].
▶ The primitive neighbors4 as an alternative to neighbors.
▶ The logical expression != to check whether two variables are not the

same.
▶ Creation and concatenation of string variables to create output.
▶ The primitive and to create a conjunction of boolean expressions.
▶ Local variables that contain an agent, using a name (e.g.,

the-neighbor) that makes the code easier to understand.
▶ Example. let the-neighbor one-of neighbors4

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 37 / 42

Case Study Social Influence

Technical novelties II

▶ A test procedure that can be executed form an Agent Monitor.
▶ A histogram plot.
▶ A switch on the Interface, which controls a boolean global variable,

i.e., to produce or not a set of test output files.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 38 / 42

Case Study Social Influence

Testing the Software

▶ The version provided by our book’s web site has several error that you
should try to find as you try the testing approaches on it.

▶ Some errors are obvious but others are not at all.
▶ These steps are suggested to find and report the errors:

1. Review the code. Read the model description in the Info tab and
compare the code to it.

2. Run the model and watch it no the World display. Look for unusual
patterns and think why they might occur if the model is or is not
implemented correctly.

3. Conduct spot tests of the cultural similarity calculations using some
test procedure.

4. Use the optional file output to test the key procedures. Find
ways to test whether the code works correctly.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 39 / 42

Conclusions

Conclusions

▶ Not all programming errors have effects on the ultimate use of a
model, e.g., those in the butterflies model have little effect on any
general conclusion drawn from the model.

▶ Unfortunately, the possibility of the opposite makes software
verification very important.

▶ However, the approaches you are now using to find mistakes are also
important when it is time to analyze and understand your model.

▶ Paying serious attention to software reliability and reproducibility is,
therefore, just part of the job when we are doing scientific modeling
instead of just playing around with NetLogo.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 40 / 42

Conclusions

Key strategies

▶ Find your mistakes early, not late. Make testing a pervasive part of
software development.

▶ Plan for testing: make sure there is time for it, and time to repeat it
as the model evolves.

▶ Write your code so it is clear and easy to understand, so you never
have to hesitate before asking someone to review it for you.

▶ Save and document your tests, assuming that you will need to repeat
them as the code evolves and that you will need to prove that your
software is reliable.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 41 / 42

Conclusions

Referencias I

[1] R Axelrod. “The Dissemination of Culture: A Model with Local Convergence and Global
Polarization”. In: The Journal of Conflict Resolution 41.2 (1997), pp. 203–226.

[2] SF Railsback and V Grimm. Agent-Based and Individual-Based Modeling. Second.
Princeton, NJ, USA: Princeton University Press, 2019.

[3] A Schmolke et al. “Ecological models supporting environmental decision making: a
strategy for the future”. In: Trends in ecology & evolution 25.8 (2010), pp. 479–486.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 42 / 42

	Introduction and Objectives
	Introduction
	Learning Objectives

	Common Kinds of Errors
	Typographical Errors
	Syntax Errors
	Misunderstandings
	World's Settings
	Run-Time Errors
	Logic Errors
	Formulation Errors

	Techniques for Debugging and Testing NetLogo
	Syntax Checking
	Visual Aid
	Printing
	Agent Monitors
	Stress Tests
	Tests
	Reviews
	Statistical Analysis
	Reimplementation
	Documentation

	Case Study
	Social Influence

	Conclusions
	References

