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Credits

▶ These slides are based on the book of Sutton and Barto [1], chapter
6. Any difference with this source is my responsibility.

▶ This work is licensed under CC-BY-NC-SA 4.0 cbna

▶ To view a copy of this license, visit:

https://creativecommons.org/licenses/by-nc-sa/4.0/
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Introduction Similarities with Monte Carlo and Dynamic Programming

Basic Ideas

▶ If one had to identify one idea as central and novel to RL, it would be
undoubtedly be temporal difference (TD) learning.

▶ TD is a combination of Monte Carlo (MC) and Dynamic
Programming (DP) ideas.

▶ Like MC methods, TD methods can also learn directly from raw
experience without a model of the environment’s dynamics.

▶ Like DP methods, TD methods updates estimates based in part on
other learned estimates, without waiting for a final outcome
(bootstrapping).

▶ Indeed these methods can be combined in many ways.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation DIA 2024 3 / 36



Introduction Similarities with Monte Carlo and Dynamic Programming

Prediction and Control Problems

▶ For the control problem, i.e., finding an optimal policy, DP, TD, and
Monte Carlo methods all use some variation of generalized policy
iteration (GPI).

▶ For the prediction problem, i.e., the problem of estimating the value
function vπ for a given policy π, they all differ.
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TD Prediction Learning from Experience

Constant-α MC

▶ Given some experience following the policy π, TD and MC update
their estimates V of vπ for the nonterminal states St occurring in
that experience.

▶ MC methods wait until the return following the visit is known, then
use the return as a target for V (st).

▶ A simple every-visit MC method suitable for nonstationary
environments is:

V (St)← V (St) + α

[
Gt − V (St)

]
(1)

where Gt is the actual return following time t; α is a constant
step-size parameter.
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TD Prediction Learning from Experience

TD(0)

▶ Where as MC must wait until the end of the episode to determine the
increment to V (st), since only then Gt is known, TD methods need
to wait only until next time step.

▶ At time t + 1 they immediately form a target and make a useful
update using the observed reward Rt+1 and the estimate V (St+1):

V (St)← V (St) + α

[
Rt+1 + γV (St+1)− V (St)

]
(2)

▶ This method is also known as one-step TD.
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TD Prediction Learning from Experience

Tabular TD(0) for estimating vπ

Require: π ▷ the policy to be evaluated
Require: α ∈ (0, 1] ▷ step size
Ensure: V (s) ∀s ∈ S+ ▷ arbitrarily, except that V (terminal) = 0

1: loop for each episode
2: init(S)
3: loop for each step in the episode
4: A← the action recommended by π for S.
5: R, S ′ ← execute(A)

6: V (S)← V (S) + α

[
R + γV (S ′)− V (S)

]
7: S ← S ′

8: end loop
9: end loop
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TD Prediction Learning from Experience

Estimate

▶ While MC uses an estimate, sampling values of:

vπ
.= Eπ[Gt | St = s] (3)

▶ DP estimates instead:

vπ
.= Eπ[Rt+1 + γvπ(St+1) | St = s] (4)

by adopting the known V (St+1) instead of vπ(St+1).
▶ TD(0) is a combination of MC sampling with DP bootstrapping, i.e.,

it uses both estimates.
▶ Remember both equations are equivalent.
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TD Prediction Learning from Experience

Backup Diagram

▶ The value estimate for the state node at the
top is updated on the basis of the one
sample transition from it to the immediate
following state.

▶ TD and MC involves looking ahead to a
sample successor state, instead of a complete
distribution of all possible successors.

▶ The value of the successor and the reward
along the way are used to compute a
backed-up value to update the original state.

TD(0)
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TD Prediction Learning from Experience

TD error

▶ Observe that the difference between the estimated value of St and the
better estimate Rt+1 + γV (St+1) is a sort of error, called the TD
error:

δt
.= Rt+1 + γV (St+1)− V (St) (5)

▶ Notice that δt is the error in the estimate made at that time, but
requires information available one step later.

▶ If V does not change during the episode, as in MC methods, then:

Gt+1 − V (St) =
T−1∑
k=t

γk−tδk (6)

▶ If this is not the case, as in TD(0), small α values hold
this identity approximately.
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Advantages of TD Prediction Methods Bootstrapping

Bootstrapping

▶ TD methods update their estimates based in part on other estimates.
They learn guess from a guess –they bootstrap.

▶ What advantages do TD methods over MC and DP?
▶ Clue. The answer is in the rest of the book of Sutton and Barto [1].
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Advantages of TD Prediction Methods Bootstrapping

Advantages

▶ TD methods do not require a model of the environment, of its reward
and next-state probability distributions; as DP methods do.

▶ TD methods are naturally implemented in an online, fully incremental
fashion. They don’t have to wait until the end of the episode to learn,
as MC.

▶ Surprisingly often, this turns out to be a critical consideration. e.g.,
when facing very long episodes or continuous tasks.

▶ TD methods learn from each transition regardless of what subsequent
actions are taken, they are faster than some MC methods that ignore
exploring actions.
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Advantages of TD Prediction Methods Bootstrapping

Soundness

▶ Certainly it is convenient to learn one guess from the next, without
waiting for an actual outcome, but can we still guarantee convergence
to the correct answer?

▶ Yes. For any fixed policy π, TD(0) has been proved to converge to
vπ, in the mean for a constant step-size parameter if it is sufficiently
small, and with probability 1 if α decreases accordingly to the usual
approximation conditions.

▶ Most convergence proofs apply only to the table-based case, but some
also apply to the general linear function approximation.
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Advantages of TD Prediction Methods Bootstrapping

Speed

▶ If both TD and MC methods converge asymptotically to the correct
predictions, the which gets there first?

▶ At the current time this is an open question in the sense that no one
has been able to prove mathematically that one method converges
faster than the other.

▶ In fact, it is not even clear what is the most appropriate formal way to
phrase this question.

▶ In practice TD methods have usually been found to converge faster
than constant-α MC methods on stochastic tasks.
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Advantages of TD Prediction Methods Bootstrapping

Example: Random Walk

▶ Consider the following Markov Reward Process (an MDP without
actions):

CB EDA

start

0 0 0 0 0 1

▶ All episodes start at C, then proceed either left or right by one state
on each step, with equal probability.

▶ Example. C,0,B,0,C,0,D,0,E,1
▶ The true value of each state is the probability of terminating on the

right if starting at that state, e.g., vπ(C) = 0.5
▶ True value from A to E are 1

6 , 2
6 , 3

6 , 4
6 , and 5

6
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Advantages of TD Prediction Methods Bootstrapping

Values Learned by TD(0), α = 0.1

▶ The graph shows the values learned after various number of episodes
on a single run of TD(0).

6.2. Advantages of TD Prediction Methods 125

Example 6.2 Random Walk

In this example we empirically compare the prediction abilities of TD(0) and
constant-↵ MC when applied to the following Markov reward process:

A B C D E
100000

start

A Markov reward process, or MRP, is a Markov decision process without actions.
We will often use MRPs when focusing on the prediction problem, in which there is
no need to distinguish the dynamics due to the environment from those due to the
agent. In this MRP, all episodes start in the center state, C, then proceed either left
or right by one state on each step, with equal probability. Episodes terminate either
on the extreme left or the extreme right. When an episode terminates on the right,
a reward of +1 occurs; all other rewards are zero. For example, a typical episode
might consist of the following state-and-reward sequence: C, 0,B, 0,C, 0,D, 0,E, 1.
Because this task is undiscounted, the true value of each state is the probability of
terminating on the right if starting from that state. Thus, the true value of the
center state is v⇡(C) = 0.5. The true values of all the states, A through E, are
1
6 , 2

6 , 3
6 , 4

6 , and 5
6 .
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The left graph above shows the values learned after various numbers of episodes
on a single run of TD(0). The estimates after 100 episodes are about as close as
they ever come to the true values—with a constant step-size parameter (↵ = 0.1
in this example), the values fluctuate indefinitely in response to the outcomes
of the most recent episodes. The right graph shows learning curves for the two
methods for various values of ↵. The performance measure shown is the root
mean-squared (RMS) error between the value function learned and the true value
function, averaged over the five states, then averaged over 100 runs. In all cases the
approximate value function was initialized to the intermediate value V (s) = 0.5, for
all s. The TD method was consistently better than the MC method on this task.

▶ 100 episodes (blue) with α = 0.1 are quite good.
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Advantages of TD Prediction Methods Bootstrapping

Empirical RMS error

6.2. Advantages of TD Prediction Methods 125
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all s. The TD method was consistently better than the MC method on this task.
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Optimality of TD(0) Amount of Experience

Batch Updating

▶ Suppose there is available only a finite amount of experience, say 10
episodes or 100 time steps.

▶ A common approach with incremental learning is to present the
experience repeatedly until the method converges upon an answer.

▶ Given an approximate value function V , the increments specified in
eqs. 1 and 2 are computed for every time step t at which a
nonterminal state is visited, but the value function is changed only
once, by the sum of all the increments.

▶ Then all the available experience is processed again with the new
value function to produce a new overall increment, an so on,
until the value function converges.
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Optimality of TD(0) Amount of Experience

Convergence

▶ Under batch updating, TD(0) converges deterministically to a single
answer independent of the step-size parameter, as long as α is chosen
to be sufficiently small.

▶ Constant-α MC method also converges deterministically under the
same conditions, but to a different answer!.
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Optimality of TD(0) Amount of Experience

Example: Random Walk under Batch Updating

▶ After each new episode, all episodes seen so far were treated as a
batch –they were repeatedly presented to the algorithm with an α
sufficiently small to converge.

6.3. Optimality of TD(0) 127

the learning curves shown in Figure 6.2. Note that the batch TD method was consistently
better than the batch Monte Carlo method.

. 0

.05

. 1

.15

. 2

.25

0 25 50 75 100

TD
MC

BATCH TRAINING

Walks / Episodes

RMS error,
averaged
over states

Figure 6.2: Performance of TD(0) and constant-↵
MC under batch training on the random walk task.

Under batch training, constant-↵
MC converges to values, V (s), that
are sample averages of the actual re-
turns experienced after visiting each
state s. These are optimal estimates
in the sense that they minimize the
mean-squared error from the actual
returns in the training set. In this
sense it is surprising that the batch
TD method was able to perform
better according to the root mean-
squared error measure shown in the
figure to the right. How is it that
batch TD was able to perform better
than this optimal method? The an-
swer is that the Monte Carlo method
is optimal only in a limited way, and
that TD is optimal in a way that is more relevant to predicting returns.

Example 6.4: You are the Predictor Place yourself now in the role of the predictor
of returns for an unknown Markov reward process. Suppose you observe the following
eight episodes:

A, 0, B, 0 B, 1
B, 1 B, 1
B, 1 B, 1
B, 1 B, 0

This means that the first episode started in state A, transitioned to B with a reward of
0, and then terminated from B with a reward of 0. The other seven episodes were even
shorter, starting from B and terminating immediately. Given this batch of data, what
would you say are the optimal predictions, the best values for the estimates V (A) and
V (B)? Everyone would probably agree that the optimal value for V (B) is 3

4 , because six
out of the eight times in state B the process terminated immediately with a return of 1,
and the other two times in B the process terminated immediately with a return of 0.

But what is the optimal value for the estimate V (A) given this data? Here there are

A B

r = 1

100%

75%

25%

r = 0

r = 0

two reasonable answers. One is to observe that 100% of the
times the process was in state A it traversed immediately to
B (with a reward of 0); and because we have already decided
that B has value 3

4 , therefore A must have value 3
4 as well.

One way of viewing this answer is that it is based on first
modeling the Markov process, in this case as shown to the
right, and then computing the correct estimates given the
model, which indeed in this case gives V (A) = 3

4 . This is

▶ MC is optimal only in a limited way, TD is optimal in a way
that is more relevant to predict returns.
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Optimality of TD(0) Amount of Experience

Example: You are the Predictor

▶ Suppose you observe the following eight episodes:
A,0,B,0 B,1
B,1 B,1
B,1 B,1
B,1 B,0

▶ Given this batch data, what would you say are the optimal
predictions, the best values for estimates V (A) and V (B)?

▶ Everybody would agree that the optimal value for V (B) is 3
4 because

six out of eight times in the state B the process terminated
immediately with return 1.

▶ What about A?
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Optimality of TD(0) Amount of Experience

Answer 1

▶ Observe that 100% of the times the process was in state A it
traverses immediately to B (with a reward of 0); and

▶ Because we have already decided that B has value 3
4 , therefore A

must have value 3
4 as well.

▶ Modelling the MDP enables the computation of this value. This is
the answer that batch TD(0) also gives.

BA
r=0

100%

r=1
75%

r=0
25%
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Optimality of TD(0) Amount of Experience

Answer 2

▶ We have seen A only once and the return that followed was 0;
therefore V (A) = 0.

▶ This is the answer that batch MC methods give.
▶ Notice that it is also the answer that gives minimum square error on

the trining data.
▶ If the process is Markov, we expect that answer 1 will produce lower

error on future data; while answer 2 is better on existing data.
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Optimality of TD(0) Amount of Experience

Maximum Likelihood Estimate

▶ Batch MC methods always find the estimate that minimize the
mean-squared error on the training set, whereas batch TD(0) always
find the estimate that would be exactly correct for the maximum
likelihood model of the Markov process.

▶ The maximum likelihood estimate of a parameter is the parameter
value whose probability of generating the data is greatest.

▶ Given the MDP model we can compute the estimate of the value
function that would be exactly correct if the model were exactly
correct.

▶ This is called the certainty-equivalence estimate. In general,
batch TD(0) converges to it.
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Optimality of TD(0) Amount of Experience

Certainty-Equivalence

▶ Although the certainty-equivalence estimate is in some sense an
optimal solution, it is almost never feasible to compute it directly.

▶ If n = |S| is the number of states, then just forming the
maximum-likelihood estimate may require the order of n2 memory,
and computing the corresponding function requires on the order of n3

steps.
▶ It is striking that TD methods can approximate the same solution

with no more than order n repeated computations over the training
set.

▶ On tasks with large state spaces, TD methods may be the only
feasible way of approximating this solution.
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Sarsa: On-policy TD Control Action-Value Functions

Action-value Function

▶ The first step is to learn an action-value function rather than a
state-value function.

▶ In particular, for an on-policy method we must estimate qπ(s, a) for
the current behavior policy π and for all states s and actions a.

▶ This can be donde using essentially the same TD method described
before for learning vπ.

▶ Recall that an episode consists of an alternating sequence of states
and state-action pairs:

St+1St St+2
At

Rt+1 St+3
At+1

Rt+2
At+2

Rt+3
At+3

… …
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Sarsa: On-policy TD Control Action-Value Functions

Transitions I

▶ Consider now transitions from state-action pair to state-action pair to
learn the value of state-action-pairs.

▶ Formally both cases are identical, i.e., they are both Markov chains
with a reward process.

▶ The theorems assuring convergence of state values under TD(0) also
apply to the corresponding algorithm for action values:

Q(St , At)← Q(St , At) + α

[
Rt+1 + γQ(St+1, At+1)−Q(St , At)

]
(7)

▶ This update is done after every transition from a nonterminal
state St .
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Sarsa: On-policy TD Control Action-Value Functions

Transitions II

▶ If St+1 is terminal, then Q(St+1, At+1) is defined as zero.
▶ This rule uses every element of the quintuple of events,

(St , At , Rt+1, St+1, At+1) (can you see the name of the method?).
▶ Backup diagram:

Sarsa
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Sarsa: On-policy TD Control Action-Value Functions

Sarsa (on-policy TD control) for estimating Q ≈ q∗

Require: α ∈ (0, 1] ▷ the step size
Require: Small ϵ > 0 ▷ probability of exploration
Ensure: Initialize Q(s, a) ∀s ∈ S+, a ∈ A ▷ arbitrarily except that

Q(terminal , .) = 0.
1: loop for each episode
2: Initialize S
3: loop for each step of the episode
4: Take action A, observe R, S ′

5: Choose A′ from S ′ using policy derived from Q (e.g., ϵ-greedy).

6: Q(S, A)← Q(S, A) + α

[
R + γQ(S ′, A′)− Q(S, A)

]
7: S ← S ′; A← A′;
8: end loop until S in terminal
9: end loop
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Q-learning: Off-policy TD Control Another Algorithm

Q-Learning

▶ One of the early breakthroughs in RL, defined by Watkins and Dayan
[2] as:

Q(St , At)← Q(St , At) + α

[
Rt+1γ max

a
Q(St+1)− Q(St , At)

]
(8)

▶ The learned action-value function Q, directly approximates q∗, the
optimal action-value function, independent of the policy followed.

▶ All what is required for correct convergence is that all pairs continue
to be updated.

▶ Observe this is a minimal requirement, i.e., any method that
guarantees to find optimal behavior requires it.
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Q-learning: Off-policy TD Control Another Algorithm

Backup Diagram

▶ What does the backup diagram of Q-learning look like?

Q-learning
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Expected Sarsa More Alternatives

Expected Sarsa

▶ Consider an algorithm that is just like Q-learning, except that instead
of the maximum over next state-action pairs it uses the expected
value, taking into account how likely each action is under current
policy:

Q(St , At)← Q(St , At) + α

[
Rt+1 + γEπ[Q(St+1, At+1) | St+1]− Q(St , At)

]
← Q(St , At) + α

[
Rt+1 + γ

∑
a

π(a | St+1)Q(St+1, a)− Q(St , At)
] (9)

▶ Given St+1 it moves deterministically in the same direction that Sarsa
moves in expectation.
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Expected Sarsa More Alternatives

Backup Diagram

Expected Sarsa
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Expected Sarsa More Alternatives

Advantages

▶ Expected Sarsa is more complex computationally than Sarsa, but in
return, it eliminates the variance due to the random selection of At+1.

▶ Given the same amount of experience we might expect it to perform
slightly better than Sarsa, and indeed it generally does.
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Games, Afterstates, and Other Special Cases Final Considerationss

Afterstates

▶ Our general approach involves learning an action-value function.
▶ But then we reviewed a TD method for learning to play tic-tac-toe

based on something closer to a state-value function.
▶ However, conventional state-value functions evaluates states in which

the agent has the option of selecting an action; while the tic-tac-toe
evaluates board positions after the agent has made its move.

▶ Afterstates are useful when we have knowledge of an initial part of
the environment’s dynamics but not necessarily the full dynamics.

▶ Thereby they produce a more efficient learning method.
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Games, Afterstates, and Other Special Cases Final Considerationss

Behind Efficiency

▶ Many position-move pairs produce the same resulting position:

X

O X XO

X

+ +

X

O X

▶ Thus must have the same value.
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Games, Afterstates, and Other Special Cases Final Considerationss
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