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ABSTRACT
Bats are nocturnal animals that can be identified by recording and 
analysing quantitatively their echolocation calls. For this task, many 
studies have used both parametric and non-parametric approxima-
tions with a variety of results. This urges the necessity of developing 
more call libraries, that should be analysed using the different 
statistical approaches to test their performance. This could be 
relevant in countries holding high biodiversity where the knowl-
edge of the variation in the call structure among species is still 
scarce. We constructed and validated a call library from bats inha-
biting a mountain ecosystem of central Mexico using the Linear 
Discriminant Function, Artificial Neural Network and Random Forest 
approaches. We recorded and analysed 2,325 pulses from 114 
individuals and 16 bat species of the families Vespertilionidae, 
Mormoopidae, Molossidae, and Natalidae. The Random forest 
model (81.3%) was the better species predictor over the artificial 
neural network and the discriminant function analysis (69% and 
62.1%, respectively). Our work is one of the few attempts to do this 
exercise that has been conducted in Mexico. The library can be 
useful as a starting point of research in other regions of the high-
lands in central Mexico where the information is still scarce.
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Introduction

Monitoring biodiversity is fundamental to understand ecosystem processes, both at 
regional and global levels (Ahlén and Baagøe 1999; Ochoa et al. 2000; Welsh and 
Droege 2001). Nevertheless, for some species, this task is challenging because both 
individual capture and tracking are difficult in the field. Bats are nocturnal flying animals 
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difficult to observe and identify without capturing individuals with the use of mist nets or 
other trapping devices (Kunz and Kurta 1988; Rydell and Speakman 1995; Speakman 
2001; Kunz et al. 2009). Additionally, some species can detect and avoid the nets, and 
many tend to forage beyond the places where they can be caught. In aerial insectivorous 
bats, capture instances are fortuitous, and its rates of captures do not reflect well the local 
abundance of the species (Kalko et al. 1996; O’Farrell 1997; Kingston et al. 2003; 
MacSwiney G et al. 2008). Luckily, the discovery of bat echolocation, and the develop-
ment of ultrasound detectors, which can record and store calls, have allowed researchers 
to detect and identify the bat species by using the ultrasound pulses that animals broad-
cast when they are flying (Griffin et al. 1960; Fenton and Bell 1981; O’Farrell 1997; Ahlén 
and Baagøe 1999; O’Farrell and Miller 1999; Britzke et al. 2013; Waters and Gannon 
2004; MacSwiney G et al. 2008; among others).

Acoustic identification is usually conducted by analysing the temporal and spectral 
structure of the pulses produced by bats and classifying them according to the char-
acteristics of reference recordings (Brigham and Cebek 1989; Vaughan et al. 1997; 
Parsons and Jones 2000; Britzke et al. 2002, 2011; Redgwell et al. 2009). Reference 
recordings are obtained from well-identified individuals that have been successfully 
captured and recorded when they are flying as in typical natural conditions. Calls 
recorded from the wild animals can be assigned to species by comparing them to the 
reference calls by visual inspection in case of species with idiosyncratic echolocation 
calls, or by quantitative methods that reduce the bias associated with the researcher 
performing the identification (Russo and Jones 2002; Waters and Gannon 2004; 
Parsons and Szewczak 2009). In this regard, many studies have used parametric 
classification methods to complete the task (Krusic and Neefus 1996; Britzke et al. 
2002; Vaughan et al. 1997; Russo and Jones 2002; Biscardi et al. 2004; among others), 
and some others have explored other non-parametric machine-learning approaches, 
with different results (Herr et al. 1997; Burnett and Masters 1999; Parsons and Jones 
2000; Parsons and Obrist 2000; Broders et al. 2004; Skowronski and Harris 2006; 
Jennings et al. 2008; Redgwell et al. 2009; among others). Because call parameters 
tend to vary among individuals of the same species due to age, size, gender, presence 
of conspecifics and geographical distribution (Brigham and Cebek 1989; Jones et al. 
1992; Kalko and Schnitzler 1993; Obrist 1995; Barclay 1999; Kazial et al. 2001; Russo 
et al. 2001), and the performance of the statistical methods may differ in regard of the 
algorithms they use (Biscardi et al. 2004), high differences in the probability of accurate 
identification of species have been reported. This urges the necessity of developing 
more regional call libraries that should be analysed using different statistical 
approaches to test their performance. This could be especially relevant in countries 
with a high diversity of bat species, where monitoring has been traditionally conducted 
with the use of mist nets (O’Farrell and Miller 1999), and the knowledge of the variation 
in the call structure among species is still scarce (but see Orozco-Lugo et al. 2013; 
Rivera-Parra and Burneo 2013; Rodríguez-San Pedro and Simonetti 2013; Zamora- 
Gutierrez et al. 2016).

Here, we developed and validated a call library from 16 bat species inhabiting a mountain 
ecosystem of Central Mexico. To do this, we used both parametric (a Discriminant Function 
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Analysis -DFA-) and two non-parametric (Artificial Neural Network -ANN- and Random 
Forest -RF-) approaches. Because it has been reported that most of the call parameters of 
insectivorous bats tend to present a non-parametric structure (Waters and Gannon 2004), 
we predicted that ANN and RF would have better accuracy for species identification than 
the DFA.

Material and methods

Study site

Our study was conducted at La Malinche National Park (hereafter LMNP) (19°13ʹ34.08”N, 
98° 1ʹ28.92”W; 4100 m a.s.l.), a mountain ecosystem located in Central Mexico (Acosta and 
Kong 1991). The site is a natural protected area that is mainly composed of crops in the 
lowlands, and Pine, fir forests, and mountain prairie areas at the middle and high elevations 
(Villers et al. 2006). Climate is temperate sub-humid with a rainy season in summer 
(INEGI 1987), and the average annual ambient temperature is 15°C (Lara 2006).

Because we were interested in being able to classify the calls of all species that could be 
present at the park, we first constructed a potential list of the bats that might occur in the 
area. To do this, we consulted maps of the species presented by Medellín et al. (2008) and 
the IUCN List for Threatened Species (https://www.iucnredlist.org). Nevertheless, we 
just were able to capture half of the species of the list with our mist-netting effort in the 
study site (see results). So, we completed our library with calls obtained from the nearest 
localities available from LMNP (Table 1).

Bat captures

We captured bats from 2014 to 2018 as part of continuous monitoring that has been 
conducted in LMNP, and the other localities present in the vicinities of the study site 
(Table 1). Bats were captured with 3 or 6 m long and 2 m high mist nets set in the forest, 
out of the caves when animals were emerging from their roosts or in waterbodies that the 
bats visited for drinking or foraging. Nets were open at dusk, checked every 
20–30 minutes, and closed at ~01:00 am. We also obtained recordings of bats emerging 
from roosts from whose specific identity we knew after previous inspections. Captured 
bats were identified to species level with the use of Mexican field guides (Medellín et al. 
2008), and their age and reproductive condition were registered. For taxonomic names, 
we followed Ramírez-Pulido et al. (2014). Body mass was obtained either with the use of 
an electronic balance to the nearest 0.2 g (Ohaus®) or a spring balance to the nearest 0.5 g. 
Age of bats (i.e., either juvenile or full-grown) was assessed by checking the presence of 
the epiphyseal gap of the fourth metacarpal bone of the wings (Kunz et al. 1996). After 
taking measurements, bats were released at their capture site, and the echolocation calls 
that the animals broadcasted on their departure were recorded. To collect as much call 
variation as possible, we recorded both males and females as well as juvenile bats (Britzke 
et al. 2010, Table 1). Animals were captured and handled under permission of the 
Mexican Department of Wildlife Management (SEMARNAT 07019, and FAUT-0251 
granted to our institutions).
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Call records

We recorded search echolocation calls from bats that were released near the places where 
individuals were captured: a) in a zip-line or b) from the hand. Both methods have 
demonstrated to be quite effective to record calls to build reference call libraries of 
insectivorous bats around the world (Szewczak 2004). We also recorded some individuals 
of Mormoops megalophylla and Eptesicus furinalis when bats were flying freely (Table 1). 
The zip-line where the bats were recorded had an extension of ~10 m. When bats were 
released either in the zip line or from the hand, the person holding an ultrasound detector 
(either Petterson -models 1000x and D980-, Pettersson Elektronik AB, Uppsala, Sweden, 
or an Avisoft UltraSoundGate model 116 H; Avisoft Bioacoustics, Glienicke, Germany) 
was positioned from 10 to 30 m in front of the bats’ flying trajectory, and the calls emitted 
by the animals were recorded. This was similar to the recordings obtained from the free- 
flying bats, but the person doing the recordings was positioned out of the cave or within 
the vegetation where animals were flying freely. Calls were digitally recorded at 
a sampling rate of 300 kHz, which allowed us to record sounds of up to 150 kHz well 
above the maximum frequency of the calls, including functional harmonics broadcasted 
by all the species considered in the library (Rydell et al. 2002).

Data analyses

Recordings
Recordings were analysed using the Sonobat® software ver. 3.1.5 (Szewczak 2010). For the 
analysis, we used the sequences that had the highest signal-to-noise ratio (i.e., those with 
a quality higher than 85%). We chose 15 variables (3 temporal and 12 spectral) that have 
been reported in the bibliography to be most useful for call identification of insectivorous 
bats (Kalko and Schnitzler 1989; Vaughan et al. 1997; Redgwell et al. 2009) (see appen-
dix). In all cases, we measured the harmonic with the most energy. Using parameters 
universally recognised to identify bat calls may enhance the repeatability of data among 
researchers (Britzke et al. 2010).

Building and validating the classification tools
For the validation of calls (i.e., the evaluation of the capacity of the algorithms to correctly 
identify the known calls), we used each pulse as the unit of measurement. To do the 
acoustical identification, we used three different methods, one parametric: DFA (Sokal 
and Rohlf 1981); and two non-parametric: ANN (Haykin 1999) and the RF algorithm 
(Breiman 2001).

We choose these methods because it has been proved that they provide good classi-
fication results for insectivorous bats (Britzke et al. 2010; Zamora-Gutierrez et al. 2016). 
While DFA constructs discriminant functions based on the linear combination of vari-
ables that maximises the differences of the featured means to allow predictions (Poulsen 
and French 2008), NNA is a non-linear adaptive machine-learning algorithm that trains 
and correct itself to optimise the model to perform the identifications, and the RF 
algorithm constructs a series of decision trees to predict and classify the variables to 
make classifications (Cutler et al. 2007).
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Because data manipulation previous to analysis tends to be time-consuming, we trained 
the data for the models in the simplest way we could (i.e., we did not: i) eliminate any 
correlated variable, and ii) separate the frequency modulated – FM – from the quasi- 
constant frequency-modulated – QCF-FM – and the constant frequency-modulated – CF- 
FM – calls from the data set). In this way, the classification tools allowed us to analyse the 
data once they were obtained. In all models, we randomly assigned 50% of the calls of each 
bat species for the training data set and evaluated the correct identifications in the 
remaining 50% of calls. Before being split, data were randomised within species to avoid 
pseudo-replication due to: 1) the recording method and the place where the animals were 
recorded, and 2) the data associated with the individuals as their identity, sex, or age. The 
ANN had a very simple structure and consisted of three layers: 1) a layer of 15 node inputs 
(i.e., the call variables we chose, see appendix), 2) a hidden layer with 16 nodes, and 3) an 
output layer with 16 nodes that corresponded to the number of bat species we intended to 
classify. For this model, we used a preset decay value of 0.001. We chose 16 nodes in the 
hidden layer because although there is not a clear rule for assigning this parameter, it is 
highly recommended that the number of nodes would be between the nodes of the input 
and the output layers (Samarasinghe 2007). The RF classifier consisted of 500 trees, and 
the number of variables tried at each split was three. All analyses were performed in R ver 
3.5.0 (function lda from the Car library for the DFA, function nnet from the nnet library 
for the ANN analysis, and function RandomForest from the RandomForest library for the 
RF analysis) (R Core Team 2018). All values presented in the results section are showed as 
means with their respective standard deviation unless noted otherwise.

Evaluation of the models’ performance
We evaluated the models’ performance by calculating the receiver operating character-
istic curve (ROC) for each predictive algorithm. ROC is a graphical representation 
(where true positive rate -TPR- is plotted in the Y-axis and false-positive rate -FPR- is 
plotted in the X-axis) which helps to illustrate the diagnostic capacity of classifiers 
(Fawcett 2006). ROC’s have been used in diverse scientific fields of science to evaluate 
and compare models (e.g., Bradley 1997; Goldbaum et al. 2002; Hobson et al. 2014). For 
binary classifiers, ROC is represented by a single point in the ROC space (Fawcett 2006). 
A perfect classifier is that placed in the coordinates 0,1 of the ROC space. This point 
represents a model with both no false negatives and no false positives (Fawcett 2006).

To calculate the ROC curve, we first generated the confusion matrix outputted from 
each model. We then counted the total number of true positives (TP), false positives (FP), 
false negatives (FN), and true negatives (TN). We calculated TPR and FPR according to 
Fawcett (2006) as: 

TPR ¼
TP

TP þ FNð Þ

where TP and FN are the total scores by the model true positives and false negatives, 
respectively, and: 

FPR ¼
FP

FP þ TNð Þ

BIOACOUSTICS 7



where FP and TN are the total scores by the model of false positives and true negatives, 
respectively. We also calculated the area under the curve (AUC) from each model. Data 
were obtained from the confusion matrix we previously obtained from each model. The 
AUC is an effective and combined measure of TPR and FPR that describes the inherent 
validity of classifying models (Bradley 1997). Maximum AUC = 1 means that the 
diagnostic test is perfect in the differentiation between the correct and incorrect classi-
fications. AUC = 0.5 means that classifications occur by a random process, while 
AUC = 0 indicates incorrect classifications in all subjects (Bradley 1997). In binary 
models, the use of AUC has been controversial because the linear function calculated 
by common software tends to overestimate the AUC. To overcome this overestimation, 1) 
we used the step function interpolation to generate the ROC curve, and 2) calculated the 
AUC manually following Muschelli (2019). AUC was estimated using the formula: 

AUC ¼ TPRð Þ 1 � FPRð Þ

Results

We obtained a total of 2,325 pulses from 114 individuals and 16 bat species of the families 
Vespertilionidae, Mormoopidae, Molossidae, and Natalidae. Eight species were captured 
in LMNP and eight of them caught nearby the study site. We recorded both males and 
females as well as juvenile bats. 12 species were recorded with the hand released method, 
two with the zip-line technique, and two when bats were flying-freely (Table 1).

Description of the echolocation calls

Bats presented differences in the parameters of their echolocation calls. These parameters 
were highly variable, where the start frequency was the most variable feature, while the 
mean of the third quartile amplitude was the feature that varied less (Table 2). Bats of the 
families Vespertilionidae (i.e., those of the Myotis, Eptesicus, Corynorhinus and Lasiurus 
genera) (n = 10 spp.), Molossidae (i.e., bats of the Nyctinomops and Tadarida genera) 
(n = 2 spp.), and Natalidae (i.e., bats of the genus Natalus) (n = 1 spp.) presented typically 
FM echolocation calls (Figure 1). In this mode of echolocation, bats of the Myotis genus 
presented calls that were very much alike. On the other hand, bats of the family 
Mormoopidae showed QC-FM calls in bats of the genus Mormoops (n = 1 spp.), and CF- 
FM calls (n = 2 spp.) in bats of the Pteronotus genus (Figure 1). Except for N. macrotis 
which presented less pronounced echolocation calls, the rest of the FM echolocators 
showed steep downward echolocation pulses that varied from 2.8 ± 0.7 ms in M. velifer to 
9.0 ± 2.6 ms in N. macrotis. The rest of the bats which showed a mixture of components 
in their pulses (i.e., either QC-FM or CF-FM) exhibited more even calls, where 
M. megalophylla presented the shortest call duration (4.1 ± 1.2 ms) while P. parnellii 
displayed the longest one (21.2 ± 5.4 ms). Finally, Nyctinomops macrotis and 
N. mexicanus presented the minimum and maximum values in the lowest frequency 
(17.2 ± 5.0 kHz and 77.6 ± 22.0 kHz, respectively), as well as the frequency characteristic 
(18.4 ± 5.1 kHz and 80.4 ± 23.0 kHz, respectively) from all the bats measured in the call 
library (Table 2).
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Performance of models in species identification

For the development of the models to evaluate the species identification, we obtained 
a variable number of pulses which ranged from 19 from N. macrotis to 420 from E. fuscus 
(Table 3). In the LDA model, the three first linear discriminants explained 82.68% of the 
total variation, while the most explainable variables where call duration, the lowest 
frequency, and the end of the frequency. On the other hand, the mean of the second, 

Figure 1. Spectrogram of the echolocation calls of 16 insectivorous bat species composing the 
community of La Malinche National Park, a mountain ecosystem of central Mexico. Bats of the families 
Vespertilionidae: Come (Corynorhinus mexicanus), Epfu (Eptesicus fuscus), Epfi (E. furinalis), Laci 
(Lasiurus cinereus), Laeg (L. ega), Myca (Myotis californicus), Myme (M. melanorhinus), Myth 
(M. thysanodes), Myve (M. velifer) and Myvo (M. volans); Molossidae: Nyma (Nyctinomops macrotis) 
and Tabra (Tadarida brasiliensis); and Natalidae: Name (Natalus mexicanus) presented FM echolocation 
calls, while bats of the family Mormoopidae: Mome (Mormoops megalophylla) Ptda (Pteronotus davyi) 
and Ptpa (Pteronotus parnellii) showed QC-FM and CF-FM echolocation calls.
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third, and fourth quartile amplitude, and the frequency characteristic, the lowest fre-
quency, and the end frequency were the most explainable variables for ANN and the RF 
approaches, respectively.

The three algorithms we used performed differently. In all models L. ega presented 
the lowest percentage of correct identifications, nevertheless, this value was lower in the 
DFA than the ANN and the RF algorithms tested (5 %, 26.3, and 38.4% respectively). 
The DFA identified 100% correctly L. ega, while the ANN and the RF did it in 
P. parnellii and N. mexicanus respectively (Table 3). Finally, the overall percentage of 
correct classification differed among the three methods tested, where the RF model 
(81.3% of correct classifications) was the best species predictor over the ANN and the 
DFA approaches (69% and 62.1 of overall correct classifications, respectively) (Table 3). 
This same pattern was shown by the ROC and the AUC curves (Figure 2), where the 
single cut point of the RF model was the closest to the coordinate 0,1 and with the 
higher AUC value (0.78) respect to ANN (AUC = 0.63) and DFA (AUC = 0.62) 
respectively.

Discussion

Here we present the structure and the statistical validation (which was addressed with the 
use of three different statistical approximations), of the echolocation calls collected from 
a community of insectivorous bats inhabiting a National Park located in Central Mexico. 
Although many authors have compared a variety of statistical approaches to identify the 
bats in multiple call libraries collected around the world (e.g., Parsons and Jones 2000; 

Table 3. Percentage of correct identifications of the three different statistical 
approaches of bats inhabiting LMNP, a mountain ecosystem of central Mexico. In all 
approaches, we used 50% of the calls to train the models and the remaining 50% to 
make classifications.

Bat species by family (n) DFA (%) ANN (%) RF (%)

Vespertilionidae
Corynorhinus mexicanus (305) 83.4 84.8 89.5
Eptesicus fuscus (261) 77.4 77.7 85.1
E. furinalis (54) 73.1 92.8 88.4
Lasiurus cinereus (177) 66.3 83.7 93.4
L. ega (32) 5 26.3 38.4
Myotis californicus (234) 47.5 72.8 70
M. melanorhinus (239) 38.2 34.1 59
M. thysanodes (77) 66.7 54.7 85.7
M. velifer (242) 39.1 44.9 69
M. volans (420) 61.7 63.6 78
Molossidae
Nyctinomops macrotis (19) 100 75 90.9
Tadarida brasiliensis (67) 71.9 50 66.6
Mormoopidae
Mormoops megalophylla (35) 56.3 84.2 93.7
Pteronotus davyi (48) 86.2 67.8 95
P. parnellii (94) 90.7 100 98
Natalidae
Natalus mexicanus (21) 30 90.9 100
Overall accuracy 62.1 69 81.3

(n) = total number of calls obtained per bat species
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Biscardi et al. 2004; Armitage and Ober 2010; Britzke et al. 2011), to our knowledge, this 
is the first attempt to do this exercise that has been conducted in Mexico. This informa-
tion is useful for supporting acoustic monitoring in LMNP, and other areas nearby, as 
a complementary method to the traditional mist-netting (Ayala-Berdon et al. 2017). The 
library can be useful as a starting point of research in other regions of the highlands in 
central Mexico, where the information is still scarce.

Because the compilation of call libraries is aimed at the acoustic identification of bats 
detected in the wild habitat, usually for monitoring purposes, the correct classification of 
the echolocation pulses recorded from the animals is crucial. Several investigations have 
suggested that the success of acoustical identification of bat species is determined by: 1) 
the number of species present in a given ecosystem, and how similar they are in terms of 
their morphology and the structure of their echolocation pulses, and 2) the way that data 
is constructed and analysed quantitatively (Vaughan et al. 1997; Parsons and Jones 2000; 
Russo and Jones 2002; Britzke et al. 2002; Biscardi et al. 2004; Brigham et al. 2004; 
Redgwell et al. 2009). We assess these assumptions with the results we obtained below.
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Figure 2. Receiver operating characteristic (ROC) and area under the curve (AUC) to evaluate the 
diagnostic capacity of Discriminant Function Analysis (DFA), Artificial Neural Network (ANN), and 
Random Forest (RF) to evaluate the capacity of the algorithms to correctly identify the calls of bats 
inhabiting La Malinche National Park, a montane ecosystem of central Mexico. The black star indicates 
a perfect classification model with values of false-positive rate = 0 and true-positive rate = 1. Black 
diagonal line shows the ROC space when classification follows a random process (AUC = 0.50).
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Community composition of bats at LMNP

In this work, we found that LMNP may hold up to 16 insectivorous bat species belonging 
to the families Vespertilionidae, Mormoopidae, Molossidae, and Natalidae. Temperate 
forests are characterised by having a high dominance of insectivorous bat species (Patten 
2004). These species tend to show certain foraging strategies that have moulded their 
morphological and echolocation traits (Norberg and Rayner 1987). For example, the 
species which tend to forage within vegetation or along the borders normally present 
short and wide wings and emit FM pulses, while bats that usually forage in open spaces 
have long narrow wings and emit CF or a mixture of components in their echolocation 
calls (Norberg and Rayner 1987; Denzinger and Schnitzler 2013). In our study site, 75% 
of the species belonged to the families Vespertilionidae and Molossidae (Table 1), which 
have wide and narrow wings and emit FM echolocation pulses (Barrios-Gómez et al. 
2019). Several investigations have shown that the number of bat species and the way they 
echolocate could affect the performance of the call libraries. For example, Biscardi et al. 
(2004) and Russo and Jones (2002) found that while CF echolocators are easy to identify, 
the misclassifications tend to be high in bats emitting FM calls. According to these 
findings, in this work, we found that the percentage of accuracy of identification for 
the CF-FM echolocators (i.e., P.davyi and P. mexicanus) was high (from 84.2 to 98% for 
the whole algorithms tested) (Table 3). Conversely, we found high variability in the 
percentage of correct classifications (from 5 to 100%) among bats emitting FM pulses 
(Table 3).

In our models, some species showed a low accuracy in the classification performed by 
the three algorithms used. For example, L. ega presented the lowest percentages of call 
identifications in the DFA, ANN and RF models (i.e., from 5 to 38%), while N. mexicanus 
and T. brasiliensis showed 30% and 50% of accuracy in the DFA and ANN approaches, 
respectively (Table 3). For bats of the Myotis genus, the percentage of correct classifica-
tion ranged from 34.1 to 85.7% for all tested models. One possible explanation of these 
results may rely on the low sample size we obtained from these species, which would have 
reduced the estimates of the confidence of the models. Additionally, it has been reported 
that these species tend to show high plasticity in their echolocation pulses. For example, 
L. ega normally displays a short narrow-band tail in its echolocation calls when flying 
near obstacles, but the tail becomes longer when the bats fly in open spaces (Rydell et al. 
2002). On the other hand, it has been reported that N. mexicanus generally emit calls at 
very variable intervals, which are useful to animals either to catch prey airborne or in the 
surface of vegetation (Rydell et al. 2002). This is similar to what it has been found for 
T. brasiliensis, which can modify their echolocation calls (from FC to FM) depending on 
the structure of its environment, the presence of conspecifics, or when animals confront 
environmental noise (Gillam and McCracken 2007). In regard of the Myotis genus, 
several studies have found that the calls of the species comprising this group are very 
similar (Vaughan et al. 1997; Russo and Jones 2002). We believe that this is 
a consequence of their relatively recent diversification (Ruedi et al. 2013); and the close 
relatedness and similar ecology among the species (Parsons and Jones 2000). Then, 
although we standardised the recordings to increase the success of the algorithms tested, 
the plasticity of echolocation calls and the relatedness among the species could have 
affected the percentage of correct classification we found in our call library.
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Accuracy of the algorithms used to identify the bat species at LMNP

In this work, we found that the RF was the most successful algorithm for the species 
classification followed by the ANN and the DFA approximations. Similar results have 
been observed for other researchers in the past (e.g., Herr et al. 1997; Armitage and 
Ober 2010; Britzke et al. 2010; Nuñez et al. 2018). The success of non-parametric over 
parametric methods may be related to the non-parametric structure of the variables we 
measured in the calls (Britzke et al. 2010). Although it has been reported that DFA is 
quite robust to departures from normality (Mardia et al. 1994), it seems that these 
departures work well in low sample sizes (i.e., less than eight species according to 
Armitage and Ober 2010). However, the performance of DFA can be lower in cases 
with more classification groups, as in our study. Additionally, our models included 
some call parameters that were highly correlated (Hair et al. 2006). This would have 
added bias rather than increase the performance of the discriminant power of the 
analysis (Russo and Jones 2002; Armitage and Ober 2010). In this sense, it has been 
reported that RF has a better power to handle correlated variables even better than 
ANN (Armitage and Ober 2010). Both ANN and RF are non-parametric machine- 
learning methods that have been observed performing optimally in the identification of 
insectivorous bats (Veelenturf 1995; Breiman 2001; Archer and Kimes 2007; 
Samarasinghe 2007). Artificial Neural Networks, by one hand, can be taught to 
recognise patterns of the structure from the input data and they could minimise the 
errors caused by misclassifications using the back-propagation algorithm (White 1992). 
This characteristic improves the ability of the model to make better predictions over 
the unknown calls (Parsons and Jones 2000). Nevertheless, while ANN and RF are two 
non-parametric methods that are designed to deal with large samples, ANN tends to be 
sensitive to imbalanced data, while RF is not (Chen et al. 2004). Here, the number of 
pulses varied from 420 calls from E. fuscus to 19 in N. macrotis, and this could explain 
the lower accuracy showed by the ANN compared with the RF algorithm. In this 
condition, balancing data (either by weighting or resampling by over-sampling or 
under-sampling the data) is recommended (Buda et al. 2018). Nevertheless, this 
manipulation could be avoided by the use of algorithms, as the RF, that can handle 
such imbalances (Chen et al. 2004).

In our library, we found that the overall accuracy of species identification from the 
different methods used ranged from 62 to 81% (Table 3). These percentages may seem 
to be low compared with those that have been shown by other studies (e.g., 
MacSwiney G et al. 2008; Walters et al. 2012; Rodríguez-San Pedro and Simonetti 
2013). Nevertheless, in our study, we included calls from bats of different sexes, 
gender, and locations. We also performed the analyses in the simplest way we 
could, this is, we did not manipulate the data previous to the analyses, we did not 
eliminate any correlated variable and we did not separate the FM from the CF-FM 
calls from the data set. This gave our call library the advantage that it can be used in 
an automatic mode just immediately after the calls have been obtained. This could 
give an advantage to the researchers using the library, because the identification of bat 
species may be conducted once that the monitoring has been performed. Finally, we 
propose the development of more call libraries that should be evaluated to test their 
performance, especially in those places as the mountains were the information is still 
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scarce. This may enhance the understanding of the bat fauna composing the ecosys-
tems, where the monitoring has been traditionally performed with the use of mist 
nets.
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