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■ Abstract In Arabidopsis thaliana, the initiation of flowering is carried out by
four genetic pathways: gibberellin, autonomous, vernalization, and light-dependent
pathways. These processes are integrated by the function of the genes FD, FE, FWA,
PDF2, SOC1, and FT at the integration pathway. The integrated signal of the floral
induction is transmitted to the floral meristem identity genes LFY and AP1, and floral
morphogenesis is performed.
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INTRODUCTION

This review focuses on the initial process of genetic aspects of flowering in mainly
Arabidopsis thaliana. Many good reviews have been published (4, 7, 9, 11, 52,
58). This review tries to abolish duplication and be concise.

Flowering is the developmental turning point from the vegetative to the repro-
ductive phase. For plants, the induction of flowering is the most important part
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from the standpoint of reproductive strategy and allocation of limited resouces.
Monocarpic plants, in particular, perform the flowering only once in their lifecycle,
and the reproductive success depends entirely on this one opportunity. For humans,
the problem of flowering has been a long-term interest for the agricultural field as
well as for the basic plant science arena.

Strategy of Study

Laboratory strains (known as ecotypes) ofArabidopsisare early flowering and
the lateness was the initial screening character of flowering mutations. Thus, late-
flowering mutants were identified from the initial stage ofArabidopsisgenetics
to study time control of flowering (53). The process of flowering is redundant
because late-flowering mutants can be isolated, but nonflowering mutants can not.
Ironically, if nonflowering mutants exist we can not apply the tool of genetics.
Early-flowering mutants have been also isolated and analyzed (25, 100).

FLORAL DEVELOPMENT IS A REPRESSIBLE PROCESS

Because reproduction requires many resources, it is plausible to think that plants
prepare their resouces for the flowering. Flowering is a repressible developmental
process. Consistent with this notion, the wild-type counterparts of late-flowering
genes collected are positive factors for this repressible developmental function
toward flowering (53).

After the Koornneef study in 1991 (53) (described below), Sung and coworkers
(90) isolated intriguing mutants in 1992. The embryonic flower mutants immedi-
ately formed flowers (or at least flower-like organs) after germination (8, 20). If
the flower-like organ is really the flower, theEMF gene has the repressible func-
tion to prevent plants from immediately flowering after germination. There are
two EMF genes (6, 99). TheEMF1 gene codes for a novel protein of 121 kD,
which is a transcriptional regulator (6). TheEMF2 gene encodes a 71-kD Poly-
comb group (PcG) protein containing a zinc finger motif and a cluster of trypto-
phan and methionine-rich sequences (99). PcG proteins areVERNALIZATION2,
FERTILIZATION-INDEPENDENT SEED2, andSuppressor of zeste12genes (10,
27, 28, 31, 32, 49, 91, 101). TheEMF1andEMF2genes initially were given central
roles for the flowering pathway by the following evidence. The early flowering mu-
tations inEMF1andEMF2genes are epistatic not only to those inGI or COgenes
but also to those in theELF1,ELF2, orELF3genes (21, 37, 97).AP1::uidA(=GUS)
fusion (44) can express beta-glucuronidase inEMF1 andEMF2 mutants. How-
ever, theEMF mutants showed developmental defects other than those related
to flowering: The germination was late, the elongation of hypocotyl was poor,
the expansion of cotyledon was poor, and the embryogenesis was poor after the
late-globular stage (8, 20). Thus, the existence of theEMF1 andEMF2 mutants
shows that the abnormal developmental terminal revealed unspecified develop-
mental errors. The early flowering might be a side effect of the developmental
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terminal, or the blind alley. The weak allele,emf1-2, can express the reporter of
AP1::uidA fusion in cotyledon hypoctyl ectopically, but severe alleleemf1-1can
not (20). Currently, we might speculate that the role ofEMF1 andEMF2 genes
are responsible for maintaining the repressible state of flowering-related genes as
young vegetative tissues at the shoot apical meristems (SAMs). In a recent paper,
Sun’s group (70) also proposed thatEMF genes may function independent of a
regular flowering pathway (descibed below) and are developmental repressors that
allow plants to stay at a vegetative state.

Other classes of early-flowering mutants were identified among developmetally
abnormal mutants. They are mutants inCURLY LEAF(CLF) andWAVY LEAVES
AND COTYLEDONS(WLC) genes (31, 58). They are also PcG genes (10, 27,
28, 31, 32, 49, 91, 101). It has also been thought that their apparent flowering
phenotypes are the secondary and the abnormal developmental stages. Another
observation that is difficult to explain is flowering in darkness. It is known that
some plants can make flowers (or flower-like structures) in darkness by the sup-
ply of sugar (another light-dependent product) (41). Redei (5, 80) found, and we
confirmed, flowering in the liquid-shaken culture ofArabidopsis. Redei thus
thought that flowering was a default state, meaning that the plants precociously
make flowers unless the repressors function. Roldan et al. (84) extended these
observations: Some (but not all) late-flowering mutants made flowers earlier by
the supply of sugars at the SAM region in darkness. Theconstitutive photomor-
phogenesis 1(cop1) mutants can make flowers in darkness if sugar is supplied
in media (67). These lines of observations favor the notion that flowering is the
repressible developmental pathway. We found that the flowering in darkness in the
cop1-6mutant may use the regular flowering pathway (light-dependent pathway)
described below (M. Nakagawa & Y. Komeda, unpublished results).

Our knowledge of the effect of the sugar for enhancing promotion of floral
initiation is still inconclusive (23, 71).

CONSTRUCTION OF GENETIC NETWORK

The working hypothesis was made by the initial construction of a genetic net-
work of flowering control. Koornneef and coworkers (53) performed the study.
There are physical, chemical, and biological signals/information for the initiation
of flowering. The four constructed pathways corresponded to these signals. In
Arabidopsisand some model plants the genetics-based framework model can now
be assessed by molecularly cloning each member. Currently, there are four path-
ways established (51); Figure 1 shows the sequence.

GIBBERELLIN PATHWAY

Gibberellic acid (GA) is a sort of florigen for long-day (LD) plants because of the
following observation:ga1 mutants ofArabidopsis thaliananever flower under
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Figure 1 The genetic pathways of flowering inArabidopsis thaliana. See the text for
gene descriptions. Positive (arrows) and negative (T-lines) interactions are described.
Dotted lines show undescribed interaction.

short-day (SD) conditions (95). Thus, GA satisfied most criteria for the florigen
concept except one, which is universal reagent among LD and SD plant species
(24, 48). Blazquez et al. (12) found that thega1-3mutant lostLFY activity in
SD conditions. WhenLFY is overexpressed by the transgenic method,ga1-3mu-
tation could flower under SD conditions. Because the GA-signaling mutations
in RGA and GAI genes rescued the phenotype ofga1 mutants, the GA signal
(not the GA molecule) is the information for the up-regulation of the pathway
(24).

AUTONOMOUS PATHWAY

Plants require not only external (environmental) factors but also internal (devel-
opmental) factors to promote flowering.

Although the ecotypes used in the laboratory ofArabidopsis thalianaflower
earlier, many ecotypes flower very late or require the cold treatment, vernaliza-
tion. Amasino and coworkers (68) shed light on this mystery. TheFRIGIDA(FRI)
gene is responsible for the differences of the lateness of flowering amongAra-
bidopsisecotypes (45). TheFRI codes for a protein with 619 amino acids that has
coiled-coil domain in two positions (45). The predicted protein did not show any
significant match to known protein domains. TheFRI is a positive regulator of the
FLC repressor for flowering. The coiled-coil domains may have a role in regulat-
ing theFLC gene (68). Early-flowering ecotypes, such as Columbia, Landsberg
erecta, and WS, have mutations in theFRI gene (45). Also, the southern ecotypes
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have defectiveFRI alleles. TheFLC gene encodes the MADS-box protein family
belonging to a new subfamily (68, 76). TheFLC also plays a key role in vernal-
ization (88).

FCAandLD are repressible for the expression of theFLCgene, thusFCAorLD
loss-of-function mutants are late flowering (53). TheLD gene codes for a protein
carrying nuclear localizing signal, homology to mammalian transcription domain,
and homology to plant DNA-binding homeo domain (57). TheFCA gene codes
for a RNA-binding protein and has the domain of WW-protein interaction (63).
It has homology to SX-1 and ELAV genes ofDrosophila(63). TheFCA gene is
transcribed and alternatively spliced as alpha, beta, gamma, and delta products (63,
72). The gamma message is the only functional message because the transgenic
plants expressing higher gamma messages flowered earlier (64).

FVE, FPA, andFY genes belong to this pathway and have similar functions to
theFCAgene (72, 87). WhereasLD is mainly the repressor of theFLC gene,FVE,
FPA, andFYhave functions to repress theFLC gene as well as the direct positive
factor for the integration pathway shown below. They are redundant genes in the
autonomous pathway that ensure the developmental tuning of flowering. Because
the insertional mutations in theFLC gene did not induce early flowering (88),
theFLC is not the only regulatory point nor the master regulatory gene.

VERNALIZATION PATHWAY

There are two genes identified for the process of vernalization,VRN1andVRN2
(19).VRN2has the repressible role for expressing the key gene,FLC (88).VRN2
codes for a protein with homology to PcG proteins (28). Thus,VRN2may function
to keep theFLC-chromatin state for down-regulation.

Accordingly, autonomous and vernalization pathways are partially cross-
talkable using theFLC function. A recent study (101) to isolate vernalization-
independent mutants identifiedVIP1 to VIP7 genes. TheVIP4 was cloned and
encodes another PcG protein (101), and is a repressor of theFLC gene.

LIGHT-DEPENDENT PATHWAY

Red light is accepted by the phytochrome proteins, which are encoded byPHYA
throughE genes inArabidopsis thaliana(17, 75, 81). Blue light receptors are
named as cryptochrome proteins, which are encoded byCRY1andCRY2(2, 60).
Koornneef et al. (53) identified the mutants in theCRY2gene asfhamutants. The
fha mutants were initially identified as late flowering in LD under white light.
PHYA, PHYB, CRY1, andCRY2are the members of the light pathway of flowering
(58).

ThePHYBloss-of-function mutants are early flowering (75). Becauseco phyB
double mutants did not show evidence of early flowering,CO is responsible for
early flowering in thePHYB-minus mutants (77). Under red light,PHYBfunctions
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by the repression of theCO function (77). Under blue light,CRY2inhibitsPHYB
and induces flowering (60). Another cryptochome geneCRY1cooperatively func-
tions with theCRY2gene to repress the function of theCOandGI genes (69). The
functions of genesLHY, CCA1, ELF3, andTOC1process the physical signal (25,
39). The processed signal is transmitted to theGI gene and the resultant signal acti-
vates theCOgene (89). Theearly in shortdays 4mutant belongs to this class (82).

The late-flowering, and thus supervital because of a prolonged vegetative life
span,GI mutants are defective for a membrane protein with a membrane-spanning
region (26, 74). TheGI protein is expressed with circadian rhythmicity. Thegi
mutants are defective for the expression ofCCA1andLHYgenes.

Theco mutants are late flowering under LD (53). TheCO gene has homology
to the Zn-finger domain proteins of transcriptional factor (77). The quantity of the
COmessage was proportional to the earliness of flowering in transgenic plants and
seems to be rate limiting for flowering (86). Thus,CO is functional for integrating
the light pathway.

The transgenic plants expressing theCOgene to some extent ectopically rescued
the lateness of flowering by the defect in an autonomous pathway (described
below). Thus, the autonomous pathway seems to be partially redundant to that of
the light-dependent pathway.

FLORAL MERISTEM IDENTITY GENES

The success of the A-B-C model for floral morphogenesis in the developmental
biology of plants attracted many biologists belonging to nonplant sciences and
gave impact to this field (22). The model is now extended to be an A-B-C-D-E
model for the morphogenesis of floral development (43). The A+ B and B+ C
functions are conserved among many plant species but the interaction including A-
or C-specific function is not so simple. The C-function is tightly linked to the fate
of the apical shoots, such as the decision for either determinate or indeterminate
shoots. The A-function is tightly linked to the floral meristem identiy (FMI) genes.

The studies using mutants predicted that three FMI genes were required ito
develop floral primordia (13, 14, 65, 78, 88),LFY, AP1, andCAL (15,18, 33). The
phenotype of the loss-of-function-type mutations inLFYorAP1gene is as follows:
Flowers either have vegetative characteristics or have been replaced by vegetative
shoots (in severe mutations). The functional redundancies were detected inAP1-
LFY andAP1-CAL genes.AP1andLFY belong to the MADS domain genes and
LFYcodes for an unrelated transcriptional factor (65, 94). The possible molecular
functions in FMI genes are DNA transcriptional factors. Constitutive expression of
theLFY transgene accelerates the time to flowering (40, 59). In these plants,AP1
expression was enhanced in floral primordia and also detected in leaf primordia.
Thus, theLFY induces expression ofAP1. Molecular interaction was also shown
(93). LFY is also thought to promoteCAL expression (93). Hence, a positive
feedback model at floral primoria is proposed.
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After extensive studies trying to understand FMI genes, the initiation of flow-
ering has been shown as the up-regulation of the FMI genes at shoot apical
meristems. The transcription ofLFY genes is detected high in floral primordia
and low in primordia of leaves (93). The expression is increased abruptly, for ex-
ample by transferring plants from SD to LD. The increase was also detected in
continuous LD or even in continuous SD. But the rate of the increase was lined
as [SD to LD transfer], [continuous LD], and [continuous SD]. Because this order
corresponded to the readiness of flowering, the threshold seems to be in the level of
LFY transcript for the initiation of flowering. The leafy mutants have an extended
vegetative phase and their flowers are often incompletely converted to vegetative
shoots. Transgenic plants withLFY or AP1genes of constitutive expression have
very early flowering (13). As speculated above, the plants that express theCALgene
constitutively are also the same phenotype, but don’t flower as early. Theap1mu-
tation nulifies the acceleration by constitutiveLFYexpression. But theLFYmutant
retains the early-flowering phenotype by constitutively expressing theAP1gene.
Thus, the function ofLFY to induce flowering mainly promotes the expression of
theAP1gene. The reason of the term “mainly” is because theLFY mutants can
finally make flowers and then LFY is not the only positive factor of theAP1gene.

Accordingly, expressing FMI genes is primarily important. In other words, the
study of flowering is equal to the study to know the pathway to up-regulate FMI
genes.

INTEGRATION PATHWAY

All of the pathways shown above seem to converge in some genes. Four genetical
pathways induce the FMI genes for flowering as whole.

The FMI geneLFYplays a critical role in this convergence (14).LFY regulates
the transcription ofAP1, AP3, andAGand gives floral identity to the SAM tissues.
Thus,LFY is the switch of the floral development but is not of the floral evocation,
which the flowering initially determines (9).

FT is the important switch of the floral evocation. Theft mutants are the late-
flowering mutants that Koornneef et al. (53) first described. The enhancement of
flowering byLD is completely disappeared inft loss-of-function mutants. Thus,
they are late flowering especially in LD. Theft mutants were unresponsive to
vernalization, as inco, gi, andfha(=cry2) mutants. The analysis usingft double
mutants withco, gi, andfha mutations showed that the defective point is the en-
hancement of flowering in a light-dependent pathway. Araki’s and Detlef’s groups
(46, 50) isolated theFT gene.FT has high homology toTFL1 (16). ThisFT group
has six homologous members in theArabidopsisgenome. Araki and coworkers (M.
Abe & T. Araki, unpublished data) characterized theARABIDOPSIS THALIANA
CENTRORADIALIS(ATC) gene. TheFT gene has the following characteristics:
It is expressed universally, it is expressed maximumly at the onset of floral induc-
tion, it is positvely regulated by the LD condition, and it requires theCOgene for
positive regulation in the LD condition. TheCO gene directly interacts with the
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FT gene (86). When theFT gene was consititutively expressed, transgenic plants
flowered very early irrespective of LD or SD. The early flowering of constitutively
CO-expressed plants was cancelled by the mutation inFTgenes. Thus, theFT is un-
der the light pathway. When grown in a SD condition or in aCO-minus condition by
the mutation in aCOgene, these plants still can express theFT message. Thus, the
expression of theFT gene is controlled not only by a light-dependent pathway, but
also by a light-independent pathway. The autonomous pathway may control the ex-
pression of theFTgene because the expression of theFTgene was down-regulated
by the mutation of theFCA gene. Additionally, the early-flowering transgenic
plants by the constitutive expression of theFT transgene did not become late flow-
ering after the introduction of anfcamutation. As can be predicted by the scheme
of the autonomous pathway, theFTappears to be regulated byFLC, a key of the au-
tonomous and vernalization pathway.FT is also repressed during the noninductive
phase by theEBSgene (30), which shows thatFT expression is doubly repressed.

How doesFT induce floral evocation in a molecular mechanism? The protein
encoded by theFTgene seems to be homologous to the phosphatidylethanolamine-
binding protein (PE-BP), and belongs to the same group ofTFL1andCENgenes
(16, 78). The crystal structures were proposed in PEBP and CEN proteins, and they
appear to have the same 3-dimensional structure. Thus,FTandTFL1may have the
same structure as some of the mutations that reside at the presumptive functional
domain of the ultrastructure. Thus, it may be plausible to speculate the same
function to the animal PEBP. Biochemical activity of the PEBP is interesting. PEBP
is the precursor form of the hippocampal cholinergic neurostimulating peptide
(HCNP), is the Raf-1 kinase inhibitor protein, and is the specific inhibitor of
thrombin. The TFS protein, a yeast member of the PEBP family, is a specific
inhibitor of carboxypeptidase Y. TheSOC1(=AGL20), has critical roles in the
convergence (38).LFY functions in part downstream ofSOC1(56).

The expression ofFT andSOC1is controlled positively not only by light path-
way, but also by the autonomous pathway acting throughFLC negatively. The
signal of the vernalization increasesSOC1expression presumably via reduction
of FLC levels (56), andSOC1can be up-regulated by a gibberellin pathway as
well (14). Accordingly,SOC1andFT act as the convergence of all four pathways
(38). Therefore,FT, LFY, andSOC1are integral to the process of the flowering
pathway (13,14, 56).

The mutations inTERMINAL FLOWER 1(TFL1) are semidominant and early
flowering with determinate inflorescence (3). Thus,TFL1codes for a repressor of
the flowering. Thetfl1 is an interesting mutation because it has mutations in two
aspects for flowering, temporal (early flowering), and spatial (terminal-determinate
flowering) regulations. TheTFL1 codes for a protein with homology toFT, as
above (16). TheTFL2 gene was initially identified as an enhancer mutation of
the tfl1 mutant (54, 55). It codes for a protein with homology to heterochromatin
protein 1 (HP1) of animals and Swi6 of fission yeast (92). TheTFL2 functions as
a negative repressor of theFT expression. Note that we cannot explain the role of
theTFL1 gene (3). Although thetfl1 mutants flowered earlier than wild type, the

A
nn

u.
 R

ev
. P

la
nt

. B
io

l. 
20

04
.5

5:
52

1-
53

5.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 I

ow
a 

St
at

e 
U

ni
ve

rs
ity

 o
n 

04
/0

4/
05

. F
or

 p
er

so
na

l u
se

 o
nl

y.



24 Apr 2004 19:50 AR AR213-PP55-20.tex AR213-PP55-20.sgm LaTeX2e(2002/01/18)P1: GDL

TIME TO FLOWER INARABIDOPSIS 529

TFL1 transcription is inhibited by the FMI genes. Thetfl1-minus phenotypes are
puzzling; early flowering intfl1 single,fwa tfl1double, andft tfl1 double mutants,
but late flowering and vernalization infca tfl1, fve tfl1, andfpa tfl1double mutants.

As described above, the rescue of lateness of flowering was established in some
dark-grown late-flowering mutants but not in other mutants (84). The nonrescued
class of mutations werefd, fe, ft, andfwa. They were originally included in the
class of the final stage, which is now called the integration pathway.

Because initially known mutants inFWA gene were late flowering, theFWA
gene’s function was thought to be positive for flowering (53). TheFWAgene codes
for a GL2-type homeodomain protein. The semidominant and late-flowering mu-
tants were not loss-of-function types but ectopically expressed types. TheFWA
gene is not expressed in plants of early-flowering Columbia wild type.ATML1and
ANTHOSYANINLESS1(ANL1) are the same group of genes, the GL2-type HD
gene (1). We identified thePDF2gene as a L1 layer-specific gene (1). The overex-
pressed plants were late flowering (1). We also confirmed that the overexpression
of ATML1andANL1genes let transgenic plants late flower to some extent. This
group of genes is responsible for the repression of flowering if these genes are
overexpressed. The study to elucidate the molecular nature is underway.

The FD andFE genes belong to this integration pathway.FD was cloned to
have transcriptional sequence identity (T. Araki & M. Abe, unpublished data).
The functions ofFWA-FD-FE genes to express theFT gene may be the key to
understanding the integration pathway. We would then be able to construct the
functional network depicted in Figure 1.

INFORMATION SIGNAL

After constructing the model for a genetic network, the cross-talks among four
pathways appear to have been known.

The next step is to figure out the florigenic signal in the flowering pathway.
After the florigen hypothesis was proposed, a specific signal was produced and
transported (7). The signal should have a very important identity, mobility (29).
Since the discovery of Systemin, our knowledge for the mobile signal has been deep
but is still poor. The RNA is now transferred as a “morphogen” (47). If the RNA
form is the signal of the information, there may be several lines of circumstantial
evidence. Note thatFCA andFPAmay code for RNA-binding proteins (63, 87).

The tuberization of potatoes was inhibited by the overexpression of theAra-
bidopsis COgene (66). Thus, the tuberization appears to use the same mechanism
as flowering (42) and its signal may be moveable probably via the vascular system.
Any form of sucrose may also be a candidate for the signal.

Recent knowledge of microRNA for regulating plant genes favors this RNA-
signal “hypothesis” (34–36, 61, 62, 73, 79, 83). The GRAS family genes are
included in this class. The GRAS familyGAI andRGAgenes are important in the
GA pathway (61, 83).
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Because there have been many chromatin-structure-related genes in the flow-
ering process, we note the importance of chromatin structure for the process of
flowering (27, 28, 31, 49, 54, 101).

There have been many MADS-box genes identified in the flowering system (14,
56, 65, 68, 76). Thus, understanding the precise role of MADS-box genes will be
the key to clarifying the process of flowering.

FUTURE PROSPECTS

The above pathways were constructed by the study of mutants and genes in
Arabidopsis. We speculate this may be applicable to other plant species. However,
we should mention the following: The use of other plant species, such as Japanese
morning glory, rice, and Lemna, should strengthen our knowledge of flowering.
The studies and summation of data using Japanese morning glory should com-
plement the knowledge of the light pathway (85). Those studies using rice will
shed new light on SD and genetics-applicable material (98). Those using Lemna
will reveal active agents for flowering in SD and LD because the Lemna are very
sensitive in a liquid-culture medium (96). Because the grafting was a powerful
tool for understanding the movement of the “signal,” the use of plant species that
are applicable to the grafting technique is also recommended (66).
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