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Abstract

Early embryogenesis is the critical developmental phase during which
the basic features of the plant body are established: the apical-basal axis
of polarity, different tissue layers, and both the root pole and the shoot
pole. Polarization of the zygote correlates with the generation of apical
and basal (embryonic and extraembryonic) cell fates. Whereas mecha-
nisms of zygote polarization are still largely unknown, distinct expres-
sion domains of WOX family transcription factors as well as directional
auxin transport and local auxin response are known to be involved in
early apical-basal patterning. Radial patterning of tissue layers appears
to be mediated by cell-cell communication involving both peptide sig-
naling and transcription factor movement. Although the initiation of
the shoot pole is still unclear, the apical organization of the embryo
depends on both the proper establishment of transcription factor ex-
pression domains and, for cotyledon initiation, upward auxin flow in the
protoderm. Here we focus on the essential patterning processes, draw-
ing mainly on data from Arabidopsis thaliana and also including relevant
data from other species if available.
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Zygote: fertilization
product of egg and
sperm cell
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INTRODUCTION

The basic body pattern of a multicellular
organism is established from the zygote—the
fertilized egg cell—during embryogenesis. In
flowering plants, embryogenesis lays down the

basis for a stereotyped seedling displaying a
simple body organization of two superimposed
patterns. Along the main apical-basal axis of
polarity, the apically located shoot meristem,
which is usually flanked by one or two cotyle-
dons, is linked with the basally located root
meristem via the hypocotyl and seedling root.
The perpendicular radial pattern comprises a
series of concentrically arranged tissue layers,
from the outermost epidermal tissue via the
ground tissue to the centrally located vascular
tissue. Although the body organization of the
seedling looks similar in different flowering
plant species, its developmental origin can vary
between species. For example, members of the
Brassicaceae family (such as Arabidopsis thaliana)
display distinct, nearly stereotypic cell-division
patterns in early embryogenesis, whereas
embryos of other flowering plant species grow
by seemingly random cell divisions (62, 63, 66,
94). In the former group of species, the origin
of seedling tissues and organs can thus be easily
traced back to specific cells or groups of cells
in the early embryo (Figure 1). Although this
correlation might suggest a causal link between
the spatial regulation of cell divisions and pat-
tern formation in the early embryo, A. thaliana
mutants such as fass ( fs) displaying altered cell-
division planes nonetheless generate a normal
body organization, whereas morphogenesis is
compromised (147). Thus, the stereotypic cell-
division pattern seen in A. thaliana embryos
expresses, but is not instrumental to, develop-
mental decisions and might facilitate such deci-
sions in the early embryo comprising very few
cells.

This review covers recent studies that ad-
dress molecular mechanisms underlying the
origin of the apical-basal axis of polarity, the ini-
tiation of both the root meristem and the shoot
meristem as well as the cotyledons, and radial
patterning. It also discusses the parental contri-
butions to gene activity in early embryogenesis
in regard to their potential role in early pattern-
ing events. For ease of reference, Table 1 lists
the gene abbreviations and full names referred
to in this review.
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Shoot meristem:
group of self-
replenishing cells at
the shoot apex that
sustain shoot growth
and the formation of
lateral organs such as
leaves and flowers

ZYGOTE POLARITY
AND ELONGATION

Zygote Polarity

In flowering plants, the zygote is formed by the
fusion of the egg cell with one of the two sperm
cells delivered by the pollen tube (reviewed in
25). Like the egg cell, the zygote is usually po-
larized with respect to the relative position of
nucleus and vacuole. However, egg cell polar-
ity and zygote polarity are different in some
species, suggesting that the latter might be es-
tablished independently of the former.

In many species, the egg cell has its nucleus
located toward the chalazal end of the ovule
(i.e., apically) and usually has a large vacuole lo-
cated toward the micropylar end (i.e., basally).
This is, for example, the case in A. thaliana,
Capsella bursa-pastoris, and Nicotiana tabacum
(tobacco), in all of which zygote organization
resembles egg cell organization (94, 95, 103,
131, 170); polarity—as inferred from nucleus
and vacuole position—appears thus to be main-
tained after fertilization. However, this was
shown not to be the case in A. thaliana and prob-
ably N. tabacum. A transient symmetric stage,
in which the nucleus is located centrally and
smaller vacuoles are distributed rather evenly
within the cell, developmentally separates the
polarized egg cell from the similarly polarized
zygote (29, 103, 151, 170). In A. thaliana, the
transcription factor WRKY DNA-BINDING
PROTEIN 2 (WRKY2) is involved in the po-
larization of the zygote by transcriptionally ac-
tivating WUSCHEL RELATED HOMEOBOX
8 (WOX8) and possibly WOX9 (151). WRKY2
is dispensable for the establishment or mainte-
nance of egg cell polarity, which corroborates
the notion that egg cell and zygote polarity are
not intimately linked (151). Even stronger ef-
fects of fertilization on zygote polarity are, for
example, observed in Oryza sativa (rice), Zea
mays (maize), and Papaver nudicaule, in all of
which egg cell polarity is reversed after fertiliza-
tion. Whereas the nucleus localizes to the mi-
cropylar/basal end of the egg cell and the large
vacuole to the chalazal/apical end, the opposite
is the case in the zygote (25, 114, 123).

a b c d e

f g h

i j

Zygote

Apical cell/proembryo

Basal cell/suspensor

Upper tier

Lower tier

Inner upper tier

Inner lower tier

Protoderm/epidermis

Hypophysis or its
descendants

Inner cotyledon
anlagen/primordia

Shoot meristematic
region

Ground tissue

Provasculature

Figure 1
Early embryogenesis in Arabidopsis thaliana. Panels show longitudinal sections
of embryos during consecutive developmental stages: (a) zygote, (b) elongated
zygote, (c) one-cell stage, (d ) two- or four-cell stage, (e) octant stage,
( f ) dermatogen stage, ( g) early-globular stage, (h) mid-globular stage,
(i ) transition stage, and ( j) heart stage. Groups of developmentally related cells
are color-coded. Embryos not drawn to scale.

Zygote Elongation

The A. thaliana zygote not only becomes polar-
ized but also elongates approximately threefold
along its apical-basal axis before it divides.
This elongation depends on the GDP/GTP
exchange factor for small G proteins of the
ARF class (ARF-GEF) GNOM (GN). If GN is
knocked out, elongation and asymmetric divi-
sion are compromised, but GN targets in the
zygote are not known (98, 132). Zygote elon-
gation or its asymmetric division also depends
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Table 1 Gene abbreviations and full names used in this review

Abbreviation Full name
ACR4 ARABIDOPSIS CRINKLY 4
AGO1 ARGONAUTE 1
ALE1/2 ABNORMAL LEAF-SHAPE 1/2
ARR7/15 ARABIDOPSIS RESPONSE REGULATOR 7/15
AS1/2 ASYMMETRIC LEAVES 1/2
ATDEK1 ARABIDOPSIS THALIANA DEFECTIVE KERNEL 1
ATH1 ARABIDOPSIS THALIANA HOMEOBOX 1
ATHB8/15 ARABIDOPSIS THALIANA HOMEOBOX 8/15
ATML1 ARABIDOPSIS THALIANA MERISTEM LAYER 1
BBM/PLT4 BABY BOOM/PLETHORA 4
BDL/IAA12 BODENLOS/INDOLE-3-ACETIC-ACID 12
BIM1 BES INTERACTING MYC-LIKE PROTEIN 1
BOP1/2 BLADE-ON-PETIOLE 1/2
CLE40 CLV3/ESR-RELATED 40
CLV3 CLAVATA 3
CUC1/2/3 CUP-SHAPED COTYLEDON 1/2/3
CUP CUPULIFORMIS
DCL1 DICER-LIKE 1
DRN DORNRÖSCHEN
DRNL DORNRÖSCHEN-LIKE
ENP/MAB4 ENHANCER OF PINOID/MACCHI-BOU 4
FDH FIDDLEHEAD
FS FASS
GN GNOM
GRN/RKD4 GROUNDED/RWP-RK DOMAIN 4
HAN HANABA TARANU
KAN1 KANADI 1
KN1 KNOTTED 1
KNAT1/BP KNOTTED-LIKE FROM ARABIDOPSIS THALIANA 1/BREVIPEDICELLUS
LOG LONELY GUY
LTP1 LIPID TRANSFER PROTEIN 1
MKK4/5 MITOGEN-ACTIVATED PROTEIN KINASE KINASE 4/5
MP/ARF5 MONOPTEROS/AUXIN RESPONSE FACTOR 5
MPK3/6 MITOGEN-ACTIVATED PROTEIN KINASE 3/6
NAM NO APICAL MERISTEM
NPH4/ARF7 NONPHOTOTROPIC HYPOCOTYL 4/AUXIN RESPONSE FACTOR 7
OSH1 Oryza sativa homeobox 1
OSTF1 Oryza sativa transcription factor 1
PDF1/2 PROTODERMAL FACTOR 1/2
PHB PHABULOSA
PHV PHAVOLUTA

(Continued )
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Table 1 (Continued )

Abbreviation Full name
PID PINOID
PID2 PINOID 2
PIN1/3/4/7 PIN-FORMED 1/3/4/7
PLT1/2/3 PLETHORA 1/2/3
PNF POUND-FOOLISH
PNY PENNYWISE
QHB quiescent-center-specific homeobox
REV REVOLUTA
RPK1 RECEPTOR-LIKE PROTEIN KINASE 1
SCR SCARECROW
SHR SHORT-ROOT
SSP SHORT SUSPENSOR
STM SHOOT MERISTEMLESS
TAA1 TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1
TAR1/2 TRYPTOPHAN AMINOTRANSFERASE RELATED 1/2
TMO7 TARGET OF MONOPTEROS 7
TOAD2 TOADSTOOL 2
TPL TOPLESS
WAG1/2 WAG 1/2
WOX1/2/3/5/8/9 WUSCHEL RELATED HOMEOBOX 1/2/3/5/8/9
WRKY2/33 WRKY DNA-BINDING PROTEIN 2/33
WUS WUSCHEL
YDA YODA
YUC1/4/10/11 YUCCA 1/4/10/11
ZLL/AGO10 ZWILLE/ARGONAUTE 10
ZMCUC3 Zea mays CUP-SHAPED COTYLEDON 3
ZMNAM1/2 Zea mays NO APICAL MERISTEM 1/2

Cotyledon:
leaf formed in the
developing embryo

Root meristem:
group of self-
replenishing cells at
the root tip that
sustain root growth

Ground tissue:
primordium that will
give rise to two tissue
layers, endodermis and
cortex

on the interleukin-1 receptor-associated kinase
(IRAK)/Pelle-like kinase SHORT SUSPEN-
SOR (SSP), the MAPKK kinase YODA (YDA),
MITOGEN-ACTIVATED PROTEIN KI-
NASE 3 (MPK3), MPK6, and the RWP-RK
family protein GROUNDED (GRN)/RWP-
RK domain 4 (RKD4), which functions as a
transcriptional regulator (7, 58, 89, 154, 155).
There is evidence that SSP, YDA, MPK3, and
MPK6 as well as MITOGEN-ACTIVATED
PROTEIN KINASE KINASE 4 (MKK4) and
MKK5 act in the same pathway (7, 155), but the
direct targets of this hypothetical kinase path-
way in the zygote remain unknown. However,
it might be meaningful that a close homolog

of WRKY2, WRKY33, is phosphorylated by
MPK3 and MPK6 (96, 162).

ZYGOTIC GENOME
ACTIVATION

Zygotic genome activation already occurs in the
zygote in flowering plants. For N. tabacum, ev-
idence has been presented that deposited ma-
ternal transcripts are not sufficient for zygote
elongation and division, but that this process
requires zygotic de novo transcription (170).
In Z. mays and N. tabacum, transcripts not
present in egg and sperm cells accumulate in the
zygote, which indicates that these transcripts
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are made de novo in the zygote (110, 125, 170).
Comparable experiments have not been done
in A. thaliana. However, in both A. thaliana and
Z. mays, genes whose expression has not been
detected in pollen are expressed in the zygote
from the paternal allele (130, 151), implying zy-
gotic genome activation at the zygote stage in
these species.

This de novo expression of paternal genes
in the zygote also indicates that the paternal
genome is not generally silenced in the zygote
or early embryo. This idea has received
support from other studies (120, 156, 165),
although in these cases it cannot be clearly
distinguished between transcripts delivered
by the pollen and de novo transcription from
the paternal alleles in the zygote. However,
whereas Z. mays displays an equivalent parental
contribution in the zygote and during early
embryo development (101), in A. thaliana
maternal transcripts appear to predominate
during early embryogenesis (5). This maternal
predominance is thought to result from the
downregulation of the paternal alleles by the
maternal chromatin small interfering RNA
(siRNA) pathway, whereas the activation of the
paternal alleles during the course of embryo-
genesis is thought to be mediated by maternal
histone chaperone complex CAF1 (5). How-
ever, it cannot be excluded that the maternal
predominance during early A. thaliana em-
bryogenesis is mainly or also due to transcript
carryover from the egg cell rather than specific
downregulation of the paternal alleles. Hence,
the two aforementioned mechanisms (the
chromatin siRNA pathway and activity of the
CAF1 complex) could generally be involved in
zygotic genome activation. In conjunction with
a supposed stronger transcript contribution
of the egg cell as compared with the sperm
cell, mechanisms delaying the zygotic genome
activation would prolong the predominance of
transcripts derived from the maternal alleles.

Some observations argue against general
differences between paternal and maternal
alleles in A. thaliana. For example, both
paternal and maternal histone H3 variants are
replaced by de novo synthesized H3 variants in

the zygote (50, 51). And although imprinting is
quite common in the angiosperm endosperm,
only a few genes imprinted in the embryo
have been reported so far (56, 90, 118). The
maternal-to-zygotic transition thus appears to
already commence in the zygote. In contrast to
animals, however, because there is pronounced
postmeiotic gene expression in both female and
male gametophytes followed by postfertiliza-
tion gene expression, the maternal-to-zygotic
transition might more appropriately be called
the gametophytic-to-sporophytic transition.
This transition might be completed sooner or
later, presumably depending mainly on species-
specific velocities of development during early
embryogenesis. In this view, the longer it takes
for the zygote and its progeny to divide, the ear-
lier in developmental time the gametophytic-
to-sporophytic transition might occur.

ZYGOTE DIVISION AND
SEPARATION OF APICAL
AND BASAL CELL FATE

In the vast majority of flowering plant species,
the zygote divides transversely, generating an
apical daughter cell and a basal daughter cell,
whereas in some species oblique or longitudinal
divisions occur (62, 133). When the zygote
divides transversely, the two daughter cells
may be quite different in size, depending on the
position of the plane of cell division. In Ricinus
communis and Triticum aestivum (wheat), for
example, the zygote divides “symmetrically,”
generating two daughter cells of equal size
(74, 133). In other species, zygotes divide
asymmetrically. Whereas in Coriaria nepalensis
and Anethum graveolens, for example, the apical
daughter cell is larger than the basal one, in
A. thaliana the apical daughter cell of the zygote
is smaller than the basal one (94, 133). There
seems to be no general rule regarding the size
ratio of the apical daughter cell and the basal
daughter cell of angiosperm zygotes (133).

Nonetheless, the division of the zygote
might still—directly or indirectly—separate
apical and basal cell fate and hence might also
consolidate or establish the apical-basal axis of
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polarity, which is then maintained throughout
plant life. Some evidence supports this view. In
both Z. mays and N. tabacum, the apical daugh-
ter cell of the zygote exhibits a transcriptional
profile distinct from the basal counterpart
(48, 113). In A. thaliana, two developmental
pathways, in addition to the YDA pathway
mentioned above, have been linked to apical-
basal axis establishment after zygote division:
One involves the transcription factors WOX8,
WOX9, and WOX2, whereas the other is auxin
dependent, involving the auxin efflux regulator
PIN-FORMED 7 (PIN7) as well as the

transcriptional regulators MONOPTEROS
(MP)/AUXIN RESPONSE FACTOR 5
(ARF5) and BODENLOS (BDL)/INDOLE-
3-ACETIC-ACID 12 (IAA12) (see below)
(Figure 2).

Besides WOX8, whose expression in the
zygote is induced by WRKY2, WOX2 is also
expressed in the zygote (40, 151). After zygote
division, though, these two genes are not
coexpressed anymore; WOX2 is expressed in
the apical daughter cell of the zygote, and
WOX8 (together with WOX9) is expressed in
the basal (40). WOX9, which is assumed to be

a

b

WRKY2, WOX2, WOX8

WOX2
WRKY2, WOX8

WRKY2, WOX8, WOX9
WRKY2, WOX8, WOX9
WOX9

WRKY2, WOX5, WOX8

PIN1

PIN7

Auxin flow

MP, BDL

TMO7

ARFx, IAAx

TMO7 movement

Future hypophysis
division plane

Strong DR5 response

Weak DR5 response

WUS, WOX2

Figure 2
Apical-basal patterning and hypophysis specification in early embryogenesis of Arabidopsis thaliana.
(a) Expression patterns of WRKY2 and early-expressed WOX genes. (b) Auxin signaling and hypophysis
specification. Embryos not drawn to scale.
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Embryo proper: cells
forming the embryo

Suspensor:
extraembryonic, often
filamentous structure
anchoring the embryo
proper to the ovule
wall

Hypophysis: in
Arabidopsis thaliana, a
cell basally adjacent to
the embryo proper and
involved in root pole
formation

a target of WRKY2 as well, might already be
expressed in the zygote and possibly also in the
apical daughter cell of the zygote (40, 151, 163).
WOX8 and WOX9 are supposed to signal from
the basal to the apical daughter cell for proper
WOX2 expression to occur (10). However,
because there are stronger defects in wox8 wox9
or wox9 alone than there are in wox2 mutant
embryos, WOX8 and WOX9 appear to have
additional, WOX2-independent functions in
early development (10, 40, 163). WRKY2 is
coexpressed with WOX8 and partially with
WOX9 during the earliest stages of embryogen-
esis (40, 151) (Figure 2a), which could account
for the early expression of these two WOX
genes in the basal lineage. The problem of the
separation of apical and basal cell fate, however,
would not be solved with this extension of
the WOX pathway; instead, the problem
would be shifted from understanding WOX2,
WOX8, and WOX9 transcript distribution to
understanding WRKY2 transcript distribution.

The auxin-dependent pathway implicated
in apical-basal axis establishment during
A. thaliana embryogenesis becomes relevant
immediately after zygote division, when auxin is
transported from the basal to the apical daugh-
ter cell via PIN7 (30) (Figure 2b). The auxin
response in the apical descendant of the zy-
gote triggered by this directional auxin trans-
port might be important for its proper speci-
fication, as evidenced by its transverse instead
of longitudinal division in bdl, mp, mp bdl, and
pin7 mutant embryos (30, 42). MP encodes an
ARF, BDL encodes an AUXIN (AUX)/IAA in-
hibitor, and both are expressed in the apical cell
lineage (41, 43); MP and BDL form a system
of two interconnected feedback loops that can
be modulated by auxin via the degradation of
BDL protein (76). The initial transport of auxin
to the apical cell(s) might thus be sufficient to
establish expression of these two important de-
velopmental regulators. But, comparable to the
WOX/WRKY case, the next step on the hi-
erarchy ladder has to be taken now, and how
PIN7-mediated basal-to-apical auxin transport
is set up must be determined.

HYPOPHYSIS SPECIFICATION
AND ROOT POLE FORMATION

Importance of Auxin in Hypophysis
Specification and Root Pole Formation

The root pole is the basal end of the angiosperm
embryo. In A. thaliana, the specification of the
founder cell of the root meristem is not the re-
sult of a (spatially) isolated developmental pro-
gram, but the consequence of developmental
events that take place in the apically adjoining
cells (157).

One of these events is the overall reversal of
the above-mentioned basal-to-apical auxin flow
from the dermatogen stage onward. The PIN1
auxin efflux regulator formerly nonpolarly dis-
tributed in the cells of the embryo proper starts
to become localized predominantly to the basal
side of the lower inner cells, and the formerly
apically localized PIN7 becomes localized to
the basal side of the suspensor cells. In con-
sequence, auxin accumulates in the hypophysis
and the subhypophyseal cell as indicated by the
auxin response reporter DR5 (30) (Figure 2b).

This accumulation of auxin in the hypoph-
ysis appears to be crucial for its specification and
subsequent root pole formation, as suggested
by the fact that impairment of auxin biosyn-
thesis and transport as well as auxin signal-
ing interfere with these processes. The auxin-
biosynthesis multiple mutants yucca 1 ( yuc1)
yuc4 yuc10 yuc11 and tryptophan aminotransferase
of arabidopsis 1 (taa1) tryptophan aminotransferase
related 1 (tar1) tar2 as well as the auxin transport
quadruple mutant pin1 pin3 pin4 pin7 are root-
less, just like seedlings in which the phosphory-
lation status-dependent polar PIN1 localization
is reversed from the basal to the apical side in
the inner cells of the embryo proper by the mis-
expression of the PIN1-phosphorylating ser-
ine/threonine kinase PINOID (PID) (19, 30,
31, 102, 139). Moreover, the regulation of PIN1
expression involves MP and its inhibitor BDL
(157). This might explain why the knockout
of MP, or mutations causing the stabilization of
BDL, lead to the non- or misspecification of
the hypophysis and subsequent failure to form
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Provasculature: cells
that will give rise to
the vasculature (the
conductive tissue)

a root (157). Thus, MP-BDL-dependent auxin
signaling in the cells of the embryo proper
indirectly ensures the accumulation of auxin
in the hypophysis, where signaling through
another ARF-AUX/IAA pair presumably me-
diates the actual specification process (157)
(Figure 2b). Recently, detailed expression anal-
ysis revealed several ARF candidates expressed
in the hypophysis (117).

Additional Factors Involved in
Hypophysis Specification and Root
Pole Formation

In addition to auxin, other molecules likewise
serve as mobile signaling cues for hypophysis
specification. TARGET OF MONOPTEROS
7 (TMO7), a small transcriptional regula-
tor whose expression is regulated by MP
and BDL, also moves from the provascular
cells into the hypophysis and contributes to
its specification (128) (Figure 2b). SHORT-
ROOT (SHR) might also move there, as in-
ferred from the expression of SCARECROW
(SCR) in the hypophysis (106, 164). Although
SCR does not appear to be necessary for hy-
pophysis specification itself—as indicated by
the apparently normal hypophysis division in
the scr mutant—SCR is subsequently required
for proper root pole formation (164). Simi-
lar considerations apply to the PLETHORA
(PLT ) genes PLT1, PLT2, PLT3, and BABY
BOOM (BBM)/PLT4 and to WOX5. The ex-
pression of some of them depends on MP
and its close homolog NONPHOTOTROPIC
HYPOCOTYL 4 (NPH4)/ARF7 or is initiated
in the hypophysis in an MP-BDL-dependent
fashion, but at least WOX5 is mainly re-
quired for root organization of later develop-
mental stages and root stem cell maintenance
(3, 34, 40, 122).

Although auxin signaling is of central
importance for root pole initiation, it is not
the only plant hormone signaling pathway
involved. The brassinosteroid signaling com-
ponent BES INTERACTING MYC-LIKE
PROTEIN 1 (BIM1) and the AP2 transcrip-
tion factors DORNRÖSCHEN (DRN) and
DORNRÖSCHEN-LIKE (DRNL), which

interact with BIM1, are required for proper
hypophysis division and root formation, sug-
gesting that auxin-brassinosteroid crosstalk is
involved in root pole initiation (16, 17, 169). In
addition, the requirement of two feedback re-
pressors of cytokinin signaling, ARABIDOPSIS
RESPONSE REGULATOR 7 (ARR7) and
ARR15, for the same process indicates the
necessity to dampen cytokinin signaling (105).
This dampening happens specifically in the
lower derivative of the hypophysis via ARR7
and ARR15, whose expression depends on
auxin (105) and hence possibly also indirectly
on MP-BDL-dependent signaling.

Positional Information During
Root Initiation

The fate of the hypophysis thus appears to
be determined by its position at the basal end
of the early embryo rather than its descent from
the basal daughter cell of the zygote. Indeed,
the clonal origin of the hypophysis might not
be relevant for root pole initiation. In the han-
aba taranu (han) mutant, expression domains of
genes are shifted apically so that genes normally
expressed only in the suspensor replace “apical”
genes in the lower half of the embryo proper.
As a consequence, it is not the histologically
still-discernable hypophysis that becomes the
founder cell of the future root pole, but rather
cell(s) from the lower-tier descendants (108).
As in the wild type, the cell(s) to be recruited
for root pole formation appear to be those
closest to cells with an apical cell fate.

In an even more extraordinary case of atyp-
ical embryonic root initiation, which occurs in
the topless-1 (tpl-1) mutant, a root is initiated
not only basally but also apically and, interest-
ingly, like in han, in an MP-independent fash-
ion (87, 108). TPL, a cosuppressor that binds
to BDL and probably other AUX/IAAs as well
as indirectly to jasmonate ZIM-domain ( JAZ)
repressor proteins and directly to WUSCHEL
(WUS), might recruit histone deacetylases to
repress gene expression (70, 86, 115, 141; re-
viewed in 73). The tpl-1 mutation is a domi-
nant negative mutation relieving the repression
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Protoderm:
outermost cell layer of
the embryo proper
that differentiates into
the epidermis

of TPL targets; especially derepression of the
TPL targets PLT1 and PLT2 leads to the for-
mation of a secondary root pole (135).

Many angiosperm species—including vari-
ous monocots and, e.g., Pisum sativum (pea)—
do not exhibit a cell that clearly corresponds
to the A. thaliana hypophysis, i.e., a single up-
permost derivative of the basal daughter cell of
the zygote that invariably divides into a smaller
upper lens-shaped and a larger lower cell to
give rise to the quiescent center and the col-
umella of the root meristem, respectively (re-
viewed in 59). Nevertheless, these species of
course also form a root, and they may do so by
employing signaling pathways similar to those
in A. thaliana, which specify the hypophysis
in a position-dependent manner. In O. sativa,
the WUS-type homeobox gene quiescent-center-
specific homeobox (QHB) is—similar to WOX5 in
A. thaliana—expressed in a few cells at the basal
pole of the embryo; in Z. mays and O. sativa, an
SCR homolog might play a role in root pat-
terning (40, 67, 68, 82, 83). The developmen-
tal significance of the singular hypophysis in
A. thaliana might thus mainly relate to the mini-
mal number of cells that constitute the embryo
at the very early stage when the root pole is
initiated.

RADIAL PATTERNING AND
PROTODERM SPECIFICATION

Separation of Inner and Outer Fate
in the Early Proembryo

In A. thaliana, the beginning of radial pattern-
ing is marked by the tangential divisions of the
cells of the embryo proper in the octant-stage
embryo. The eight outer cells thus formed are
the founder cells of the protoderm, and during
embryogenesis the eight inner cells will give rise
to, e.g., the provasculature and the ground tis-
sue (66, 94, 126) (Figure 1). Like apical-basal
axis establishment, these tangential divisions
have been linked to the action of WOX genes
and MP. In wox2 and, with a higher penetrance,
in wox2 mp, wox2 wox8, and wox1 wox2 wox3,
some cells of the octant-stage embryo proper

do not divide tangentially, so that a “continu-
ous” protodermal layer is not formed (10, 40).
How WOX genes and MP-dependent auxin sig-
naling mediate the proper orientation of these
cell-division planes is not known.

An early difference between protodermal
and inner cells is the divergence of transcrip-
tional activities. The GLABRA 2 (GL2) family
homeodomain transcription factors ARA-
BIDOPSIS THALIANA MERISTEM LAYER
1 (ATML1) and PROTODERMAL FACTOR 2
(PDF2) are initially expressed throughout the
early embryo proper, but immediately after
the tangential divisions have occurred their
expression becomes confined to the protoder-
mal cells (1, 88) (Figure 3a,b). Conversely, the
expression of ZWILLE [ZLL, also called ARG-
ONAUTE 10 (AGO10)], which is expressed in
the apical cells from the four-cell stage on and
is involved in shoot meristem maintenance,
becomes confined to the inner cells (91, 104)
(Figure 3a,b). Remarkably, in Z. mays and
O. sativa, where the cell-division planes after
the zygotic division appear randomly oriented,
the expression of ATML1 homologs also
becomes confined to the protoderm, and these
homologs might serve a similar function during
protoderm development as their A. thaliana
counterparts (52–54, 167).

In atml1 pdf2 double-mutant seedlings,
cotyledons seem devoid of an epidermis and
the shoot apex lacks distinct cell layers (1). The
ATML1 promoter and the PDF2 promoter
each contain a potential binding site for WUS,
the founding member of the WOX family (1,
40, 143), and thus the expression of ATML1
and PDF2 could be directly regulated by WOX
transcription factors, including those involved
in the tangential divisions of the octant-stage
embryo (Figures 2a and 3c). Furthermore,
both the ATML1 promoter and the PDF2 pro-
moter contain an eight-nucleotide sequence
termed the L1 box, which is also present in
the promoters of other epidermally expressed
genes such as PDF1, FIDDLEHEAD (FDH),
LIPID TRANSFER PROTEIN 1 (LTP1),
and—almost perfectly matching—the O. sativa
ATML1 homolog Oryza sativa transcription
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Figure 3
Radial patterning in early embryogenesis of Arabidopsis thaliana. (a,b) Expression patterns of genes important
for radial patterning. Panel a shows the dermatogen stage; panel b shows the transition stage. Asterisk
indicates that weak ACR4 expression was detected ubiquitously in embryos. (c) Signaling pathways
maintaining protoderm identity. Abbreviation: WUS bs, WUS binding site. Embryos not drawn to scale.

factor 1 (OSTF1) (1, 2, 167). Because ATML1
and PDF2 bind to the L1 box in vitro, it
is conceivable that these two transcription
factors establish a positive feedback loop that
regulates the transcription of genes expressed
in the epidermis (1, 2) (Figure 3c). In the
case of ATML1, however, the L1 box and the
WUS binding site do not appear to be the only
important regulatory regions. Although the L1
box is essential for the expression of PDF1, this
is not the case for ATML1 (2, 143). Rather, the

L1 box controls expression redundantly with
the WUS binding site in the ATML1 promoter,
but even when both elements are deleted, a hex-
americ copy of an ATML1 promoter fragment
still confers weak expression (143). In addition,
ATML1 is still expressed in the atml1 pdf2 and
wox8 wox9 double-mutant backgrounds (10,
143). Thus, although these two “pathways”
might converge on ATML1 expression, other
factors are probably involved in the regulation
of this gene. Because the ATML1 promoter
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confers expression in the suspensor but the
messenger RNA (mRNA) is detected there only
in the dicer-like 1 (dcl1) mutant, a microRNA
might regulate the ATML1 expression in the
suspensor (111, 143) (Figure 3c).

The inner cells of the A. thaliana embryo
give rise to the various concentric tissue layers
that have been described in the root and are laid
down during embryogenesis (126, 127). The
GRAS transcription factor SHR is one of the
best-described players involved in radial pat-
terning. It is expressed in the provasculature
and moves out to the neighboring cell layer,
where it activates the transcription of another
GRAS transcription factor gene, SCR (46, 106).
SCR is expressed in the ground tissue and the
hypophysis at the globular stage of embryoge-
nesis. When the cells of the ground tissue of
the hypocotyl and the embryonic root pole di-
vide periclinally between the triangular stage
and the heart stage to generate the inner layer of
endodermis and the outer layer of cortex cells,
SCR continues to be expressed in the inner layer
(164) (Figure 3b). These periclinal cell divi-
sions depend on both SHR and SCR (46, 164).
SHR and SCR activate microRNA165/166 in
the endodermis of the mature root, from where
the microRNAs feed back onto the vasculature
to control its patterning. Because the two mi-
croRNAs are already expressed during embryo-
genesis, they might contribute to embryonic
patterning as well (14).

Maintenance of Radial Patterning

RECEPTOR-LIKE PROTEIN KINASE 1
(RPK1) and TOADSTOOL 2 (TOAD2), two
closely related leucine-rich-repeat receptor-
like kinases (LRR-RLKs), are redundantly re-
quired for the maintenance of radial pattern-
ing (112) (Figure 3c). The protoderm marker
ATML1 as well as the central domain markers
ZLL/AGO10 and SHR are correctly expressed
only initially in rpk1 toad2 embryos, which have
enlarged protoderm cells (112). At the late-
globular stage of embryogenesis, the expres-
sion of ATML1 is (almost) lost, and the expres-
sion of ZLL/AGO10 and SHR extends over the

entire basal domain in rpk1 toad2, suggesting
that RPK1 and TOAD2 play an essential role in
the maintenance but not the establishment of
the radial pattern in A. thaliana (112).

The ligands binding to RPK1 and TOAD2
during embryogenesis are unknown, although
it was recently suggested that the signaling
peptide derived from CLAVATA 3 (CLV3)
binds to TOAD2 (71). Because this signaling
peptide is functionally similar to other signal-
ing peptides of the CLV3/ESR-RELATED
(CLE) family (109), any of these might be the
endogenous ligand for RPK1 and TOAD2
(Figure 3c). Hence, at least some of these sig-
naling peptides might play a role during early
embryogenesis, an assumption that receives
support from the analysis of the RLK ARA-
BIDOPSIS CRINKLY 4 (ACR4). ACR4 might
bind the signaling peptide CLE40, which is the
closest homolog of CLV3, and is involved in
protoderm specification, where it acts together
with ABNORMAL LEAF-SHAPE 2 (ALE2),
another RLK (138, 145) (Figure 3c). Although
neither the single mutants nor the double mu-
tant appear to show severe protodermal defects
during embryo development, in mutant combi-
nations with ale1 the protoderm is misspecified
(36, 145). Accordingly, ale1 ale2 and ale1
acr4 double mutants do not properly express
ATML1 (145). ALE1 encodes a protease that
is predominantly expressed in the endosperm,
and thus ALE2 and ACR4 might perceive a
signal from the endosperm to ensure proper
protoderm specification (144, 145) (Figure 3c).
However, toxin-dependent endosperm ab-
lation rather suggests that the endosperm
is not involved in embryo patterning, and
the feasibility of somatic embryogenesis also
argues against essential peptide signals from
the endosperm (158; reviewed in 168). In
addition to its expression in the endosperm,
ALE1 is weakly expressed in the early embryo
itself (144), and this might be relevant for
embryogenesis.

Protoderm formation and ATML1 expres-
sion are prevented in arabidopsis thaliana defec-
tive kernel 1 (atdek1) mutant embryos, which
arrest at the globular stage (60, 81, 150).
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ATDEK1 encodes a calpain protease that un-
dergoes autolytic cleavage (Figure 3c) and is
expressed in the embryo (60, 61, 81). In AT-
DEK1 knockdown lines, seedlings show a trans-
formation of epidermal to mesophyll-like cell
fate in the cotyledons, similar to what has been
observed in atml1 pdf2 double mutants (1, 60).
In conclusion, although a number of key play-
ers have been analyzed, the overall genetic pro-
gram of setting up the radial pattern or only the
protoderm is still largely unexplored.

SHOOT MERISTEM
SPECIFICATION AND
COTYLEDON INITIATION

The Organizing Center

The A. thaliana shoot meristem can be mor-
phologically delineated for the first time during
embryogenesis at the late-torpedo stage (6, 78).
In the mature embryo, the shoot meristem con-
sists of a few small cells with big nuclei and small
vacuoles, and its first molecular mark is the on-
set of WUS expression in the four inner cells
of the apical embryo region at the dermato-
gen stage (78, 97) (Figure 2a). WUS encodes a
homeodomain transcription factor, and its ex-
pression remains confined to a subset of cells
close to the shoot apex during later stages of
development (Figure 4a), defining an organiz-
ing center that keeps the neighboring stem cells
in a pluripotent state (97). The wus mutation re-
sults in the lack of a functional shoot meristem
and the formation of a flat and enlarged shoot
apex consisting of aberrant cells (78). WUS or-
thologs seem to play similar roles in dicots like
Petunia hybrida and Antirrhinum majus, but pos-
sibly not in monocots like O. sativa and Z. mays
(70, 107, 140).

Despite considerable efforts to identify reg-
ulators and downstream targets of this master
regulator (11; reviewed in 24), our knowledge
is scant about the mechanism(s) of initiation
and early confinement of WUS expression and
about the identity of the WUS-dependent non-
cell-autonomous signal(s) maintaining stem cell
fate in the shoot meristem. In postembryonic

b
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Figure 4
Shoot meristem and cotyledon initiation in Arabidopsis thaliana. (a) Expression
patterns of genes important for establishment of the shoot meristem and
initiation of cotyledons in A. thaliana during the transition stage and the heart
stage. CUC1–3 expression is generalized as CUC. (b) Pathways and hormonal
regulation in shoot meristem and cotyledon initiation. (c) Expression patterns
of KAN1 and HD-ZIP III genes (exemplarily shown for REV, which includes
domains of all other members), auxin flow mediated by PIN1 (idealized
representation), and DR5 response. Embryos not drawn to scale.

development, however, cytokinin signaling
activates WUS expression (37). Because WUS
inhibits the expression of several type-A ARRs
that are negative regulators of cytokinin
signaling, a positive feedback mechanism
involving WUS and cytokinin signaling might
thus operate in the shoot meristem to maintain

www.annualreviews.org • Early Embryogenesis in Flowering Plants 495

A
nn

u.
 R

ev
. P

la
nt

 B
io

l. 
20

12
.6

3:
48

3-
50

6.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
id

ad
 V

er
ac

ru
za

na
 o

n 
01

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



PP63CH20-Juergens ARI 27 March 2012 10:50

its integrity (37, 79) (Figure 4b). This crosstalk
may already operate during embryogenesis. In
O. sativa, the LONELY GUY (LOG) gene,
which encodes a cytokinin-activating enzyme
and is specifically expressed in the shoot meris-
tem region, is important for shoot meristem
maintenance (75).

Shoot Meristem Indeterminacy and
the Shoot Meristem–Cotyledon
Boundary Region

The class I KNOTTED-like homeodomain
transcription factor SHOOT MERISTEM-
LESS (STM) might indirectly activate WUS
expression via its induction of cytokinin
biosynthesis and signaling (37, 57, 85, 166)
(Figure 4b), and in addition to its cytokinin-
related effects, it restricts gibberellic acid
levels (45, 57). Similar to its Z. mays ortholog
KNOTTED 1 (KN1) and its O. sativa ortholog
Oryza sativa homeobox 1 (OSH1), STM is
expressed in the presumptive shoot meristem
from the globular stage onward (85, 124, 134)
(Figure 4a); in addition, in the oil palm Elaeis
guineensis an STM ortholog is expressed in
the shoot meristem, at least during vegetative
development (64). Together with WUS, STM
is required to maintain the shoot meristem:
WUS acts as the instructor of the organizing
center, and STM acts as a repressor of differen-
tiation across the entire shoot meristem (80). In
differentiated tissue, simultaneous expression
of WUS and STM can induce meristematic ac-
tivity, with WUS non-cell-autonomously trig-
gering divisions in STM-expressing tissue (35).

Being a transcription factor, STM functions
in the nucleus, and this localization depends
on BEL1-like homeodomain transcription
factors (22, 121). Shoot meristem initiation is
consistently inhibited in the stm mutant and the
arabidopsis thaliana homeobox 1 (ath1) pennywise
( pny) pound-foolish ( pnf ) triple mutant, and also
in the cup-shaped cotyledon 1 (cuc1) cuc2 double
mutant, which fails to express STM in the pre-
sumptive shoot meristem (4, 6, 121). The NAC
transcription factors CUC1–3 are redundantly
required for shoot meristem establishment as

well as cotyledon separation. At early embry-
onic stages, their expression domains partially
overlap with the STM expression domain
(Figure 4a), whereas CUC1–3 expression do-
mains in general surround the STM expression
domain at later stages (4, 47, 142, 152). How
this expression pattern evolves is not clear.
However, there appears to be mutual regula-
tion involving positive and negative feedback
loops (Figure 4b): Not only are the CUCs re-
quired for STM expression, but STM regulates
the expression of CUC1–3 and the expression
of microRNA164, which in turn targets CUC1
and CUC2 transcripts for degradation (4, 77,
92, 137). The P. hybrida and A. majus CUC or-
thologs NO APICAL MERISTEM (NAM) and
CUPULIFORMIS (CUP) are also expressed at
organ boundaries, and they are important for
both boundary establishment and shoot meris-
tem development (136, 159). In Z. mays, the pu-
tative CUC1/2 orthologs Zea mays NO APICAL
MERISTEM 1/2 (ZmNAM1/2) and the CUC3
ortholog Zea mays CUP-SHAPED COTYLE-
DON 3 (ZmCUC3) are in part initially coex-
pressed with a shoot meristem marker, and later
in a ringlike pattern around the shoot meristem
(173), hinting at a strong conservation of CUC
gene function at least among flowering plants.

Meristem Establishment

A general prerequisite for shoot meristem
identity seems to be the presence of class
III HOMEODOMAIN-LEUCINE ZIPPER
(HD-ZIP III) transcription factors. This fam-
ily consists of PHABULOSA (PHB), PHAVO-
LUTA (PHV), REVOLUTA (REV), ARA-
BIDOPSIS THALIANA HOMEOBOX 8
(ATHB8), and ATHB15. Expression of all
but ATHB8 is already detectable from early
embryonic stages onward, and in part there
is overlap with the future site of the shoot
meristem, whereas especially PHB, REV, and
ATHB15 expression domains partially coin-
cide with the ZLL/AGO10 provascular ex-
pression domain as well; ATHB8 mRNA is
detectable from the heart stage onward (26,
91, 100, 116). Conversely, expression do-
mains of members of the KANADI (KAN)
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gene family could be regarded as comple-
mentary to those of the HD-ZIP IIIs, which
they are supposed to antagonize (26–28, 69)
(Figure 4c). The phb rev double, phb phv rev
triple, and other loss-of-function mutant com-
binations involving athb8 and athb15 lack the
embryonic shoot meristem and in severe cases
fail to establish bilateral symmetry (26, 116).
The dominant mutation phb-1d leads to ec-
topic meristems that express the shoot meris-
tem marker STM on the lower side of leaves,
and also causes an enlarged embryonic shoot
meristem and partially suppresses the stm mu-
tant phenotype (99). Two recent findings fur-
ther support a pivotal role for HD-ZIP III tran-
scription factors in shoot meristem formation.
First, exclusion of HD-ZIP III proteins from
the embryonic root pole is necessary for its
proper establishment (38). Second, dominant
HD-ZIP III mutants suppress the tpl-1 double-
root phenotype, possibly by excluding PLT1
and PLT2 from the future shoot meristem cells.
Conversely, misexpression of dominant HD-
ZIP IIIs can lead to (homeotic) root-pole-to-
shoot-pole transformations during embryoge-
nesis (135). It is not clear at present whether
the HD-ZIP IIIs directly regulate STM and/or
WUS in ectopic shoot meristem formation.

HD-ZIP III transcripts are targeted by mi-
croRNA165/166, and the dominant HD-ZIP
III mutations reside in the microRNA pairing
sites, rendering the HD-ZIP mRNAs resistant
to degradation (93, 119, 146, 160, 171). The
microRNA-dependent degradation involves
the AGO proteins AGO1 and ZLL/AGO10,
which both bind microRNA165/166 (172). It
was suggested that ZLL/AGO10 and AGO1
act in an antagonistic fashion (Figure 4b), with
ZLL/AGO10 positively regulating HD-ZIP
III transcript levels through competition
with AGO1—possibly by sequestering mi-
croRNA165/166. Such a sequestration could
ensure sufficiently high HD-ZIP III levels
during shoot meristem establishment and
maintenance (172). Given that ZLL/AGO10
expression in the provasculature is necessary
for embryonic shoot meristem maintenance,
a non-cell-autonomous signal could, in

principle, instruct the shoot meristem from
the cells underneath (149). In this scenario,
the two primary meristems of shoot and root
would be initiated as WUS- and WOX5-
positive cell groups, respectively, in response
to inductive signals, at the opposite ends of the
provasculature in early embryogenesis.

Initiation of Cotyledon Primordia

When the cotyledon primordia start to emerge
in A. thaliana, the embryo organization shifts
from radial to bilateral symmetry. The sites of
cotyledon initiation correlate with auxin accu-
mulation at subapical foci in the protoderm, as
indicated by the auxin response reporter DR5
(8) (Figure 4c). Auxin might therefore directly
cause cotyledon initiation in the apical mar-
gins of the globular embryo (8). In addition,
STM and CUC expression have to be excluded
from those sites (see below). Auxin transport
toward the incipient primordia is mediated by
PIN auxin efflux regulators, probably mainly by
PIN1 (8) (Figure 4c). PIN1 is apically localized
in the protoderm, and the apical localization of
PIN proteins is generally brought about by PID
and its homologs PID2, WAG1, and WAG2,
three of which have been shown to directly
phosphorylate PINs (20, 23, 31, 49, 102). For
example, the pid wag1 wag2 triple mutant and
the pin1 pid double mutant lack cotyledons (20,
33), as does the pid enhancer of pinoid (enp) double
mutant (148). ENP/MACCHI-BOU 4 (MAB4)
encodes an NPH3-like protein that is involved
in the regulation of PIN1 localization (32, 148).
It is noteworthy that in both double mutants
( pin1 pid and pid enp) the expression domains
of CUC genes and STM are enlarged, and that
cotyledon formation is partially restored when
CUC genes or STM are knocked out in pin1 pid
(33, 148); this highlights both the importance
of directional auxin transport to the cotyle-
don initiation sites and the requirement to ex-
clude specific transcripts/proteins from there.
This view is supported by cotyledon formation
defects in the auxin response mutants mp and
bdl (9, 42). However, it might also be relevant
in this context that MP directly activates the
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expression of DRN—especially because DRN
and DRNL redundantly act in cotyledon for-
mation (16, 21). Additionally, DRN and DRNL
are involved in the establishment and mainte-
nance of boundary and shoot meristem gene
expression domains, and they act together with
PIN1 and PID (16, 18, 72). Auxin-related pro-
cesses might be involved in cotyledon initiation
in other flowering plant species as well, includ-
ing monocots, but this has barely been investi-
gated so far (reviewed in 15).

Another factor involved in cotyledon de-
velopment, ASYMMETRIC LEAVES 1 (AS1),
which encodes a MYB domain protein and
orthologs of which are present in Z. mays and
A. majus, is initially expressed mainly subepi-
dermally in the incipient cotyledon primordia,
whereas AS2, which encodes a LATERAL
ORGAN BOUNDARY (LOB) domain pro-
tein, is expressed protodermally before cotyle-
don outgrowth and later at the adaxial cotyle-
don side (12, 55, 84, 129, 153) (Figure 4a).
The loss of AS1 or AS2 makes STM dis-
pensable for shoot meristem initiation and
maintenance, suggesting that STM negatively
regulates AS1 and AS2 (12, 13). Studies in
primarily adult leaves suggest that KNOX genes
are negatively regulated by AS1/2 and that
AS1/2 possibly converge with auxin signaling
to repress the KNOX member KNOTTED-
LIKE FROM ARABIDOPSIS THALIANA 1
(KNAT1)/BREVIPEDICELLUS (BP) (12, 39,
44) (Figure 4b). The expression of AS2 itself
is negatively regulated by KAN1 and positively
by BLADE-ON-PETIOLE 1/2 (BOP1/2), the
expression of the latter in turn being directly
or indirectly repressed by STM (65, 161).
How exactly AS1 and AS2 are linked to auxin,
however, has not been resolved.

PERSPECTIVES

Considerable progress has been made in the
analysis of mechanisms underlying specific
events in early embryogenesis, notably in

A. thaliana. For example, we now have a clear
conceptual framework for the initiation of the
root meristem in the early embryo. However,
although the main regulators have been
identified and characterized, it is still rather
obscure how these early events relate to the
establishment of the molecular system for self-
maintenance of the functional root meristem at
the heart stage of embryogenesis. The initiation
and establishment of the self-maintenance sys-
tem are even less clear for the shoot meristem.
Large-scale approaches combining expression
profiling of specific embryo regions with func-
tional characterization of putative developmen-
tal regulators might contribute to closing the
gap.

Another unsolved problem is the origin of
the apical-basal pattern. Although genes encod-
ing developmental regulators are expressed in
either the apical or the basal daughter cell of the
zygote, it is not known how the expression of
these regulators is ultimately established. This
also relates to the mode of division of the zy-
gote: Is it truly unequal, reflecting an intrinsic
polarity of the zygote before division? Alterna-
tively, the division might be equal, and only the
two daughter cells would be exposed to different
environments and thus might perceive different
signals.

The contribution of the gametes to early
embryogenesis still needs to be assessed.
Although differentially regulated genes have
been identified, their role in early patterning
has not been clarified. And the significance of
epigenetic regulation of patterning is still an
open question.

Finally, most studies have focused on a few
species, notably A. thaliana. Considering the
differences in cell-division patterns between
early embryos from different species, exploring
orthologous developmental regulators might
reveal to what extent their actions and regu-
latory networks are conserved among the flow-
ering plant species when the cellular contexts
of developmental events are not.
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