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Review
Glossary

Autonomous pathway: flowering time pathway that controls the transition

from the vegetative to the reproductive phases of development depending on

the endogenous signals and independently of environmental cues.

Floral meristem: group of undifferentiated cells that are formed by the

inflorescence meristems and that develop into flowers. In contrast to shoot

meristems, floral meristems show determinate growth.

Floral meristem identity gene: regulatory gene that controls the specification

of floral meristems during the onset of flower development. Examples of floral

meristem identity genes are LEAFY and APETALA1.

Floral pathway integrator: regulatory gene whose expression is controlled by

the activity of several flowering time pathways and that regulates the

expression of meristem identity genes.

Florigen: mobile flowering signal that is produced in leaves and acts at the

shoot apex. The protein FLOWERING LOCUS T has recently been identified as

a key component of florigen.

Flowering time: time period between seed germination and the onset of flower

development. Flowering time is tightly controlled to ensure that plants flower

when conditions for reproduction are favorable.

Gibberellin pathway: flowering time pathway that controls the transition from

the vegetative to the reproductive phases of development depending on the

endogenous concentration of the phytohormone gibberellin.

Inflorescence meristem: shoot apical meristem after the transition from the

vegetative to the reproductive phase of development. It produces floral

meristems that develop into flowers.

MADS domain: conserved sequence motif found in a family of transcription

factors. MADS domain-containing proteins form dimers as well as higher order

protein complexes. Many floral regulatory genes encode MADS domain

proteins.

Photoperiod: duration of light and dark periods during a day. In the laboratory,

the photoperiods typically used are 8 h light, 16 h darkness (‘short day’) or 16 h
The onset of flower formation is a key regulatory event
during the life cycle of angiosperm plants, which marks
the beginning of the reproductive phase of development.
It has been shown that floral initiation is under tight
genetic control, and deciphering the underlying molec-
ular mechanisms has been a main area of interest in
plant biology for the past two decades. Here, we provide
an overview of the developmental and genetic processes
that occur during floral initiation. We further review
recent studies that have led to the genome-wide identi-
fication of target genes of key floral regulators and
discuss how they have contributed to an in-depth un-
derstanding of the gene regulatory networks controlling
early flower development. We focus especially on a
master regulator of floral initiation in Arabidopsis thali-
ana APETALA1 (AP1), but also outline what is known
about the AP1 network in other plant species and the
evolutionary implications.

Flowering time control in Arabidopsis: integration by
the network
In the life cycle of an angiosperm plant, the transition from
vegetative to reproductive growth is a key developmental
step that is under tight genetic control. To maximize
reproductive success, the timing of this switch is coordi-
nated with both the environment and the physiological
state of the plant. Studies on the biology of flowering time
(Glossary) in the model plant Arabidopsis thaliana have
shown that the responses to various external and internal
conditions are integrated by a complex gene regulatory
network that controls this transition. Consequently, the
regulation of flowering time has been a major adaptive
trait during plant evolution and domestication. A large
number of genes have been characterized as flowering time
regulators, and several recent reviews have provided de-
tailed descriptions of flowering time pathways [1–5]
(Figure 1). Ultimately, all of these pathways converge on
so-called floral meristem identity genes, which act by
directing the meristems (or primordia) that form on the
flanks of the inflorescence meristem to develop into flow-
ers. Floral meristem identity genes code for transcription
factors that are conserved across plant species [6] and
include Arabidopsis APETALA1 (AP1) (and paralogs)
and LEAFY (LFY) [7,8]. Here, we provide a brief overview
of flowering time control in Arabidopsis as an introduction
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to the gene networks that control the initiation of flower
development. In particular, we will describe the central
role that AP1 plays in the transition from floral induction
to flower formation by acting as a switch between these two
developmental programs and constituting a hub in the
corresponding network of regulatory genes [9].

In Arabidopsis, flowering in response to seasonal
changes is controlled by the vernalization, photoperiod
and ambient temperature pathways, which act coordinate-
ly with those that respond to endogenous and developmen-
tal cues: the autonomous, gibberellin and age-dependent
pathways (Figure 1). Long days accelerate flowering via
the photoperiodic (day length) pathway, which is mediated
by CONSTANS (CO). CO codes for a zinc finger and CCT-
domain-containing transcription factor that accumulates
under long day conditions in leaves as a result of the
combination of the rhythmic expression of CO mRNA
and the stabilization of CO protein by light [2]. CO acti-
vates the expression of FLOWERING LOCUS T (FT) [10],
light, 8 h darkness (‘long day’).

Vernalization pathway: flowering time pathway that promotes flowering in

response to the exposure to prolonged periods of cold temperature.
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Figure 1. Schematic diagram of the genetic pathways that regulate flowering time in Arabidopsis. Different pathways respond to various external (photoperiod, vernalization,

ambient temperature) and internal (autonomous, age, gibberellins) conditions to regulate the floral transition through an elaborate genetic network. Inductive signals have first

to overcome the activity of several repressors of the floral transition [5] (genes indicated in orange), for activators (genes indicated in blue) to eventually turn on the meristem

identity genes (AP1 and LFY). The pathways operate on different network components (genes) and on different tissues, but the genetic network integrates their inputs through

changes in expression of many of its genes. Inductive photoperiods (long days; LD) are perceived in the leaves and eventually result in the upregulation of FT by CO (a zinc finger

and CCT domain-containing transcription factor), together with transcription factors of the NF-YB and NF-YC classes [14] (FT is also upregulated by warm temperatures

independently of CO [32]). The expression of FT in the leaf vasculature [10] is a main determinant of the timing of flowering; therefore, its transcription is tightly regulated by

many transcription factors as well as by the chromatin state at the FT locus [11,14]. Repressors of FT expression prevent precocious flowering and include: FLC, which integrates

the autonomous and vernalization pathways [1,4]; the RAV transcription factors TEM1 and TEM2, which provide a quantitative balance to the activation activity of CO [15]; the

AP2-domain proteins TOE1, TOE2, TOE3, SMZ and SNZ [16–18]; and the MADS domain factor SVP [29,31]. FT repression by SMZ in the leaves has been shown to depend on

FLM [18], a MADS-box gene related to FLC that also mediates the induction of flowering by warm temperatures [32,33]. The FT protein is transported through the vasculature to

the apex [14], where it acts as a potent floral inducer and triggers the floral transition network. There, FT interacts with the bZIP transcription factor FD and coordinately they

upregulate the MADS-box genes SOC1, AP1 and FUL [25,26]. Some of the same factors that regulate FT expression in leaves, such as FLC, SMZ and SVP, also form part of the

transition network at the shoot meristem, where they participate in the regulation of the floral promoter and integrator SOC1 (which, like FT, is under the control of multiple

pathways [24]). AP2 also participates in SOC1 repression [30]. At the shoot apex, and in addition to repressing SOC1, FLC represses FD [22]. Therefore, the vernalization-

dependent downregulation of FLC enables Arabidopsis to flower by producing a systemic signal in the leaf (FT) and by conferring competence to the meristem to respond to it

(by relieving the FLC-mediated downregulation of the FT partner FD) [22]. SOC1 forms a positive feedback loop with AGL24 [35], and the two factors might form a complex for

the upregulation of LFY [36]. The floral meristem identity genes (AP1 and LFY) are also upregulated by members of the SPL family of transcription factors [27,49]. Once activated

or upregulated, the meristem identity genes control the initiation of flower development, with AP1 then repressing a substantial part of the floral transition network that

regulates its own activation, including SNZ, TOE1, TOE3, TFL1, AGL24, SVP, SOC1, SPL9, TEM1 and TEM2, and FD [9] (this repression is not represented in the diagram, see

main text). Genetic interactions that promote flowering and genes of floral promoters are indicated in blue, and interactions that repress flowering and genes of floral repressors

are indicated in orange (the meristem identity genes AP1 and LFY are indicated in black); arrows represent promotion or gene activation and blunted lines represent gene

repression. The dashed line connecting ‘‘photoperiod’’ and TEM1/TEM2 indicates that the TEM genes form part of the photoperiod genetic pathway by providing a

counterbalance to the activity of CO (their expression is regulated by the circadian clock and decreases over time). The main network components and interactions are depicted

in the diagram, but additional elements have been omitted for simplicity.
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probably by binding to FT regulatory regions and by
interacting with transcription factors of the NF-YB and
NF-YC classes [11–13]. The FT protein is a component of
the mobile flowering signal ‘florigen’ that moves upon its
expression in the vascular tissue of leaves to the shoot apex
[14]. The capability of CO to induce FT expression is
counteracted by several regulators that repress FT
through different mechanisms or pathways, thereby pre-
venting precocious flowering [5]. These so-called floral
520
repressors include the RAV transcription factors TEM-
PRANILLO1 and 2 (TEM1 and TEM2) [15], the APE-
TALA2 (AP2) domain proteins TARGET OF EAT 1–3
(TOE1–3), SCHLAFMÜTZE (SMZ) and SCHNARCHZAP-
FEN (SNZ) [16–19] and the MADS domain factor FLOW-
ERING LOCUS C (FLC). FLC is a potent floral repressor
that acts both in leaves and the apical meristem and, with
its expression controlled by epigenetic mechanisms as well
as at a direct transcriptional level, acts as the central
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component of the vernalization response pathway [1,4].
Vernalization decreases FLC expression, which allows the
induction of FT in leaves and the transition from vegeta-
tive to reproductive growth at the shoot apex, through the
systemic signaling system that FT represents [20–22]. In
addition, FLC represses two other floral promoters at the
shoot apex, the MADS-box gene SUPPRESSOR OF
OVEREXPRESSION OF CONSTANS 1 (SOC1) and FD
[20–24]. FD codes for a bZIP transcription factor that
physically interacts with FT, and coordinately they upre-
gulate SOC1 (the expression of which is an early marker
for floral transition [24–26]). Thus, the vernalization-de-
pendent downregulation of FLC enables Arabidopsis to
flower by producing a systemic signal in the leaf (FT)
and by conferring competence to the meristem to respond
to it [22]. SOC1 is also positively regulated by the gibber-
ellin pathway, as well as by the age-related pathway, in
this latter case via transcription factors of the SPL (SQUA-
MOSA PROMOTER BINDING FACTOR-LIKE) family,
such as SPL9 [24,27,28]. The MADS-box gene SHORT
VEGETATIVE PHASE (SVP) is another negative regula-
tor of the floral transition, and FLC and SVP functions are
in part mutually dependent: SVP interacts with FLC for
the repression of SOC1 in the apex and they might also
together directly affect the expression of FT in the leaf [29]
(the flc svp double mutant shows a stronger phenotype
than either of the single mutants, indicating that these
factors can also act independently; however, the flc svp
phenotype is more similar to that of svp than of flc, imply-
ing that FLC is more dependent on SVP than vice versa
[29]). SOC1 expression at the apex is also directly re-
pressed by AP2, as demonstrated recently through the
genome-wide identification of AP2 targets (AP2 is involved
in several developmental processes, including floral organ
determination and development, but has also been shown
to act as a repressor of flowering) [30].

The expression of SVP is regulated by the autonomous
and gibberellin pathways [29], as well as by ambient
temperature, thereby mediating delayed flowering in cool
conditions [31]. Conversely, elevated temperatures accel-
erate flowering, in a manner that is dependent on FT but
not mediated by the main known FT activator CO [32].
Instead, the thermal induction of flowering largely
depends on the MADS-box gene FLOWERING LOCUS
M (FLM), a close paralog of FLC [32,33]. FLM is a floral
repressor, and changes in its splicing patterns in warm
temperatures might lead to a reduction in the levels of the
FLM variant that represses FT [33].

In summary, the expression of both floral promoters
(FT and SOC1) and floral repressors (FLC and SVP) is
regulated by several flowering time pathways, thereby
responding to multiple external or endogenous cues in
each case. Another gene that participates in the integra-
tion of flowering signals in Arabidopsis is AGAMOUS-
LIKE24 (AGL24), the closest SVP homolog within the
large MADS-box gene family [34], but which functions
as a floral activator instead. AGL24 and SOC1 directly
regulate each other’s expression in a positive feedback
loop [35], and the two factors might form a complex for the
upregulation of LFY [36]. Thus, all these regulators of the
floral transition form a small network withmultiple inter-
actions among themselves (and, undoubtedly, additional
interactions still remain to be discovered), which is ulti-
mately resolved in the upregulation of floral meristem
identity genes (AP1 and LFY; Figure 1). The term ‘‘floral
pathway integrator’’ (FPI) was introduced to describe
genes that upregulate the meristem identity genes, and
whose expression is regulated by flowering pathways that
sense environmental or developmental cues (i.e. changes
in the expression of the FPI genes serve to integrate the
different flowering inputs [4]). The term was initially
applied to FT, SOC1 and LFY (which is activated by
gibberellins through both SOC1-dependent and indepen-
dent mechanisms [24,37]), and later to FD and AGL24, for
instance. However, the functional distinction between
floral integrators and floral meristem identity genes is
becoming increasingly blurred because flowering time
genes such asSVP,SOC1,AGL24 andFT have been found
to participate in floral meristem identity determination
and patterning [38–40]. Thus, integration emerges as a
characteristic of the gene network rather than of the genes
per se. In addition, recent studies have shown how the
meristem identity genes, and AP1 in particular, take part
in the regulation of the floral transition network. A recent
genome-wide identification of the transcriptional targets
of AP1 has shown that it constitutes a hub in the regula-
tory network and that it acts as a developmental switch
between floral induction and flower formation [9].

AP1 as an orchestrator of floral initiation
In Arabidopsis, floral primordia are initiated sequentially
on the flanks of the inflorescence meristem. The out-
growth of these primordia and their positioning depends
on the build-up of local concentration maxima of the
phytohormone auxin [41]. Once floral meristem growth
commences, a specific developmental program is activat-
ed that leads to the formation of the different types of
floral organs in a stereotypic pattern. As outlined above,
this key regulatory event is controlled by a small number
of floral meristem identity genes, which were originally
identified in mutant screens for plants with defects in
early flower development. For example, plants in which
AP1 is disrupted exhibit a partial conversion of flowers
into inflorescence-like structures [42]. The inactivation of
an additional gene CAULIFLOWER (CAL) dramatically
enhances the ap1 mutant phenotype: the onset of flower
formation is markedly delayed and inflorescence-like
meristems accumulate at the shoot apices, leading to a
cauliflower-like appearance [42]. This mutant phenotype
indicates that AP1 and CAL, which code for closely relat-
ed MADS domain transcription factors [7,43], control the
initiation of flower development in a redundant manner
[42]. Flower formation is ultimately restored in ap1 cal
double-mutant plants, probably by the misexpression of
the gene FRUITFULL (FUL). FUL encodes a MADS
domain protein that is closely related to AP1 and CAL
and that is expressed in the shoot apical meristem at the
transition to flowering [44]. FUL expression is negatively
regulated by AP1 in emerging floral meristems, and
because of this negative regulation FUL is ectopically
expressed in young floral primordia of ap1 cal double-
mutant plants [44]. In the ap1 cal ful triple mutant,
521



Box 1. Function of LFY in floral meristem identity specification

LFY encodes a plant-specific transcription factor that acts as a main

regulator of floral meristem identity [8]. In lfy mutants, flowers are

partially replaced by shoot-like structures. When AP1 activity is

removed in addition to that of LFY, the conversion of flowers into

shoots is almost complete, suggesting that AP1 and LFY have

overlapping functions in the specification of floral meristems [8]. In

agreement with this conjecture, the ectopic expression of both LFY

and AP1 leads to a replacement of shoots with individual flowers

[91,92]. This result indicates that both genes can trigger the

developmental program required for flower formation.

In contrast to AP1, whose expression commences in young floral

meristems [7], LFY is already transcribed during vegetative growth in

leaf primordia. However, its expression is strongly upregulated in

incipient floral meristems by the activity of different flowering time

pathways [93,94]. Therefore, LFY has been classified as a floral

pathway integrator in addition to its role as a floral meristem identity

gene [95].

Besides its function in regulating AP1 and CAL expression (see

main text), LFY is also known to be required for the activation of floral

organ identity genes in specific domains of developing floral buds

[96,97]. LFY function seems to depend on the availability of certain

cofactors such as UNUSUAL FLORAL ORGANS (UFO) [98], WUSCHEL

(WUS) [99] or SEP3 [39], but its exact mode of action is still poorly

understood.

Genes acting downstream of LFY have been identified through the

application of microarray analysis [19,47,100]. A small number of

these genes have been further characterized as direct LFY targets,

which has yielded preliminary insights into the LFY network. LATE

MERISTEM IDENTITY1 (LIM1) is a direct LFY target that encodes a

homeodomain-Zip transcription factor and which functions as a

meristem identity regulator and participates, together with LFY, in the

upregulation of CAL upon floral transition [47,101]. However, for the

vast majority of the identified genes, their possible functions in flower

development are currently not known and, because of the lack of

genome-wide binding data for LFY, it remains unclear in many cases

whether they are direct LFY targets or constitute secondary response

genes. The genome-wide identification of LFY target genes and the

integration of the resulting datasets with those for AP1 should yield

detailed insights into the gene regulatory networks underlying floral

meristem identity specification.
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flower formation is completely abolished [44] because the
loss of AP1 and CAL activities cannot be compensated by
FUL misexpression. The regulatory interactions between
these genes have complicated determining the functions
of FUL during the development of wild-type inflores-
cences, but recent studies have shown that FULmediates
flowering time andmeristem determinacy in coordination
with SOC1 [45].

Work to elucidate the molecular mechanisms through
which these floral meristem identity genes specify floral
primordia has so farmainly focused onAP1. The regulation
of AP1 transcription has been shown to be highly complex
and to depend on the input of different flowering time
pathways. AP1 expression is initiated in incipient floral
primordia [7] through at least three different mechanisms.
One of them involves LFY [8], which also acts as a regula-
tor of floral meristem identity (Box 1; for a recent review on
LFY, see [46]). LFY has been shown to bind to the promoter
of AP1 (as well as that of CAL [47]) and to activate the
expression of the corresponding gene [48]. A second mech-
anism for AP1 activation depends on a protein complex
formed by FD, which directly binds to the AP1 promoter,
and FT [25,26]. Recently, a third pathway that mediates
AP1 activation has been identified, which involves the
direct binding of members of the SPL family of transcrip-
tion factors to the regulatory region of AP1 [27,49]. The
AP1-promoting activities of these pathways are counter-
acted by several regulatory proteins that repress AP1
expression. Examples are SMZ, which was found to direct-
ly inhibitAP1 expression [18], and TERMINALFLOWER1
(TFL1), a protein that is closely related to FT and that is
thought to compete with it for binding to FD [50,51]. AP2,
which is closely related to SMZ and also functions as a
floral repressor, has also been shown to bind to AP1
regulatory regions [30].

Despite the progress made in characterizing the path-
ways and mechanisms that regulate AP1 expression dur-
ing floral initiation, a detailed understanding of AP1
function has long been hampered by the fact that few of
its target genes were known. The recent genome-wide
identification of AP1 targets through a combination of
522
microarray experiments and chromatin immunoprecipita-
tion assays followed by next-generation sequencing (ChIP-
Seq) has begun to fill this knowledge gap and led to the first
detailed insights into the molecular mechanism of AP1
during floral initiation [9]. AP1 was found to bind to
approximately 2000 sites in the Arabidopsis genome, but
only a minority (�15%) of the genes in the immediate
vicinity to those sites showed robust expression changes,
either in response to AP1 activation or at more advanced
stages of flower development (when additional AP1 cofac-
tors might be present). Thus, many AP1-binding events
seem to have no or only weak effects on gene expression.
This limited overlap between DNA binding and transcrip-
tional output might not be a peculiarity of AP1, but rather
a relatively common feature for eukaryotic transcription
factors (similar studies with other factors in Arabidopsis,
as well as in animals, have also shown a low correlation,
regardless of whether endogenous or mis-/overexpressed
factors were targeted in the experiments [52]). This sug-
gests that some, and perhaps even a majority, of the DNA-
binding events by eukaryotic transcription factors might
not be conductive to changes in gene expression.

Most of the identified AP1 target genes have been found
to be downregulated, suggesting that AP1 acts predomi-
nantly as a transcriptional repressor during the initial
phase of flower development. This result is in agreement
with previous observations that indicated a preponderance
of gene repression during floral induction [19,53]. It seems,
therefore, that an important step for the onset of flower
development is the downregulation of genes that are nor-
mally expressed in the inflorescence meristem. In particu-
lar, AP1 downregulates many of the known floral
repressors including TFL1, TOE1, TOE3, SNZ, TEM1,
TEM2 and SVP (Figure 1). Thus, AP1 mediates floral
initiation in part by overcoming the inhibitory effects of
these genes. AP1 also downregulates additional genes that
participate in floral transition, including some of its own
activators: SOC1, AGL24, SPL9, FD and FDP (which is an
FD paralog). In summary, a large fraction of the regulatory
network that at the apex directs floral transition and the
upregulation of AP1 in the emerging primordia (Figure 1)
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Figure 2. Molecular mechanisms underlying AP1 function during early flower development. (a) During the initiation of flower development, AP1 acts mainly as a

transcriptional repressor [9]. Several different mechanisms seem to be involved in mediating this activity: firstly, AP1 can form heterodimers with the MADS domain

proteins SVP and AGL24, which have been shown to interact with a transcriptional corepressor complex formed by the proteins SEU and LEU [54–56]. SEU/LEU can then

recruit chromatin remodeling factors (CRFs) to target gene promoters [57]. AGL24 and SVP have also been shown to directly interact with chromatin remodeling factors

[39], suggesting an additional mechanism through which AP1-containing transcription factor complexes might inhibit transcription. Lastly, AP1 is predicted to contain an

EAR repressor domain in its C terminus [58], which might allow the recruitment of members of the TOPLESS (TPL) family of transcriptional corepressors [59]. A question

mark indicates that this interaction has not yet been demonstrated. (b) After the onset of flower development, AP1 represses the expression of SVP and AGL24 [9,53,61],

which leads to the activation of the MADS-box gene SEP3 through both direct and indirect mechanisms [9,39]. SEP3 is then thought to interact with AP1 and to activate the

expression of genes involved in early floral organ formation [9]. However, it has also been shown that AP1/SEP3 heterodimers can interact with the SEU/LEU transcriptional

corepressor complex [54–56], suggesting that AP1/SEP3 function can be reversed.
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subsequently becomes under the control of, and is sup-
pressed by, AP1. The fact that among the identified AP1
targets are a large number of genes that encode transcrip-
tion factors (those mentioned above and many others that
are still functionally uncharacterized) reflects the nature of
AP1 as a regulatory hub.

AP1 was also found to control the expression of genes
involved in a multitude of cellular and developmental
processes, such as hormone responses and meristem pat-
terning, but the exact roles that these genes play during
early flower development are in most cases unknown.
Elucidating the functions of the AP1 targets is likely to
be a focus of future research and should yield new, detailed
insights into the process of floral initiation.

From repression to activation: the role of AP1
interacting proteins
As outlined above, AP1 acts predominantly as a repressor
during the initiation of flower development. Although the
exact mode through which AP1 mediates the inhibition of
target gene expression is currently unknown, available
evidence suggests an involvement of several possibly in-
dependent mechanisms (Figure 2a). One of them is based
on a transcriptional corepressor complex, which is com-
posed of the proteins SEUSS (SEU) and LEUNIG (LEU),
and that has been shown to interact with heterodimers
between AP1 and one of the MADS domain proteins
AGL24, SVP or SEPALLATA3 (SEP3) [54–56]. The
SEU/LEU corepressor complex is thought to recruit pro-
teins such as histone deacetylases to target genes [57],
resulting in an altered chromatin structure and reduced
promoter accessibility. Interestingly, SVP and AGL24
have also been shown to directly interact with proteins
that affect histone methylation and acetylation, respec-
tively [39], suggesting the existence of additional mechan-
isms by which AP1 target genes might be suppressed.
Furthermore, AP1 contains a sequence in its C terminal
region that is predicted to function as an ERF-associated
amphiphilic repression (EAR) domain [58]. This domain
might allow the recruitment of members of the TOPLESS
protein family, which constitute another class of tran-
scriptional corepressors [59].

As mentioned above, AP1 can interact with several
MADS domain proteins including the flowering time reg-
ulators AGL24 and SVP as well as SEP3, which is a
component of a large number of transcription factor com-
plexes involved in flower development [60]. Notably, the
expression of these AP1 partner proteins is under tight
developmental control, suggesting that the formation of
different AP1-containing complexes is essential for proper
floral initiation. During the earliest stages of flower devel-
opment, AP1 is thought to mainly interact with AGL24
and SVP [55], which are known to repress genes required
for the specification of floral organs, including SEP3
[39,55]. At the same time, the expression of both AGL24
and SVP is gradually downregulated by AP1 [9,53,61],
ultimately resulting in the activation of SEP3 in early-
stage floral buds [9,39,55]. SEP3 is then thought to inter-
act with AP1 [38] (and possibly also with LFY [39]) and to
activate genes required for the formation of floral organs, a
process that commences shortly after the onset of SEP3
expression. In agreement with the idea that AP1 and
SEP3 act together in early flower development
(Figure 2b), it was found that these two transcription
factors have similar sets of target genes and preferentially
bind to the same sites in the Arabidopsis genome [9].
Furthermore, joint target genes were found to be predom-
inantly upregulated during more advanced stages of flow-
er development when organ formation was initiated [9].
Therefore, it seems that AP1/SEP3-containing transcrip-
tion factor complexes act by promoting the expression of
genes that are required for early floral organ development.
However, the known interaction between the AP1/SEP3
heterodimer and the SEU/LUG corepressor complex (see
above) indicates that at least in some cases this activity
can be altered.

Taken together, experimental evidence obtained to date
suggests that AP1 acts mainly as a transcriptional repres-
523
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Figure 3. Schematic diagram of the genetic pathways that regulate flowering time

in temperate cereals. The transition to flowering in winter varieties of temperate

cereals (such as wheat and barley) requires vernalization and is promoted by long

days (photoperiod) [64]. The floral repressor VRN2 [81] and a repressed chromatin

state of the floral activator VRN1 [82] prevent floral induction. Vernalization relieves

the chromatin-mediated repression of VRN1 [82], and increased VRN1 expression

results in the repression of VRN2 and activation of VRN3/FT [64] (VRN1 is also

upregulated during development [83]; not represented in the diagram). Therefore,

VRN1, VRN2 and VRN3/FT form a regulatory feedback loop that leads to the

irreversible induction of flowering [64]. It has been shown that VRN3/FT interacts

with FDL2, which binds to the VRN1 promoter [84] (i.e. analogously to the FT–FD-

mediated regulation of AP1 in Arabidopsis). The activation of VRN3/FT requires long

days and is mediated by PPD1 (which codes for a pseudo-response regulator and

controls the circadian timing of CO expression) and CO [85]. Day length is also a

major determinant of the expression of VRN2, which operates in the photoperiod

pathway to counteract floral induction and prevent flowering in the fall, when days

are still long, in the absence of vernalization [64,83,86]. Conversely, the short days of

winter result in the downregulation of VRN2 (because the SD–LD induction of

flowering is likely to be an ancestral trait, wheat and related grasses can be

considered SD–LD plants) [64,86]. An alternative model for the regulatory feedback

loop formed by VRN1, VRN2 and VRN3/FT, where the interactions between these

genes are reversed (with VRN3/FT repressing VRN2, VRN2 repressing VRN1 and

VRN1 activating VRN3/FT) has also been proposed [87]. However, subsequent

detailed molecular characterization of the wheat VRN1 deletion strain [72] in which

this alternative model was based, strongly supports the model depicted here. The

exact roles of the floral repressors VRT2 (an SVP homolog [88,89]) and OS2 (a MADS-

box gene with weak similarity to SOC1 [90]) in the floral transition network are still

undefined (see main text). Genetic interactions that promote flowering are indicated

in blue and those that repress flowering are indicated in orange; arrows represent

gene activation (or the final promotion of the floral transition by VRN1) and blunted

lines represent gene repression (or the repression of the floral transition by VRT2 and

OS2). LD, long days; SD, short days.
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sor during early flower development, but reverses its ac-
tivity when SEP3 becomes available as a partner protein.
This change in AP1’s activity is thought to mediate the
switch from floral induction to flower formation [9]. Un-
derstanding in molecular detail the exact mechanisms by
which AP1 and its different interacting proteins function in
a developmental context will be a main challenge of re-
search for years to come.

Floral initiation in cereals: conservation and innovations
of AP1 function
Is the role of AP1 and that of other regulators involved in
the control of floral initiation unique to Arabidopsis and its
relatives, or is it conserved across flowering plants? Of
particular interest in this context are the grass-like plants
(monocots), which are distantly related to eudicots. Studies
on cereals such as wheat and rice have demonstrated the
existence of vernalization, photoperiod and autonomous
flowering time pathways in monocots and identified sever-
al orthologs of Arabidopsis floral regulators in their gen-
omes [3,4,62–64]. However, some of the genes that
participate in the control of flowering time in cereals do
not have close homologs in Arabidopsis, and orthologous
genesmight not play the exact same roles inmonocots as in
eudicots, indicating considerable differences in network
circuitry.

The evolutionary history of the AP1/FUL-like MADS-
box genes has been extensively studied. InArabidopsis, the
AP1/FUL clade comprisesAP1,CAL andFUL: theAP1 and
FUL lineages originated from the duplication of an ances-
tral AP1/FUL gene that occurred at the base of the eudi-
cots, whereas the additional duplication that resulted in
Arabidopsis AP1 and CAL was specific to the Brassicaceae
[65]. By contrast, early in the evolution of monocots, a
genome-wide duplication event resulted in two paralogous
AP1/FUL genes (sometimes referred to as the FUL1 and
FUL2 lineages) [65–67]. The complex history of gene dupli-
cations within the AP1/FUL clade during angiosperm evo-
lution makes it difficult to establish clear orthologous
relationships across plant families [67].

In wheat (and other temperate cereals such as barley),
an AP1/FUL homolog has been shown to correspond to
VERNALIZATION1 (VRN1), which is involved in the con-
trol of flowering in response to vernalization (in conjunc-
tion with two other genes, VRN2 and VRN3; Figure 3, Box
2) [68–70]. In winter wheat varieties, which require a long
exposure to cold to flower in the spring,VRN1 expression is
induced by vernalization; by contrast, spring wheat varie-
ties do not require vernalization and express VRN1 in the
absence of such treatment [68–71]. In addition to this role
in the vernalization response, VRN1 is required for floral
initiation. A wheat strain carrying a deletion that encom-
passes the VRN1 gene never produces flowers [72], and the
reduction of VRN1 expression by RNAi delays the apex
transition to the reproductive stage [73]. The functional
roles of VRN1 correlate with its expression pattern. In
winter cereals, VRN1 is first expressed in leaves in re-
sponse to vernalization and later in the apices [68,70,74].
In fact, VRN1 (FUL1) and the paralogous gene FUL2 are
expressed in the inflorescence meristems of all studied
grasses, indicating a conserved, general role in the transi-
524
tion to flowering [74]. Both genes are also expressed in
spikelet and floret meristems, consistent with a role in
floral meristem identity (spikelets are the short branches,
specific to the grasses, that bear the florets, and the



Box 2. Mechanisms of flowering time control in temperate cereals

The genetic and molecular characterization of flowering time genes in

wheat has started to delineate the regulatory network of the floral

transition in that species (Figure 3). VRN2 codes for a protein with a

C2H2-type zinc finger and a CCT domain that seems to be specific to

grasses [81] and acts as a flowering repressor. VRN3 is the wheat/

barley ortholog of FT and, like FT, is upregulated in response to long

days [85,102]. These two genes act with VRN1 (see main text) in a

regulatory loop that integrates day length (photoperiod) and verna-

lization inputs that promote flowering [72] (Figure 3). VRN3/TaFT has

been shown to regulate VRN1 transcription through interactions with

the bZIP protein FDL2 [84], analogously to the upregulation of AP1 in

Arabidopsis mediated by the FT–FD complex. TaFT is a limiting factor

in the activation of VRN1, whereas FDL2 is expressed in leaves as well

as in vegetative and reproductive apices [84] (in contrast to

Arabidopsis FD, which is expressed in the shoot apical meristem

[25]). Thus, the link that the FT–FD module provides between AP1

expression and the flowering time pathways, with FT and FD

accounting, respectively, for the temporal and for the spatial

specificity of AP1 expression upon the floral transition, is conserved

in monocots and Arabidopsis. In addition, the TaFT–FDL2 interaction

provides a simple mechanism to account for the expression of VRN1

in the leaves of temperate cereals (spring or vernalized winter

varieties) [84]. Wheat and barley also contain homologs of Arabi-

dopsis SVP, such as TaVRT2, which has been shown to be capable of

repressing VRN1 [88], and BM1 and BM10 [103], but their roles in the

floral transition network are still under consideration (activity as a

repressor participating in the vernalization response or as an inhibitor

of floral meristem identity have both been considered) [64,88,103].

As outlined above, Arabidopsis AP1 directly downregulates genes

that act as repressors of flowering [9] and, similarly, VRN1 down-

regulates VRN2 and OS2. OS2 is a MADS-box gene that shows weak

similarity to Arabidopsis SOC1 (which is itself a floral promoter) and is

expressed in leaves and shoot apices and repressed by vernalization

and by VRN1 [90]. In summary, although the molecular characterization

of the VRN1 regulatory network in temperate cereals is still limited, it

seems that the nature of AP1 as a network hub is maintained in VRN1.
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corresponding floral meristems arise from the spikelet
meristem) [74]. Thus, VRN1 forms part of the floral tran-
sition network in a way that is both different (in leaves as a
vernalization gene to induce flowering competency and in
the shoot apical meristem to regulate the floral transition)
and similar (as a reproductive meristem identity and floral
organ development gene) to that of AP1 in Arabidopsis. It
has been proposed that the ancestral role forAP1/FUL-like
genes in angiosperms was to confer floral meristem identi-
ty and to control floral organ development, and that their
involvement in the transition to flowering is a derived
character in the grasses [74]. In this respect, the vernali-
zation pathway is supposed to have evolved independently
in Arabidopsis and in the temperate cereals, given the
differences between the two plants (no ortholog of Arabi-
dopsis FLC has been identified in monocots [62]).

In contrast to temperate cereals, rice and maize do not
rely on vernalization for flowering. Rice is a short day plant
that blooms in late summer and in which the time of
flowering critically depends on day length [75,76], whereas
maize undergoes the transition to flowering after a fixed
number of leaves has been produced (in contrast to its
ancestor teosinte that, like rice, is induced to flowering by
short days) [77]. The lack of vernalization response points
to differences in the flowering time network between the
rice and maize AP1/FUL homologs and wheat VRN1.
However, the available data on maize and rice, albeit
limited, indicate that the function of AP1/FUL homologs
(ZMM4/VRN1 in maize and OsMADS14/FUL1,
OsMADS15/FUL2 and OsMADS18 in rice) in the shoot
apical meristem to regulate floral transition, and as repro-
ductive meristem and floral organ development genes, is
conserved [76,78,79].

Altogether, the available data on flowering time and
AP1/FUL genes in cereals highlight the existence of many
aspects of the topology of the floral transition network that
are conserved between dicots and monocots, as well as
innovations, which can be common to either all monocots
(the function of AP1/FUL genes in the shoot apical meri-
stem to regulate the floral transition) or to a group of them
(the role of VRN1 in the vernalization response in temper-
ate cereals). It can, therefore, be expected that the nature
of AP1 as a network hub that was uncovered inArabidopsis
is also present in monocots.

Concluding remarks and future directions
Our understanding of the molecular mechanisms underly-
ing floral initiation has begun to improve considerably in
recent years aided by the development of technologies that
allow the study of transcription factor function on a ge-
nome-wide scale. Although the identification of target
genes of the floral pathway integrators and floral meristem
identity factors discussed above is far from complete, it is
clear from the limited number of examples currently avail-
able that this work will yield detailed insights into the
compositions and architectures of the gene networks con-
trolling floral initiation. One important step in under-
standing the behavior and dynamics of these networks
will be the integration of the different large-scale datasets
stemming from these experiments into comprehensive and
predictive network models. To this end, pre-existing mod-
els can serve as a structural framework for network ex-
pansion [80]. Analysis of the flowering gene networks in
plants different from Arabidopsis will shed light on the
evolution of flowering pathways and, in the case of cereals,
could provide invaluable information for generating new
strains of crop plants with improved yields.
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