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Abstract
Cassava (Manihot esculenta Crantz) is a tropical plant that is used as fresh food, processed food, or raw material for the
preparation of flours with high nutritional value. However, cassava contains cyanogenic glycosides, such as linamarin and
lotaustralin, that can trigger severe toxic effects and some neurological disorders, including motor impairment, cognitive dete-
rioration, and symptoms that characterize tropical ataxic neuropathy and spastic epidemic paraparesis (Konzo). These alterations
that are associated with the consumption of cassava or its derivatives have been reported in both humans and experimental
animals. The present review discusses and integrates preclinical and clinical evidence that indicates the toxic and neurological
effects of cassava and its derivatives by affecting metabolic processes and the central nervous system. An exhaustive review of
the literature was performed using specialized databases that focused on the toxic and neurological effects of the consumption of
cassava and its derivatives. We sought to provide structured information that will contribute to understanding the undesirable
effects of some foods and preventing health problems in vulnerable populations who consume these vegetables. Cassava contains
cyanogenic glycosides that contribute to the development of neurological disorders when they are ingested inappropriately or for
prolonged periods of time. Such high consumption can affect neurochemical and neurophysiological processes in particular brain
structures and affect peripheral metabolic processes that impact wellness. Although some vegetables have high nutritional value
and ameliorate food deficits in vulnerable populations, they can also predispose individuals to the development of neurological
diseases.
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Introduction

Manihot esculentaCrantz, known as cassava, tapioca, or yuca,
is an edible vegetable in tropical and subtropical regions. Its
use has spread to diverse parts of the world because of its high
content of carbohydrates and some essential micronutrients
for human nutrition. However, this plant also contains a high
percentage of cyanogenic glycosides, such as linamarin (90%)
and lotaustralin (10%; Soler-Martín et al. 2010). The con-
sumption of this plant or its derivatives has been associated

with the development of neurological disorders that principal-
ly produce motor impairment and cognitive deficits
(Adamolekun 2011).

Clinically, chronic cassava consumption is associated
with the development of such neuropathies as spastic
epidemic paraparesis (Konzo) and tropical ataxic neu-
ropathy (TAN; Tylleskär et al. 1992; Rivadeneyra-
Domínguez et al. 2012; Netto et al. 2016; Kashala-
Abotnes et al. 2019) that are attributable to its linamarin
content, the hydrolysis of which forms hydrocyanic acid
(Adamolekun 2010) that produces neuronal damage.
Neurotoxic effects occur when high plasma concentra-
tions of cyanide are reached in the form of thiocyanate,
mainly in the liver (Ernesto et al. 2000). Preclinical
studies showed that cassava consumption in albino goats
induced liver and kidney damage, alterations of thyroid
function and neuronal vacuolization, and the cellular
infiltration of leukocytes (Soto-Blanco and Górniak
2010). In rats, a positive correlation was found between
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the consumption of cassava juice and the development
of motor alterations (Rivadeneyra-Dominguez et al.
2013, 2019), neuronal damage in the CA1 area of the
hippocampus (Rivadeneyra-Dominguez et al. 2013), me-
dulla oblongata, and mesencephalon, axonal dystrophy,
the degeneration of Purkinje cells, spongiosis, and
gliosis (Soler-Martin et al. 2010; Soto-Blanco and
Górniak 2010). Considering these findings, the present
review focuses on findings from preclinical and clinical
research on the neurotoxic effects of cassava and its
derivatives to raise awareness of its potential health
risks in vulnerable individuals who consume this vege-
table as a principal component of their diet.

Chemical compounds in cassava

Cyanogenic glycosides that are contained in the roots and
leaves of cassava are the main active constituents that are
related to neurotoxic and neurological effects (Jansz and
Uluwaduge 1997). L-valine and L-isoleucine are precursors
of linamarin and lotaustralin, respectively. The biosynthetic
pathway (Fig. 1) of these compounds was identified using
techniques with radioactive markers. Recent studies isolated
microsomal enzymes (i.e., a multienzyme complex) from cas-
sava phellodermis that convert valine-14C into acetone cya-
nohydrin (Jansz and Uluwaduge 1997). The initial step of the
sequence (i.e., the synthesis of isobutyraldoxime) is catalyzed
by cytochrome p450.

The identification of linamarin in cassava was achieved with
the enzyme linamarase and sulfuric acid. In the last 25 years,
analytical methods have been developed for such determina-
tions (Yeoh et al. 1998). One such technique uses the hydrolysis
of linamarin to detect hydrogen cyanide or glucose release. This
semiquantitative procedure involves direct trituration of the
roots and the addition of organic solvents that cause the release
of linamarase to hydrolyze linamarin. The alkaline picrate test is
then performed, which can detect hydrogen cyanide that is

released in the reaction (Yeoh et al. 1998; Egan et al. 1998).
The quantitative method of analysis involves the extraction of
linamarin from the roots, which is then hydrolyzed by the action
of exogenous linamarase. This is followed by the determination
of hydrogen cyanide by amperometry, potentiometry, or spec-
trophotometry (Cooke 1978; Bradbury et al. 1991). Linamarin
(2-[−D-glucopyranosyloxy]-2-methylpropanonitrile) is also
called phaseolunatin. Its empirical formula is C10H17NO6, with
a molecular weight of 247.24 g/mol. It has an elemental com-
position of 48.58% C, 6.93% H, 5.6% N, and 38.83% O. It is
soluble in water and appears as a white solid. Linamarin can be
found in plants of the Compositae, Leguminosae,
Euphorbiaceae, Linaceae, and Papaveraceae families (Seigler
1975), which usually exert toxic and neurological effects at
high concentrations or at low doses with long-term
consumption.

General neurotoxins in cassava

Cassava is usually classified as “sweet” or “bitter,” based on
the content of cyanogenic glucosanate (i.e., a promoter of
hydrocyanic acid formation) in the roots of this plant
(Nweke and Bokanga 1994). The sweet variety of cassava
has a thin white skin. It is usually consumed raw, steamed,
or roasted. Bitter cassava is characterized by a thicker pink
skin. Cyanogenic compounds need to be removed by peeling
the skin, boiling, slicing, soaking, fermenting, roasting, dry-
ing, or grinding, which apparently inactivate or eliminate the
toxic components (Schaumburg et al. 1983). The differentia-
tion between bitter and sweet varieties is not always accurate
because the content of cyanogenic glycosides is not necessar-
ily constant within a variety and also depends on the edapho-
climatic conditions of the crop. Bitter cassava is more com-
mon in the Amazonian and Caribbean regions, whereas the
sweet variety is found more frequently in northern South
America (Cock 1984).
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Cassava produces a sage or milky juice that contains the
cyanogenic glucoside linamarin. Boiling, steaming, frying, or
baking cassava causes the loss of 30–70% of cyanogenic gly-
cosides, demonstrating remnant toxicity even after processing
(Jansz and Uluwaduge 1997). The production of hydrocyanic
acid (cyanide) depends on the biosynthesis of cyanogenic gly-
cosides and the presence or absence of enzymes that degrade
them (Hernández et al. 1995).

The destruction of cassava cells releases linamarin (97%)
and lotaustralin (3%). The roots of cassava are consumed be-
cause of their high content of carbohydrates, but all cassava
varieties contain linamarin. Linamarin is hydrolyzed in the
gastrointestinal tract in humans by β-glycosidase. The cya-
nide that is generated is rapidly absorbed by the gastrointesti-
nal tract and transported to the central nervous system (CNS).
The liver also contains enzymes that are able to hydrolyze the
absorbed linamarin, generating metabolites from which cya-
nide ions are generated (Maduagwu 1989).

The neurotoxic potential of such substances may depend
on the nutritional status of the individual. Because cassava is
the main dietary component of many people who are in a state
of malnutrition, the toxic threshold can easily be exceeded and
trigger acute or chronic diseases. The causal factors that con-
tribute to cassava toxicity are associated with malnutrition
(Mathangi et al. 2000). Linamarin is not toxic per se, but it
contributes to the formation of cyanide in humans (Mlingi
et al. 1992). The amount of linamarin that is ingested from
cassava does not change intestinally within the first 24 h,
which is maintained until it is excreted in urine (Brimer and
Roseling 1993; Carlsson et al. 1995).

The linamarase enzyme acts on linamarin when cassava tis-
sue is destroyed by cell membrane rupture, where by the hy-
drolytic action of the glucosidases acetone cyanohydrin is ob-
tained, same that by enzymatic activity of the hydroxynitrile
lyase decomposes in acetone and HCN. Cyanohydrin decom-
poses in an alkaline medium and also when it is exposes to
more than 60 °C, whereas HCN remains the free toxic form
or “free cyanide” (McMahon et al. 1995). The product of the
action of linamarase on cyanide-containing compounds is
hydroxynitrile, which is unstable in response to heat and an
alkaline medium. Therefore, analytical proposals have consid-
ered that hydroxynitrile lyase is not required for this process of
biotransformation. The cassava plant contains hydroxynitrile
lyase that releases HCN from acetone cyanohydrin. Because
of lability of the substrate, this enzyme has not been the subject
of extensive investigations. Hydroxynitrile lyase in cassava in-
creases the rate of cyanide release 20-fold (Conn 2009). This
results in the addition of HCN to several aliphatic carboxyls
with a molecular weight of 30 kDa and serine residues in the
active site. Hydroxynitrile lyase in cassava has been shown to
not be related to other acetone cyanohydrin lyases (Wajant and
Forester 1995), in contrast to linamarase that is present in great-
er amounts in the leaf of the plant (Pancon and Hughes 1992).

Metabolic alterations associated
with the consumption of cassava and its
derivatives

Preclinical studies

InWistar rats, the oral consumption of cassava for 21 days at a
dose of 15 g/day increased serum thiocyanate concentrations
(Kittirachra 2006). This increase occurred because cyanogenic
glycosides (linamarin and a small amount of lotaustralin) are
absorbed by the body and converted to thiocyanate, which is
excreted in urine. Thiocyanate is widely accepted to reduce
iodine that is captured by the thyroid gland, but other factors
affect serum thiocyanate levels, including ingestion, detoxifi-
cation, and excretion. Interestingly, the thyroid gland in rats
that were fed cassava did not increase in size. Additionally, the
increase in serum thiocyanate concentrations did not produce
anatomical changes in the thyroid. One possible explanation
for these findings could be that thiocyanate that is produced by
ingesting cassava is insufficient to inhibit the transport of
iodine.

A study evaluated the effect of oral administration of the
aqueous and methanolic extracts of cassava (Manihot
esculenta) in Wistar rats (Adam Shama and Ahmed Wasma
2011). Increases were observed in the concentrations of
glutamic pyruvic transaminases (alanine aminotransaminase
[ALT]), glutamic oxaloacetic transaminases (aspartate
aminotransaminase [AST]), alkaline phosphatase (ALP), urea,
cholesterol, total proteins, and albumin. Additionally, hema-
tological parameters, such as white blood cells, lymphocytes,
neutrophils, and hemoglobin, decreased. Changes were ob-
served in organs, including necrosis and the shrinkage of glo-
meruli and aggregates of lymphocytes in the renal cortex,
accompanied by the cytoplasmic vacuolization of hepatocytes
and neurons (Adam Shama and Ahmed Wasma 2011). These
findings indicate that the toxic effects of cassava are associat-
ed with various biochemical and hematological alterations
(Table 1).

The chronic administration of different concentrations of
acetone cyanohydrin and subchronic treatment with linamarin
increased various biochemical parameters in Wistar rats, indi-
cating inadequate renal and hepatic function that can contrib-
ute to the formation of cyanide through metabolic processes
and consequently impact the CNS. Cyanide is a potent inhib-
itor of electron chains and promotes oxidative stress, which
can then damage neurons and cause significant motor distur-
bances. These preclinical findings may help explain neurolog-
ical effects that have been found in clinical research.

Clinical studies

A clinical study included 39 subjects (30 men and 9 women,
4–46 years old) with a diet that was primarily based on
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cassava products. Serum thiocyanate concentrations were up
to eight-times higher than the reference population in
Mozambique (Howlett et al. 1990). This demonstrates an in-
ability by the organism to detoxify cyanide through the en-
zyme rhodamine, thus increasing the formation of thiocyanate
that is eliminated in urine. When constant exposure to cassava
cyanogens occurs, the higher synthesis of kinase imposes an
additional demand for amino acids from the body’s reserves
(Aristizábal and Sánchez 2007). To detoxify 1 mg hydrogen
cyanide, the body needs a daily supply of approximately
1.2 mg sulfur from amino acids. If cassava is consumed reg-
ularly, then rhodamine and sulfur-containing amino acid re-
sources are depleted. If the diet is insufficient for restoring
these resources, then the synthesis of other proteins that are
vital for CNS function can be impaired. Such metabolic alter-
ations predispose the individual to the development of protein
deficiency-related diseases. Over time, the loss of sulfur can
trigger sudden and irreversible paralysis in the CNS (Padmaja
1995).

In the Democratic Republic of Congo, 2723 inhabitants
were invited to answer a questionnaire to detect the prevalence
of Konzo cases (Tshala-Katumbay et al. 2001). Of the total
participants, 152 had difficulty walking, and 55 had Konzo.
Decreases in albumin concentrations and increases in creati-
nine concentrations were observed, indicating alterations of
renal function. Additionally, high concentrations of thiocya-
nate were found in urine, which is consistent with other stud-
ies (Howlett et al. 1990). Another study that included 40 chil-
dren from the Democratic Republic of Congo whose diet was
basically based on cassava also reported lower albumin con-
centrations, possibly attributable to malnutrition that was
caused by a low-protein diet.

These changes in renal and hepatic function indicate that
the peripheral effects of cassava and its derivatives might have
deleterious effects on the brain, resulting in the development
of neurological disorders that are associated with cassava
consumption.

Chemical compounds in cassava
and the development of neuropathies

Chronic cyanide poisoning from the metabolism of cassava
components has been suggested for decades to be the main
etiological factor that is involved in developing TAN
(Osuntokun 1968) because elevated serum levels of thiocya-
nate are detected in these patients (Osuntokun 1968). The
administration of hydroxocobalamin, a potent antagonist of
cyanide recognition sites, prevented the toxic effects of cya-
nide (Adamolekun 2011). Similarly, the specific neurotoxic
effects of the cyanogenic glucoside linamarin were proposed
to be the cause of Konzo because linamarin can be transported
t o t h e cy t op l a sm o f n eu r on s whe r e i t c au s e s

Table 1 Metabolic effects of cassava and its derivatives in animal
models

Substance
and treatment
regimen

Subject Effects References

Oral
15 g/day and

diet ad libitum
with cassava
for 9 months

Rats ↑ Serum
thiocyanate

Howlett
et al. 1990;
Kittirachra
2006

Aqueous and
methanolic
extract of
cassava tubers
75–300 mg/kg
orally 14 days

Rats ↓ White blood
cells

↓ Lymphocytes
and neutrophils

↓ Hemoglobin
↑ Alkaline

phosphatase
↑ Alanine

aminotransferase
↑Aspartate amino

transferase (AST)
↓ Total protein,

albumin, and
globulins

↑ Urea and
cholesterol

Adam Shama
and Ahmed
Wasma
2011

Acetone
cyanohydrin

10, 15, and
20 mM
(0.3 ml/rat), i.p.,
for 28
consecutive days

Rats Renal function:
↑ Urea, creatinine,

uric acid, and BUN
Hepatic function:
↑ Aspartate amino

transferase, alanine
aminotransferase,
and alkaline
phosphatase

↑ Total bilirubin,
direct and indirect
bilirubin

↓ Total protein and
albumin

Rivadeneyra-
Domínguez
et al. 2017b

Linamarin
20 mM

linamarin
(0.4 ml), i.p.,
24, 5, and 1 h
before obtaining
the sample

Rats Renal function:
↑ Urea, creatinine,

uric acid, and
BUN

Hepatic function:
↑ Aspartate amino

transferase, alanine
aminotransferase,
alkaline phosphatase,
total bilirubin,
direct and
indirect bilirubin

↓ Total protein and
albumin

Rivadeneyra-
Domínguez
et al. 2017a

Cassava ad
libitum in diet

No treatment time
was specified

Rats ↑ Uric thiocyanate
and serum
creatinine

↓ Serum albumin

Tshala-
Katumbay
et al. 2001

Cassava ad
ibitum in diet

No treatment time
was specified

Rats ↓ Serum albumin Bumoko
et al. 2014

↑, Increase concentration; ↓, Decrease concentration
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neurodegeneration (Sreeja et al. 2003). Individuals with
Konzo do not present the known clinical effects of cyanide.
Therefore, another hypothesis was proposed that involved an-
other chemical compound of cassava, the acetone cyanohy-
drin (linamarin aglycone), in the development of Konzo
(Soler-Martín et al. 2010). However, a preclinical study in rats
that were exposed to acetone cyanohydrin reported no motor
alterations that are typically seen in Konzo cases
(Adamolekun 2011). Oral acetone cyanohydrin administra-
tion in rats (Fig. 2) caused selective neuronal degeneration in
different areas of the brain, including non-cortical areas
(Nzwalo and Cliff 2011). Cyanogenesis is initiated in cassava
when the plant tissue is damaged. Acetone cyanohydrin in
cassava flour is unstable and can decompose spontaneously
in acetone and hydrogen cyanide at pH > 5 or temperatures
>37 °C or enzymatically through the reaction of
hydroxynitrile lyase (Nzwalo and Cliff 2011). Consequently,
people who consume these products regularly can potentially
develop neuronal damage and suffer neurological disorders in
the long-term.

Neurological disorders associated
with cassava consumption

Several clinical and preclinical studies have shown that the
long-term consumption of cassava and its derivatives is asso-
ciated with the development of behavioral, motor, and cogni-
tive alterations (Table 2), which could explain some neurolog-
ical disorders that are reported in people who consume this
vegetable or its derivatives (Madhusudanan et al. 2008;
Kashala-Abotnes et al. 2018). Tropical ataxic neuropathy
and spastic epidemic paraparesis (Konzo) occur with high
frequency in communities where cassava is the basis of their
diet (Tylleskär et al. 1993; Tshala-Katumbay et al. 2016;
Boivin et al. 2017). Preclinical studies have shown that some
active ingredients of cassava, such as linamarin and

lotaustrastalin, can cross the blood-brain barrier and cause
neuronal damage in such brain structures as the hippocampus,
cerebral cortex, and cerebellum, among others. These findings
have contributed to the formulation of hypotheses that attempt
to establish the neurobiological substrates of the behavioral,
motor, and cognitive alterations that are associated with neu-
rological disorders in humans who consume cassava and its
derivatives.

Preclinical studies

Laboratory rats that were orally fed cassava gradually devel-
oped motor incoordination and low dopamine concentrations
in the striatum and cerebellum (Mathangi et al. 1999; Spencer
and Palmer 2012). Both the striatum and cerebellum are in-
volved in motor control. Rats that were treated with cassava
juice for 28 consecutive days gradually developed motor in-
coordination, hyperactivity, a decrease in exploration, and a
decrease in self-grooming (Rivadeneyra-Dominguez et al.
2013). When these rats were subjected to a swim test, they
exhibited atypical swimming behavior that was characterized
by swimming on one side and rotating on their own axis
compared with animals that did not consume cassava juice.
These neurological alterations were associated with the high
content of linamarin (0.22–0.30 mg/ml) that is present in cas-
sava juice (Rivadeneyra-Dominguez et al. 2013). Indeed,
when linamarin was microinjected in the CA1 area of the
hippocampus in rats, alterations of motor coordination were
observed that were similar to when cassava juice was admin-
istered. This suggests neurological deterioration that is asso-
ciated with toxic components of the plant (Rivadeneyra-
Domínguez and Rodríguez-Landa 2016). Interestingly, micro-
injections of acetone cyanohydrin, another toxic component
of cassava, in the CA1 area of the hippocampus produced the
same neurological alterations (Rivadeneyra-Dominguez et al.
2019). Apparently, these effects derived from excitatory pro-
cesses and oxidative stress, which in the long-term can cause

Fig. 2 Linamarin Hydrolysis.
Based on McMahon et al. 1995
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neuronal damage and the deterioration of motor coordination.
Indeed, when rats were co-administered cassava juice and a
standardized extract of Ginkgo biloba that contained a high
percentage of flavonoids and antioxidants, motor impairments
and hippocampal damage were not observed (Rivadeneyra-
Domínguez et al. 2014, 2019).

The preclinical data show that neuronal damage in the brain
and neurological symptoms that are produced by cassava con-
sumption may be attributable to the presence of two cyano-
genic glycosides, linamarin and acetone cyanohydrin, whose
effects on the CNS likely have neurochemical and neurobio-
logical bases that underlie such neurological disorders as TAN
and Konzo in individuals who consume cassava and its deriv-
atives. These preclinical findings support epidemiological
studies, in which some neurological disorders in humans are
associated with the consumption of cassava.

Clinical studies

The excessive or inappropriate consumption of cassava ap-
pears to be associated with TAN and Konzo. Tropical ataxic
neuropathy is a syndrome of sensory polyneuropathy that in-
cludes sensory ataxia, bilateral optic atrophy, and bilateral
deafness (Osuntokun 1968). This neurological disorder has
been reported in communities in Tanzania, Sierra Leone
(Rowland 1963), Nigeria (Monekosso and Annan 1964;
Osuntokun 1968), and India (Madhusudanan et al. 2008),
where cassava consumption is high relative to other commu-
nities. The syndrome progresses slowly over years and affects
men and women equally. Patients are characterized by an
ataxic gait and osteotendinous areflexia in 80% of cases and
hyperreflexia in 20% of cases, which is attributable to the loss
of myelin (Banea-Mayambu et al. 1997). The prolonged

Table 2 Cassava toxicity in experimental animals

Neurotoxic Effects on the central
nervous system

Neurological
alterations

Subjects References

Cyanide contained in
cassava leaves

30 consecutive days,
orally, 6 mg/kg

Vacuolization and
myelin degeneration
in white matter

* Goats Soto-Blanco and
Górniak 2010

Acetone cyanohydrin
14–42 consecutive days,

orally, 50 μmol/kg

Neuronal degeneration
in cortical areas

* Rats Soler-Martín
et al. 2010

Cassava tubercle parts
60 consecutive days,

orally, 2–60 g/rat

Neuronal degeneration
and neuroinflammation
in the visual cortex
(V1), lateral geniculate
body, and superior
colliculus

* Rats Ogundele
et al. 2010

Methanolic extract of
cassava tuber

14 consecutive days, orally,
75 and 300 mg/kg

Neuronal vacuolization * Rats Adam Shama
and Ahmed
Wasma 2011

Linamarin contained in
cassava tuber juice

28 consecutive days, orally.
0.075–0.3 mg/kg

* Hyperactivity and
motor incoordination,
lateral swimming, and
spinning on own axis

Rats Rivadeneyra-
Dominguez et al.
2013

Linamarin
7 consecutive days,

intrahippocampal
administration, 1 μl,
10–20 mM

* Motor incoordination,
lateral swimming,
and spinning
on own axis

Rats Rivadeneyra-
Domínguez and
Rodríguez-Landa
2016

Cassava tuber juice that
contained 0.3 mg/kg
linamarin

28 consecutive days,
orally

Neuronal degeneration
and neuroinflammation
in the CA1 area of the
hippocampus

Motor hyperactivity,
motor incoordination,
lateral swimming, and
turning on own axis

Rats Rivadeneyra-
Domínguez et al.
2014, 2017b

Acetone cyanohydrin
7 consecutive days,

intrahippocampal
administration. 1 μl,
10–20 mM

* Motor hyperactivity,
motor incoordination,
lateral swimming,
turning
on own axis

Rats Rivadeneyra-
Domínguez et al.
2017a

*Data not reported
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intake of poorly processed cassava, low protein consumption,
and other nutritional or metabolic factors produce the same
symptomatology (Zaninovic 2003), accompanied by high
concentrations of serum thiocyanate (Schulz et al. 2003;
Llorens et al. 2011). However, such a wide variety of factors
has not allowed identification of the latency of the appearance
of symptoms after cassava consumption (Oluwole and
Onabolu 2003).

Exposure to cyanide in TAN cases is measured by serum
thiocyanate content, which is elevated in patients with cyanide
poisoning. Nonetheless, serum thiocyanate content is low in
patients with Konzo. This apparent contradiction between
these two myelopathies appears to be related to the high ex-
posure to cyanide in the diet in patients with TAN, which
predominately consists of cassava (van Heijst et al. 1994).
Although the hypothesis that metabolites of cassava contrib-
ute to the development of TAN has not been fully proven,
clinical studies have shown that patients with this neuropathy
have high plasma concentrations of cyanide and thiocyanate,
contrary to observations in patients who had a diet that was
free of cassava and its derivatives (Spencer et al. 1987).
Therefore, dietary exposure to cyanogenic glycosides through
the ingestion of cassava and its derivatives could be a factor
that predisposes individuals to the development of some types
of neuropathy (Spencer et al. 1987).

Konzo is a neurological disorder that is characterized by
damage to upper motor neurons. It initially produces irrevers-
ible, non-progressive, and symmetric spastic paraparesis
(Nzwalo and Cliff 2011). It is characterized by spasticity and
progressive weakness of the lower extremities that conse-
quently produces alterations of motor coordination.
Additionally, abrupt symmetric spastic paraparesis appears
in epidemic and endemic forms in tropical and subtropical
countries (Tylleskär et al. 1993; Adamolekun 2011). It mainly
affects children and young women who consume cassava and
its derivatives that contain linamarin for prolonged periods of
time (Sreeja et al. 2003). Interestingly, neurological alterations
that are associated with Konzo have been related to cassava
consumption (Tylleskär et al. 1993). The toxicity of cyano-
genic glycosides that are contained in cassava mainly affects
neurons in brain structures that are involved in neurological
and cognitive processes (i.e., thalamus, piriform cortex, hypo-
thalamus, hippocampus, and cerebellum), including the inte-
gration of memory, emotions, the control of visceral functions,
olfaction, and motor skills, among others (Soler-Martín et al.
2010).

The mechanisms of action of the neurotoxic effects
of chemical compounds in cassava have not been
completely elucidated. Neurophysiological studies have
related Konzo with alterations of cortico-motor neurons
and descending motor pathways (Nzwalo and Cliff
2011). The initial symptoms are described as heaviness
and tremor or weakness of the lower extremities. Over

time, weakness of the upper extremities occurs, with
difficulty speaking and blurred vision. Sensory symp-
toms include radicular pain of the lower back and par-
esthesia in the lower extremities (Cliff et al. 1985).
Neurological alterations that are produced by high con-
centrations of cyanide are apparently attributable to a
decrease in mitochondrial energy through competitive
inhibition of the aerobic metabolism of complex IV
when joining the hemobinuclear group of the enzyme
cytochrome oxidase, which generates oxidative stress
and apoptosis and leads to neuronal damage (Pearce
et al. 2008; Leavesley et al. 2008). The exact mecha-
nisms that are involved in the neurotoxicity of cassava
metabolites and their relationship to Konzo are not yet
fully known (Tor-Agbidye et al. 1999).

Final comments

Cassava (Manihot esculenta Crantz) is a plant that is the
first source of caloric intake in the diet among popula-
tions in the tropics; in other regions, it places fourth,
after rice, sugar, and corn. Although cassava and its
derivatives are an important source of calories for more
than 500 million people worldwide (Mederos 2006), its
high content of cyanogenic glycosides that are synthe-
sized in the leaves and transported to the roots must
also be considered. They are biotransformed by the en-
zyme linamarase to produce hydrocyanic acid, a highly
toxic substance that, at high concentrations, can cause
death. The intake of improperly processed cassava prod-
ucts, combined with a diet that is deficient in sulfur-
containing amino acids, can cause chronic cyanide poi-
soning (Jørgensen et al. 2011). Sulfur is utilized during
the detoxification process (Cock 1984) to convert cya-
nide into thiocyanate, which is excreted in urine (Duarte
and Sandoval-Castro 2002). Acute cyanide poisoning
inactivates cytochrome-mitochondrial oxidase, thus
blocking the electron chain and favoring the develop-
ment of neuronal damage and neurological alterations,
such as Konzo and TAN (Nzwalo and Cliff 2011;
Kambale et al. 2017). As described in the present re-
view, the substances that are responsible for these neu-
rological alterations are the main cyanogenic glycosides
in cassava, including linamarin, lotaustralin, and acetone
cyanohydrin.

The conclusion is clear. Diverse populations around the
world are experiencing a food and nutritional emergency that
can lead to diseases that are a public health problem. This has
led to the development of more easily grown crops to cover
basic food needs, but some of these crops can have negative
effects on health. This reveals the need for further epidemio-
logical studies by neurologists and other specialists to identify
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possible neurological manifestations among consumers of
these products and their derivatives, such as cassava.

Some vegetables with high nutritional value can be
used to correct food deficits in vulnerable populations.
However, studies are needed to identify the presence or
absence of potential toxic effects that can seriously im-
pact human health. Such toxic effects have been identi-
fied with other vegetables, such as cycads (Rivadeneyra-
Domínguez and Rodríguez-Landa 2013). Cassava is eas-
ily cultivated because of its adaptation to diverse cli-
mates, but its potential toxic effects must be considered
in vulnerable populations. Therefore, every product,
even if it has a natural origin, can be beneficial or toxic
to the organism. Oftentimes, such effects depend on the
type and quantity of its active ingredients and the vul-
nerability of the people who consume them.

Conclusions

Cassava contains cyanogenic glycosides with neurotoxic
actions that predispose individuals to the development
of neurological disorders that are characterized by alter-
ations of motor skills, motor incoordination, and cogni-
tive deterioration when it is consumed at high concen-
trations or for prolonged periods of time. Although cas-
sava has high nutritional value and has been consumed
to correct food deficits in vulnerable populations, it also
has toxic potential that can negatively impact brain
function and affect quality of life.
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