Programa de estudio de experiencia educativa

I. Área académica

Área Académica Técnica

2.-Programa educativo

Químico Farmacéutico Biólogo

3.- Campus

Xalapa/Orizaba-Córdoba

4.-Dependencia/Entidad

Química Farmacéutica Biológica/Ciencias Químicas

5 Código	6Nombre de la experiencia	7 Area de formación	
5 Codigo	educativa	Principal	Secundaria
QF QU 18004	Análisis Instrumental	BID	No aplica

8.-Valores de la experiencia educativa

Créditos	Teoría	Práctica	Total horas	Equivalencia (s)
12	4	4	120	Análisis instrumental

9.-Modalidad

10.-Oportunidades de evaluación

Curso-Laboratorio	ABGHJK=Todas
-------------------	--------------

II.-Requisitos

Pre-requisitos	Co-requisitos
Química analítica	Ninguno

12.-Características del proceso de enseñanza aprendizaje

Individual / Grupal	Máximo	Mínimo
Grupal	30	10

13.-Agrupación natural de la Experiencia educativa

14.-Proyecto integrador

Academia de Química	Investigación en biología molecular y funcionalidad de biomoléculas; evaluación farmacológica y toxicológica de principios activos, plantas medicinales y compuestos de nueva síntesis; química, bioprospección, biotecnología y actividades biológicas de hongos, entre otras.
---------------------	---

15.-Fecha

Elaboración	Modificación	Aprobación
Enero 2020		Junio 2020

16.-Nombre de los académicos que participaron

Academia de Química

17.-Perfil del docente

Licenciatura en QFB o afines a la Química, preferentemente con posgrado en el área

18.-Espacio 19.-Relación disciplinaria

Intraprograma Educativo

20.-Descripción

Esta experiencia educativa se localiza en el AFID, cuenta con 4 horas teóricas, 4 horas prácticas y 12 créditos y tiene equivalencia con la experiencia educativa Análisis instrumental, que integran plan de estudios 2012. el Su propósito es que el alumno conozca y aplique los conceptos básicos de las técnicas instrumentales. Es indispensable para que sea capaz de identificar y/o cuantificar los analitos de interés de alguna muestra en las áreas de control de la calidad e investigación, entre otras. Para su desarrollo se proponen las estrategias metodológicas de: resolución de problemario, asignación de tareas, ejecución de prácticas, estudio de casos, infografías, mapas mentales y conceptuales. Por lo tanto, el desempeño de la unidad de competencia se evidencia mediante participación y exposición en clase, tareas, exámenes teóricos y/o prácticos, elaboración de reportes y bitácoras.

21.-Justificación

El análisis instrumental es una experiencia educativa teórico-práctica que combina tanto el abordaje de saberes teóricos como el desarrollo y práctica de saberes heurísticos y axiológicos, que permite conocer los fundamentos básicos de las técnicas instrumentales espectroscópicas, espectrométricas y cromatográficas para la realización de análisis físicos, químicos y de separación con la finalidad de aplicarlos en el control de calidad de procesos y/o identificación de moléculas de interés de los campos de ejercicio profesional del QFB.

22.-Unidad de competencia

El alumno analiza muestras orgánicas e inorgánicas de importancia en las áreas química, farmacéutica, cosmética y alimentaria, aplicando los fundamentos de las diferentes técnicas espectroscópicas, espectrométricas y cromatográficas, ejecutando prácticas de laboratorio, resolución de problemas y visitas académicas a centros de investigación y laboratorios del sector público o privado, con apego a las normas éticas aplicables al ejercicio profesional del QFB, con responsabilidad social y promoviendo el cuidado del medio ambiente.

23.-Articulación de los ejes

Los alumnos reflexionan en grupo en un marco de orden y respeto mutuo, sobre las diferentes técnicas del análisis instrumental y los requerimientos para su aplicación; para la ejecución de prácticas e interpretación de los resultados en equipo; resuelven exámenes, problemarios, elaboran reportes de prácticas y bitácoras.

24.-Saberes

Teóricos	Heurísticos	Axiológicos
Introducción al análisis instrumental -Clasificación del análisis instrumental, propiedades y fundamentos básicos en la instrumentaciónRadiación electromagnética -Aplicaciones de los fenómenos de reflexión, dispersión, absorción y emisión.	Espectroscopia UV-Vis -Práctica 1: Identificación de los componentes básicos y manejo del espectrofotómetro UV-Vis. -Práctica 2: Calibración del espectrofotómetro UV y Vis. -Práctica 3: Análisis cuantitativo (curva de calibración, modos factor y concentración). -Práctica 4: Identificación de sustancias orgánicas.	 Tolerancia a las diferentes ideas y opiniones Respeto a sus compañeros Responsabilidad en la entrega de evidencias Honestidad en las actividades extraclase Compromiso en el trabajo diario Autonomía en su aprendizaje

Espectroscopia atómica

-Fundamentos de la espectroscopía de absorción atómica, emisión atómica y fluorescencia.

-Aplicaciones cualitativas y cuantitativas.

Espectrofotometría de infrarrojo

-Absorción de radiación electromagnética por la materia.

-Diferentes regiones en el IR y su correlación con grupos funcionales.

-Manejo de la muestra

Espectrofotometría de UV/Vis

-Transiciones electrónicas -Definición y tipos de cromóforo y auxocromo -Ecuación de Lambert-Beer

-Coeficiente de extinción

-Espectro de absorción -Determinación de

longitud de onda máxima por las reglas de Woodward y Fieser de dienos, aldehídos y cetonas alfa-beta

insaturados.
-Manejo de muestra
-Aplicaciones analíticas de

productos de interés

Espectroscopía de Resonancia Magnética Nuclear (RMN) Espectroscopia atómica (absorción atómica, emisión atómica)
—Práctica 5: Identificación de los componentes básicos y manejo de un espectrofotómetro de absorción atómica.

Espectroscopía infrarroja —Práctica 6: Identificación de los componentes básicos y manejo de un espectrofotómetro infrarrojo.

Práctica 7: Calibración del espectrofotómetro IR.
Práctica 8: Preparación de muestras y elucidación de

-Practica 8: Preparación de muestras y elucidación de espectros problema por IR.

Resonancia magnética nuclear

-Práctica 9: Preparación de muestras y elucidación de espectros problema por RMN.

Cromatografía gas líquido -Práctica 10: Identificación de los componentes básicos y manejo de un CGL. Cromatografía de líquidos

Cromatografía de líquidos de alta resolución -Práctica II: Identificación de los componentes básicos y manejo de un HPLC.

Preparación de muestras y análisis cuali-cuantitativo por métodos cromatográficos.

-Fundamento de la		
resonancia magnética		
nuclear.		

- -Manejo de muestra
- -Aplicaciones

Espectrometría de masas (EM)

-Fundamento de espectrometría de masas (sistemas de ionización) -Aplicaciones cualitativas y cuantitativas.

Introducción a la instrumentación cromatográfica

- -Fundamentos de la cromatografía
- -Componentes de la cromatografía: Fase estacionaria, fase móvil.
- -Procesos de separación cromatográfica: Partición, Reparto, adsorción, exclusión.
- -Tipos de columna cromatográfica
- -Clasificación de los métodos cromatográficos de análisis.

Cromatografía Líquida de Alta Resolución (HPLC)

- -Componentes del instrumento analítico -Aplicaciones cualitativas y cuantitativas.
- -Detectores

Cromatografía de gases (CG)

-Componentes del

-Práctica 12: preparación de muestras:
derivatización,
preconcentración.
-Práctica 13: Análisis
cualitativo/cuantitativo de un compuesto orgánico.

Polarimetría y refractometría.

-Práctica 14: Aplicación de la polarimetría y refractometría en el análisis cualitativo y cuantitativo.

instrumento		
-Aplicaciones cualitativas y	<u>'</u>	
cuantitativas.		
-Detectores	<u>'</u>	

25.-Estrategias metodológicas

De aprendizaje	De enseñanza
Mapa mental	 Explicación de procedimientos
Bitácoras	 Dirección de prácticas
 Problemario 	 Asignación de tareas
Guión de prácticas	-

26.-Apoyos educativos

Materiales didácticos	Recursos didácticos
• Libros	 Proyector/cañón
 Software 	Pantalla
 Videos 	 Carteles
Páginas web	Pizarrón
Manual	 Computadoras

27.-Evaluación del desempeño

Evidencia (s) de desempeño	Criterios de desempeño	Ámbito(s) de aplicación	Porcentaje
Evaluación de	a) Escrito con	a) Aula	a) 5%
desempeño teórico:	calificación	b) Aula	b) 60%
a) Examen	aprobatoria mínima	c) Aula	c) 5%
diagnóstico	de 6	d) Aula	d) 10
b) Exámenes	b) Escrito con	e) Extra clase	e) 20%
c) Participación en	calificación	f) Laboratorio	Los incisos a-e
clase	aprobatoria mínima	g) Laboratorio	representan el 60%
d) Exposición	de 6	h) Extra aula	de la calificación
e) Trabajo de	c) Intervención	i) Laboratorio/aula	total del curso
investigación y/o	asertiva	,	f) 40%
proyecto innovador	d) Búsqueda,		g) 15%
Evaluación del	selección,		h) 25%
desempeño práctico:	comprensión y		i) 20%
f) Desempeño en el	transmisión del		Los incisos f-i
laboratorio	conocimiento.		representan el 40%
g) Bitácora	e) Búsqueda de		del total del curso
h) Reportes	información		
i) Examen teórico	asertiva		
y/o práctico	f) Cumplimiento de		

las reglas de trabajo	
y de seguridad;	
preguntas	
elaboradas por el	
profesor en el	
curso de la	
práctica;	
desempeño	
individual y en	
equipo a través de	
un registro en una	
guía; cumplimiento	
de las reglas de	
trabajo y de	
seguridad;	
preguntas	
elaboradas por el	
profesor en el	
curso de la	
práctica;	
desempeño	
individual y en	
equipo a través de	
un registro en una	
guía	
g) Resolución	
acertada de	
problemas;	
elaboración de	
resúmenes o	
cuadros sinópticos que demuestren la	
comprensión	
adecuada de	
reportes o textos	
técnicos;	
Puntualidad en la	
entrega;	
h) - Cumplimiento	
de los requisitos	
establecidos para	
su elaboración;	
pertinencia de	
contenido; orden;	
1	

claridad; limpieza; puntualidad en la entrega i) Resolución acertada de reactivos y/o de problemas prácticos en el laboratorio	
---	--

28.-Acreditación

Para acreditar esta EE el estudiante deberá haber presentado con idoneidad y pertinencia cada evidencia de desempeño, es decir, que en cada una de ellas haya obtenido cuando menos el 60%, además de cumplir el porcentaje de asistencia establecido en el estatuto de alumnos 2008.

29.-Fuentes de información:

Básicas

- Chen Nan, Wang Yue, Liu Tao & Xia Yang (2020) Fourier transform infrared nano-spectroscopy: Mechanism and applications, Applied Spectroscopy Reviews.
- Harris, D. C.; Berenguer Navarro, V.; Berenguer Murcia, A. (2007). Análisis Químico Cuantitativo. Barcelona, España: Reverté.
- Harvey, D. (2002). Química Analítica Moderna. Madrid: Mc Graw Hill.
- Hernández, L. (2002). Introducción al Análisis Instrumental. Barcelona: Ariel Ciencia.
- Kenneth A. (2001). Análisis instrumental / Rubinson, Judith F. Rubinson; tr., Luis Larrauri Ros. Prentice Hall: Pearson, Madrid.
- Lambert, J. B. (2011). Organic Structural Spectroscopy. U.S.A: Prentice Hall.
- Meyer, Veronika. (2010). Practical high-performance liquid chromatography.
 5th Ed. Chichester, U.K.: Wiley.
- Miller, J. N.; Miller, J. C. (2010). Statistics and Chemometrics for Analytical Chemistry. U.S.A: Prentice Hall.
- Moscoso-Gama J. M. (2020) Cromatografía Líquida de Alta Resolución. I^a. Ed. El Cid Editor.
- Pavia, D. L. (2009). Introduction to Spectroscopy. Brooks/Cole Cengage Learning.
- Polo-Díez, L. M. (2015) Fundamentos de Cromatografía. I^a. Ed. Dextra Editorial.

- Quintana-Mani M. C.; Gismera-García M. J. (2014). Introducción a la Cromatografía Líquida de Alta Resolución. I^a. Ed. Editorial Universidad Autónoma de Madrid.
- Rouessac, F.; Rouessac, A. (2003). Análisis Químico: Métodos y Técnicas Instrumentales Modernas. México: McGraw-Hill.
- Rubinson, K. A.; Rubinson, J. (2001). Análisis Instrumental. U.S.A.: Prentice Hall.
- Skoog, D. A.; Holler, F. J.; Nieman, T. A. (2018). Principios de Análisis Instrumental. México: McGraw-Hill.
- Skoog, D. A.; Leary, J. J. (2008). Análisis Instrumental. España: Mc Graw-Hill.
- Snyder, Lloyd R; Kirkland, J.J.; Dolan, John W. (2010). Introduction to modern liquid chromatography. 3rd.Ed. Hoboken, N.J.: Wiley.
- Sparkman, O. David; Penton, Zelda; Kitson, Fulton G. (2011). Gas chromatography and mass Spectrometry: a practical guide 2nd. Ed. Burlington, MA: Academic Press.

Complementarias

- ACS Publications: http://pubs.acs.org/
- Área Técnica: http://www.uv.mx/bvirtual/bases-de-datos-conricyt/tecnica/
- Biblioteca virtual UV: http://www.uv.mx/bvirtual/
- Base de datos: CONRICYT. http://www.uv.mx/bvirtual/bases-de-datosconricyt/bases-de-datos-por-area-academica/
- https://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi. Base de datos de componentes orgánicos