Programa de estudio de experiencia educativa

I. Área académica

Área Académica Técnica

2.-Programa educativo

Ingeniería Mecánica Eléctrica

3.- Campus

Xalapa, Boca del Río, Ixtaczoquitlán, Coatzacoalcos, Poza Rica Tuxpan.

4.-Dependencia/Entidad

Facultad de Mecánica Eléctrica, Facultad de Ingeniería Mecánica y ciencias navales, Facultad de Ingeniería

	F Cádica	6Nombre de la experiencia	7 Area de formación	
5 Código		educativa	Principal Secundaria	
	MEEC 18007	Generadores eléctricos	D	No aplica

8.-Valores de la experiencia educativa

Créditos	Teoría	Práctica	Total horas	Equivalencia (s)
6	2	2	60	Ninguna

9.-Modalidad

10.-Oportunidades de evaluación

Curso-Taller	ABGHJK=Todas
--------------	--------------

II.-Requisitos

Pre-requisitos	Co-requisitos
Ninguno	Ninguno

12.-Características del proceso de enseñanza aprendizaje

Individual / Grupal	Máximo	Mínimo
Grupal	40	10

I3.-Agrupación natural de la Experiencia educativa

14.-Proyecto integrador

Eléctrica	No aplica
-----------	-----------

15.-Fecha

Elaboración	Modificación	A probación
Enero 2020		Junio 2020

16.-Nombre de los académicos que participaron

Academia de Eléctrica de las regiones donde se imparte el plan de estudios.

17.-Perfil del docente

Licenciatura en ingeniería mecánica eléctrica, eléctrica, electromecánica o industrial eléctrica; preferentemente con estudios de posgrado; deseable con experiencia docente en el nivel superior; deseable con experiencia profesional en el ámbito de la disciplina.

18.-Espacio

19.-Relación disciplinaria

Intrafacultades	Multidisciplinario
mer ara carea co	r rateraloci pinitar ro

20.-Descripción

Esta experiencia educativa se localiza en el AFD, cuenta con 2 horas teóricas, 2 horas prácticas y 6 créditos que integran el plan de estudios 2020. La importancia de esta experiencia educativa radica en que el estudiante conozca los conceptos básicos relativos al diseño, funcionamiento y operación de los generadores eléctricos. Esto se logra a través de la explicación de procedimientos, repaso de saberes previos y la dirección de prácticas. Por lo tanto, la unidad de competencia se evidencia mediante la presentación de evaluaciones escritas, elaboración de ejercicios de repaso y la asistencia al laboratorio para la realización de prácticas.

21.-Justificación

Conocer los principales conceptos, el funcionamiento de los generadores eléctricos (tanto de corriente directa como de corriente alterna) así como sus componentes crean en el estudiante las bases de los sistemas eléctricos que después emplea para el diseño y desarrollo de proyectos que impactan en la eficiencia energética, ayudando así a la sustentabilidad.

22.-Unidad de competencia

El estudiante hace uso de los conceptos fundamentales de los generadores eléctricos, a partir de la aplicación de teorías, metodologías y la normatividad correspondiente, a través de una actitud de ética, actuando siempre con responsabilidad y apego a los estándares y normas, haciendo uso de su creatividad y colaborando con sus compañeros con la finalidad de buscar la solución de problemas inherentes relacionados con los generadores eléctricos.

23.-Articulación de los ejes

El estudiante reflexiona en grupo en un marco de orden y respeto mutuo sobre saberes teóricos, heurísticos y axiológicos, ya que deben hacer uso de los conceptos y teorías que describen y fundamentan la operación de los generadores eléctricos; desarrollar habilidades, manejar, clasificar y procesar información de forma adecuada, tanto de manera individual como en equipo; resuelve ejercicios y presenta evaluaciones escritas. Finalmente, discute en grupo su propuesta y determina cual forma de resolución es la correcta, opinando y escuchando diferentes puntos de vista.

24.-Saberes

Teóricos	Heurísticos	Axiológicos
Principios básicos de la generación de corriente directa (CD) • La máquina elemental de	 Recopilación e interpretación de información. Manejo de buscadores 	Actitud de ética en el uso, manejo e interpretación de la información.
corriente directa • Fuerza electromotriz (FEM) promedio en un cuarto de	y bases de datos para conocer la normatividad relacionada con los generadores	 Responsabilidad en la aplicación de la normatividad correspondiente.
revolución Ecuaciónfundamental delgenerador de CDpara FEM	 eléctricos. Elaboración de ejercicios prácticos dentro y fuera de clase 	 Valoración de la importancia del ahorro de energía y la eficiencia energética.
promedio entre escobillas • Estructura	para mejorar la comprensión de los temas expuestos por el profesor.	 Valoración de la importancia del generador eléctrico como principal equipo
constructiva del generador de CD • Circuito equivalente	 Uso de procesadores de textos, hojas de 	en una planta generadora
 Embobinados de armadura 	cálculo y software de programación para	Colaboración en equipo para buscar la

- Conmutación
- Problemas de conmutación y reacción de armadura
- Curvas de saturación

El generador de corriente directa

- Tipos de generadores de CD
- Generador con excitación separada
- Generador con excitación en derivación
- Generador con excitación en serie
- Generador con excitación compuesta
- Regulación de voltaje
- Conexión de generadores en paralelo

Eficiencia del generador de CD

- Distribución de las pérdidas de un generador de CD
- Pérdidas eléctricas
- Perdidas magnéticas
- Pérdidas mecánicas
- Pérdidas rotacionales o de potencia parásita
- Estimación de la eficiencia
- Eficiencia máxima teórica

desarrollar
herramientas virtuales
que contribuyan a la
comprensión de los
temas relacionados
con los generadores
eléctricos.

mejor solución de un caso o problema relacionado con los generadores eléctricos.

 Aplicación de la creatividad para resolver ejercicios de forma correcta y eficiente.

Princ	ipios básicos de la
generación de	
corriente alterna (CA)	
•	Conceptos básicos
•	Conductor
•	Espira
•	Bobina
•	Espira sencilla en
	un campo
	magnético
	uniforme
•	Campos
	magnéticos
	giratorios y
	estacionarios
•	Fuerza
	electromotriz
	inducida en una
	espira
•	Devanados en los
	generadores de
	CA
•	Devanado inductor
•	Devanado inducido
•	Determinación de
	los factores de
	paso y distribución
•	Relación de
	frecuencia -
_	velocidad
•	Voltajes promedio,
_	pico y eficaz
•	Ecuación general del generador de
	CA
Flalt	ernador síncrono
_ ait	El alternador de
	polos lisos y
	salientes
_	Tipos de excitación
	Análisis del
_	alternador en vacío
	arternador en vacio

Universidad Veracruzana Dirección General del Área Académica Técnica Licenciatura en Ingeniería Mecánica Eléctrica

•	Análisis del	
	alternador con	
	carga	
•	Alternador con	
	carga resistiva	
•	Alternador con	
	carga inductiva	
•	Alternador con	
	carga capacitiva	
•	Diagrama fasorial	
•	Impedancia	
	síncrona y circuito	
	equivalente	
•	Regulación de	
	voltaje	
•	Pruebas del	
	alternador	
	síncrono	
•	Prueba de	
	resistencia a la CD	
	de los devanados	
	del alternador	
•	Prueba en vacío o	
	de circuito abierto	
•	Prueba con carga o	
	de cortocircuito	
•	Determinación de	
	la eficiencia	
•	Eficiencia máxima	
•	Control de la	
	potencia activa y	
	reactiva	
•	Modelos de cargas:	
	el método ZIP	
•	Conexión de	
	alternadores en	
	paralelo	
•	Normatividad en	
	los alternadores	
	síncronos	

25.-Estrategias metodológicas

De aprendizaje	De enseñanza
Investigación documental	 Atención a dudas y comentarios
Discusión de problemas	 Preguntas detonadoras
Aprendizaje basado en TIC	 Explicación de procedimientos
Problemario	 Recuperación de saberes previos
Experimentos	Dirección de prácticas
Simulación	 Asignación de tareas
Lectura e interpretación de textos	Discusión dirigida
Aprendizaje autónomo	 Organización de grupos
Aprendizaje cooperativo	Supervisión de trabajos
•	

26.-Apoyos educativos

Materiales didácticos	Recursos didácticos		
• Libros	Proyector/cañón		
Antologías	Tablet		
Software	Pizarrón		
Páginas web	Computadoras		
Fotografías			

27.-Evaluación del desempeño

Evidencia (s) de desempeño	Criterios de desempeño	Ámbito(s) de aplicación	Porcentaje
Exámenes parciales	La puntuación se asigna con base en las respuestas correctas producidas por el estudiante.	Aula	60%
Prácticas de laboratorio	Asistencia a las prácticas de laboratorio y entrega del reporte final.	Laboratorio	20%
Entrega de trabajos y tareas	La puntuación se asigna con base en contenido de las tareas y trabajos, debiendo ser oportunos, coherentes, ordenados y entregados en tiempo y forma	Centro de cómputo, internet, plataforma EMINUS	20%

28.-Acreditación

Para acreditar esta EE el estudiante deberá haber presentado con idoneidad y pertinencia cada evidencia de desempeño, es decir, que en cada una de ellas haya obtenido cuando menos el 60%, además de cumplir el porcentaje de asistencia establecido en el estatuto de alumnos 2008.

29.-Fuentes de información

Básicas

- Chapman, S. (2012). Máquinas Eléctricas. (5ª edición); Editorial Mc. Graw Hill.
- Fitzgerald, A. E., Kingsley, C., & Umans, S. (2004). Máquinas Eléctricas. (6a edición): Editorial Mc Graw Hill; 2004.
- Fraile Mora J. (2008). Máquinas eléctricas. (6ª edición): Editorial Mc Graw Hill. Editorial Pearson, 2006.
- J. Pyrhonen, T. Jokinen, V. Hbrabovcová, (2008). Design of rotating electrical machines, first edition.
- J. R. Cogdell (2001). Fundamentos De Máquinas Eléctricas, editorial Pearson, primera edición.
- Kosow, I.L. (2009). Máquinas Eléctricas y Transformadores: Editorial Reverté. Edición en español.
- Theodore Wildi (2006). Máquinas Eléctricas Y Sistemas De Potencia. 6a edición.

Complementarias

- Enriquez, H. G. (2005). Máquinas Eléctricas. (1a edición): Ed. Noriega.
- Sitio de la Biblioteca Virtual de la UV: https://ieeexplore.ieee.org/Xplore/home.jsp