Programa de estudio de experiencia educativa

I. Área académica

Área Académica Técnica

2.-Programa educativo

Ingeniería Mecánica Eléctrica

3.- Campus

Xalapa, Boca del Río, Coatzacoalcos, Ixtaczoquitlán y Poza Rica

4.-Dependencia/Entidad

Facultad de Ingeniería Mecánica y Eléctrica (Xalapa), Facultad de Ingeniería Mecánica y Ciencias Navales (Veracruz), Facultad de Ingeniería (Coatzacoalcos-Minatitlán), Facultad de Ingeniería (Orizaba-Córdoba) y Facultad de Ingeniería Mecánica y Eléctrica (Poza Rica-Tuxpan)

5 Código	6Nombre de la experiencia	7 Area de formación	
5 Codigo	educativa	Principal	Secundaria
MEEL 18004	Transformadores eléctricos	D	No aplica

8.-Valores de la experiencia educativa

Créditos	Teoría	Práctica	Total horas	Equivalencia (s)
6	2	2	60	Ninguna

9.-Modalidad

10.-Oportunidades de evaluación

Curso-taller ABGHJK=Todas

II.-Requisitos

Pre-requisitos	Co-requisitos
Circuitos de Corriente Alterna	Ninguno

12.-Características del proceso de enseñanza aprendizaje

Individual / Grupal	Máximo	Mínimo
Grupal	40	10

I3.-Agrupación natural de la Experiencia educativa

14.-Proyecto integrador

Academia de Eléctrica	No aplica
-----------------------	-----------

15.-Fecha

Elaboración	Modificación	A probación
Enero 2020		Junio 2020

16.-Nombre de los académicos que participaron

Dr. Jesús Antonio Camarillo Montero, Dr. Alfredo Ramírez Ramírez, Mtro. Josué Domínguez Márquez, Ing. Amado Román Ríos Mar, Mtro. Frumencio Escamilla Rodríguez, Dra. María Inés Cruz Orduña, Mtro. Gabriel Juárez Morales, Dr. Juan Rodrigo Laguna Camacho, Ing. José Isidro Jiménez Silva

17.-Perfil del docente

Licenciatura en ingeniería mecánica eléctrica, eléctrica, electromecánica o industrial eléctrica; preferentemente con estudios de posgrado; deseable con experiencia docente en el nivel superior.

18.-Espacio

19.-Relación disciplinaria

Intrafacultad Multidisciplinaria

20.-Descripción

Esta experiencia educativa se localiza en el AFD, cuenta con 2 horas teóricas, 2 horas prácticas y 6 créditos, que integran el plan de estudios 2020. El alumno comprenderá los conceptos básicos de la electricidad como una formación integral para el análisis y diseño de transformadores de potencia, distribución, medición y control; que permita al alumno su selección o desarrollo de la metodología de diseño, los procedimientos de pruebas requeridas para su aceptación en fábrica, puesta en servicio y operación del equipo. Comprenderá también los conceptos para la instalación, inspección y mantenimiento de los transformadores eléctricos, atendiendo además la normatividad tanto nacional como internacional vigente de fabricación, construcción y diseño. Para su desarrollo se proponen las estrategias metodológicas de exposición plenaria por parte del profesor, trabajo en equipos para la resolución de problemas, intervención de los estudiantes y desarrollo de prácticas de laboratorio. Por lo tanto, el desempeño de la unidad de competencia se evidencia mediante la presentación de evaluaciones parciales, entrega de tareas y actividades, intervención y participación de los estudiantes y la entrega de reporte de prácticas de laboratorio.

21.-Justificación

La energía eléctrica es indispensable en nuestro mundo actual; desde la generación, transmisión y hasta la distribución de la misma a las grandes, medianas y pequeñas industrias de transformación. Así como de una gran parte de las actividades humanas que la utilizan para satisfacer sus necesidades. Es por ello que se requiere modelar toda máquina, equipo o aparato eléctrico para su análisis como un circuito eléctrico.

22.-Unidad de competencia

El estudiante analiza los conceptos fundamentales de los transformadores eléctricos, a partir de teorías, metodologías y aplicación de la normatividad correspondiente, propias de la disciplina a través de una actitud de ética, responsabilidad, puntualidad, participación, colaboración y creatividad para la resolución de problemas inherentes de los transformadores eléctricos.

23.-Articulación de los ejes

Los alumnos reflexionan en grupo en un marco de orden y respeto mutuo, sobre los Transformadores eléctricos; realizando Interpretación y aplicación de la normatividad vigente, selección de equipos y sus pruebas, en equipo; solucionan problemas relacionados con la selección de equipos y pruebas necesarias a los transformadores eléctricos. Finalmente discuten en grupo su propuesta.

24.-Saberes

Toóricos	Heurísticos	Aviológicos
Teóricos		Axiológicos
Conceptos de circuitos	Recopilación e	Actitud de ética en el
magnéticos en los	interpretación de	uso, manejo e
transformadores	información.	interpretación de la
 Descripción del núcleo 		información.
del transformador	 Manejo de buscadores 	
• Sistema	y bases de datos para	Responsabilidad en la
electromagnético	conocer la	aplicación de la
Circuitos eléctricos y	normatividad	normatividad
circuitos magnéticos	relacionada con los	correspondiente.
Ley de Ampere	transformadores	·
aplicada a los circuitos	eléctricos.	Valoración de la
•	cicca icos.	importancia del ahorro de
magnéticos	Elaboración de	energía y la eficiencia
Curva de saturación o		energética.
magnetización	ejercicios prácticos	circi Scarca.
 Circuitos magnéticos 	dentro y fuera de clase	Valoración de la
conectados en serie	para mejorar la	
Circuitos magnéticos	comprensión de los	importancia del
con ramas en paralelo	temas expuestos por el	transformador eléctrico
•	profesor.	

Universidad Veracruzana Dirección General del Área Académica Técnica Licenciatura en Ingeniería Mecánica Eléctrica

- Método de análisis de los circuitos magnéticos
- Histéresis en el núcleo ferromagnético
- Ejercicios prácticos de núcleos ferromagnéticos
- Práctica I:
 Determinación de la curva de saturación de un transformador monofásico

Principios fundamentales del transformador.

- El transformador
- Clasificación.
- Partes Principales.
- Especificaciones.
- Construcción: Partes internas y externas.
- Refrigeración y Selección.
- Acción
 Transformadora.
- Condiciones en Vacío: Ecuación General del Transformador.
- Transformador Ideal: Relación de Transformación.
- Transferencia de Potencia.
- Condiciones prácticas del Transformador.
- Impedancia referida: Transformación de impedancia.
- Circuitos Equivalentes simplificados.
- Relaciones fasoriales de voltaje en el

Uso de procesadores de textos, hojas de cálculo y software de programación para desarrollar herramientas virtuales que contribuyan a la comprensión de los temas relacionados con los transformadores eléctricos.

como equipo primario en una subestación

- Colaboración en equipo para buscar la mejor solución de un caso o problema relacionado con los transformadores eléctricos.
- Aplicación de la creatividad para resolver ejercicios de forma correcta y eficiente.

Universidad Veracruzana Dirección General del Área Académica Técnica Licenciatura en Ingeniería Mecánica Eléctrica

	T	
secundario: Cargas con		
factor de potencia igual		
a la unidad, factor de		
potencia atrasado y		
factor de potencia		
adelantado.		
• El Autotransformador.		
 Transformadores de 		
Corriente y de		
Potencial.		
Práctica 2: El		
transformador bajo		
carga		
Conexiones del		
Transformador.		
Conexión en Serie y		
Paralelo de los		
devanados del		
transformador.		
Funcionamiento de		
transformadores en		
paralelo.		
 Circuitos Trifásicos de 		
los transformadores:		
Conexiones		
• Δ-Δ, Y-Y, Y-Δ, Δ-Y, V-		
V.		
 Relación de 		
transformación Scott.		
• Grupos de conexión de		
transformadores		
trifásicos (transformer		
vector group)		
 Diagramas de reloj 		
I		
Diagramas fasoriales		
Conexión de		
devanados		
• Transformadores en		
paralelo: Ventajas,		
desventajas, requisitos		
y cálculo.		
Consideración para		
sistemas de conexión		
sistemas de conexión		

	radial y en anillo.
•	Práctica 3: Conexión
	de transformadores
	trifásicos
	ormas y pruebas para
tra	ansformadores.
•	Embarque, Manejo y
	almacenaje.
•	Recomendaciones para
	la inspección y
	mantenimiento de
	transformadores
	mayores de 300 KVA.
•	Programas de
	inspección de
	accesorios y prueba de
	mantenimiento.
•	Temperatura ambiente:
	Altura de operación y
	efecto de la altitud en
	la elevación de
	temperatura y rigidez
	dieléctrica del aire.
•	Pruebas para conocer
	las características de un
	transformador.
•	Relación de
	transformación-
	polaridad.
•	Resistencia Óhmica.
	Pruebas de
	comprobación del
	estado del
	transformador:
	Corriente de
	excitación.
•	Aislamiento, Factor de
•	potencia o
	envejecimiento.
	*
•	Potencial aplicado e
	inducido.
•	Pruebas al aceite
	aislante del

transformador.	
 Cromatografía de 	
gases.	
 Descargas parciales en 	
transformadores de	
potencia	
Práctica 4: Pruebas de	
Relación de	
Transformación,	
Resistencia Óhmica y	
Resistencia de aislamiento,	
a un transformador de	
distribución.	

25.-Estrategias metodológicas

De aprendizaje	De enseñanza		
Investigación documental	Atención a dudas y comentarios		
Discusión de problemas	Preguntas detonadoras		
Aprendizaje basado en TIC	Explicación de procedimientos		
Problemario	Recuperación de saberes previos		
Experimentos	Dirección de prácticas		
Simulación	Asignación de tareas		
Lectura e interpretación de textos	Discusión dirigida		
Aprendizaje autónomo	Organización de grupos		
Aprendizaje cooperativo	Supervisión de trabajos		

26.-Apoyos educativos

Materiales didácticos	Recursos didácticos
-Libros	-Proyector/cañón
-Antologías	-Pizarrón
-Software	-Computadoras
-Páginas web	-Software especializado
-Presentaciones	•
-Manual	

27.-Evaluación del desempeño

Evidencia (s) de desempeño	Criterios de desempeño	Ámbito(s) de aplicación	Porcentaje
Exámenes parciales	La puntuación se asigna con base en las respuestas correctas producidas por el estudiante.	Aula	60 – 70%
Prácticas de laboratorio	Asistencia a las prácticas de laboratorio y entrega del reporte final.	Laboratorio	20%
Entrega de trabajos y tareas	La puntuación se asigna con base en contenido de las tareas y trabajos, debiendo ser oportunos, coherentes, ordenados y entregados en tiempo y forma	Centro de cómputo, internet, plataforma EMINUS	10 – 20%

28.-Acreditación

Para acreditar esta experiencia educativa, el estudiante deberá cubrir el 80% de asistencia y haber presentado con idoneidad y pertinencia cada evidencia de desempeño, además de cumplir el porcentaje de asistencia establecido en el estatuto de alumnos 2008.

29.-Fuentes de información

Básicas

- Chapman, S. J. (2012). Máquinas Eléctricas (5ª. Edición). McGraw Hill, México.
- Fitzgerald, A. E. (2012). Máquinas Eléctricas (6ª. Edición). McGraw-Hill, México.
- Garik, M. L., Whipple, E. E. & Clyde, C. (1992). Máquinas de Corriente Alterna. CECSA, México.
- Kosow, I.L. (1993). Máquinas Eléctricas y Transformadores (2ª. Edición). Prentice Hall, México.
- Nassar, S.A. & Unnewehr, L. F. (1982). Electromecánica y Máquinas Eléctricas (1ª. Edición). Limusa, México.

Complementarias

- Biblioteca Virtual de la Universidad Veracruzana
- Gingrich, H. W. (1980). Máquinas Eléctricas, Transformadores y Controles. Prentice Hall, Inc. Colombia.
- Hinmarsh, J. (1974). Máquinas Eléctricas y sus Aplicaciones. URMO, S.A., España.
- Kostenko, M.P. y Piotrovski (1975). Máquinas Eléctricas Tomo I y II. Editorial MIR, Moscú.
- Langsdorf, A. (1967). Teoría de las Máquinas de Corriente Alterna. España. 2a. ed.
- Normas Oficiales Mexicanas (NOM-001-SEMP-1994; NOM-002-SEDE)
 Puchstein, A.F., Lloyd, T.C. and Conrad, A.G. (1964). Alternating Current Machines, USA. 3a. Edición
- Thaler, G. J. y Wilcox, M. (1979). Máquinas Eléctricas. Limusa, México.